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Blow Up Analysis for Anomalous Granular Gases∗

Thomas Rey†

Preliminary version of May 29, 2011

Abstract

We investigate in this article the long-time behaviour of the solutions to the
energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard
spheres. This model describes a diluted gas composed of hard spheres under statis-
tical description, that dissipates energy during collisions. We assume that the gas
is “anomalous”, in the sense that energy dissipation increases when temperature
decreases. This allows the gas to cool down in finite time. We study existence
and uniqueness of blow up profiles for this model, together with the trend to equi-
librium and the cooling law associated, generalizing the classical Haff’s Law for
granular gases. To this end, we investigate the asymptotic behaviour of the inelas-
tic Boltzmann equation with and without drift term by introducing new strongly
“nonlinear” self-similar variables.

1 Introduction

We are interested in this paper in a particular model of granular gases. A granular gas
is a set of particles which interact by energy dissipating contact interactions. This is a
quite different model than perfect molecular gas where energy is conserved, because the
particles are “microscopic” regarding the scale of the system, but “macroscopic” in the
sense that there are not molecules at all, but rather grains of a given size. For example,
a suspension of pollen in a fluid or a planetary ring can be seen as a granular gas when
external forces are neglected, each one in a different scale.

Our goal in this article is to investigate the global behaviour of the kinetic energy of a
space-homogeneous gas of inelastic hard spheres interacting via binary collisions (that is
a granular gas), and existence and uniqueness of blow up profiles associated. The study
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†Université de Lyon, Université Claude Bernard Lyon 1, Institut Camille Jordan, 43 bd. du 11
Novembre 1918, 69622 Villeurbanne cedex, France (rey@math.univ-lyon1.fr).

1



Anomalous Granular Gases 2

of this kind of system started with the physics paper [11] of P.K. Haff, and has since gen-
erated a large increase of interest, both in Physics (a complete introduction of the subject
can be found in the textbook [8] by N. Brilliantov and T. Pöschel) and Mathematics (cf.
the review article [17] by C. Villani). It involves some complicated phenomena, such as
kinetic collapse (cf. K. Shida [16]) where the gas freezes completely, clustering at hydro-
dynamic level for inhomogeneous gases, or even spontaneous loss of homogeneity. This
article will especially deal with the case of a gas whose particle’s collision rate increases
with dissipation of energy. Such a gas is sometimes called anomalous (see article [14] of
S. Mischler and C. Mouhot), because of the unusual behaviour of this collision rate.

A granular gas can be described in a purely Newtonian way, but the number of macro-
scopic particles involved (ranging from 106 to 1010) leads to adopt a statistical physics’
point of view. Therefore, we shall study the so-called space-homogeneous inelastic Boltz-
mann equation (also known as granular gases equation), given by

(1.1)
∂f

∂t
= Qe(f, f),

where f = f(t, v) represents the particle’s distribution function, depending on time t ≥
0 and velocity v ∈ R

d. The collision operator Qe(f, g), which will be made precise
in the following (particularly concerning the meaning of subscript e), models a binary
inelastic collision process of hard spheres type, localized in time. This equation will be
supplemented with the initial value

(1.2) f(0, ·) = fin.

The inelasticity is characterized by a collision mechanics where mass and momentum
are conserved and kinetic energy is dissipated. At microscopic level, it can be described
as follows: given two particles of pre-collisional velocities v and v∗, their respective post-
collisional velocities, denoted by v′ and v′∗, are given by





v′ = v − 1 + e

2
(u · ω)ω,

v′
∗
= v∗ +

1 + e

2
(u · ω)ω,

where u := v − v∗ is the relative velocity of a pair of particles, ω is the impact direction
and e ∈ [0, 1] the dissipation parameter, known as restitution coefficient (see Figure 1 for
a sketch of the collision process).

Physically, it means that energy is dissipated in the impact direction only. The
parameter e can depend on relative velocity and kinetic energy of the particles. For the
need of the analysis, we will simply assume that e is a constant, which is a rather good
physical approximation (a complete discussion on this topic can be found in [8]). Besides,
e will also be taken different from 1, since e = 1 concerns the classical elastic case, in
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Figure 1.1: Geometry of collision (dashed lines are elastic and solid lines inelastic)
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which no dissipation occurs. The inelastic case e < 1 can also be characterized by the
fact that impact direction ω does not bisect the angle between pre and post-collisional
velocities.

The parametrization of post-collisional velocities can also be found by using some
properties of the model. Indeed, it is equivalent to conservation of impulsion and dissi-
pation of energy:

v′ + v′
∗
= v + v∗,

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1 − e2

2
|u · ω|2 ≤ 0.(1.3)

One of our goal will be the study of the macroscopic dissipation of energy, sometimes
referred as cooling process of the gas. This phenomenon has been investigated mathemat-
ically by S. Mischler and C. Mouhot in [12] for the case of constant restitution coefficient
e, and by R. Alonso and B. Lods in [1] for visco-elastics hard spheres, more realistic at
physical level. In the latter one, energy dissipation is a power law of the relative velocity
of colliding particles. We will use ideas of these two articles to write some of the results
we present in the following.

Let us now describe precisely the collision operator we consider throughout the rest
of this article. Let f and g be two nonnegative particles distribution functions only
depending on v ∈ R

d. The collision operator Qe(f, g), where e ∈ [0, 1) is the constant
restitution coefficient, can be expressed in the following weak form: given a regular test
function ψ,

(1.4) 〈Qe(f, g), ψ〉 :=
1

2

∫

Rd×Rd×Sd−1

|u|f∗ g (ψ′ + ψ′

∗ − ψ − ψ∗) b (û · ω, E(f))dω dv dv∗,

where we have used the usual shorthand notation ψ′ := ψ(v′), ψ′

∗
:= ψ(v′

∗
), û := u/|u|

and

E (f) :=

∫

Rd

|v|2f(v)dv

denotes the kinetic energy of f . Moreover, b is a positive function known as collisional
cross section. We will assume through this article the following properties for b:

H1. The cross section can be written as a product

b(·, E) = b1(·) E−a,

for a nonnegative constant a and a nonnegative function b1 of mass 1 in the unit
sphere.

H2. The function b1 involved in the cross section is bounded by below and above by
positive constants β1 and β2:

∀x ∈ [−1, 1], 0 < β1 ≤ b1(x) ≤ β2 <∞.
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We can give a strong form of the collision operator, thanks to these hypotheses.
Indeed, as it has been pointed out in [17] (the full derivation of this expression can be
found e.g. in articles [2, 3] of A. Bobylev, J. Carrillo and I. Gamba), one can write

Qe(f, g)(v) =

∫

Rd×Sd−1

|u|
(
J
|′u|
|u|

′f ′g∗ − fg∗

)
b(û · ω, E(f))dω dv∗,

= Q+
e (f, g)(v)− f(v)L(g)(v).

We have set ′v and ′v∗ the pre-collisional velocities of two particles of given velocities v
and v∗, and J the Jacobian of the map (v, v∗) 7→ ( ′v, ′v∗). Moreover, Q+

e (f, g)(v) is usually
known as gain term because it can be seen as the number of particles of velocity v created
by collisions of particles of pre-collisional velocities ′v and ′v∗, whereas f(v)L(g)(v) is
the loss term, modelling loss of particles of pre-collisional velocities v. One can notice
that J is not identically equal to 1, but since e is a nonzero constant,

J =
|u|
e2|′u| .

Taking successively ψ(v) = 1, v and |v|2 in (1.4) gives macroscopic conservation of
mass and momentum, and dissipation of kinetic energy. This implies that equilibria of
this collision operator are Dirac distributions ρ δv=v0 of prescribed mass ρ and momentum
ρ v0. In order to prevent apparition of these trivial solutions, one can add a diffusive term
to give an input of energy, as was studied for example by Cercignani, R. Illner and C.
Stoica in [9] and by A. Bobylev and Cercignani in [5] for Maxwell molecules. It is also
possible to look for self-similar solutions to this equation thanks to a rescaling which leads
to study the inelastic Boltzmann equation with drift term, as was done by M. Ernst and
R. Brito in [10].

Let us now describe more precisely the asymptotic behaviour of the energy of f ,
assuming that this distribution is time dependent, of mass 1 and zero momentum. When
there won’t be any confusion possible, we will denote E(t) = E(f)(t).
Definition 1. If f is solution to (1.1), we call cooling process the asymptotic behaviour
of E(t). We say that there is a blow up when E(t) → 0 for t → Tc, where Tc is the time
of explosion of f .

If one multiplies equation (1.1) by |v|2 and integrates in velocity, using weak formu-
lation (1.4) of the collision operator and Hypothesis H1, one gets dissipation of kinetic
energy:

(1.5)
d

dt
E(t) = −E(t)−a

∫∫

Rd×Rd

f(t, v)f(t, v∗)|u|D (|u|) dv dv∗,

where D is a nonnegative quantity usually called dissipation rate, given by

D(|u|) = 1− e2

4

∫

Sd−1

|u · ω|2 b1(û · ω)dω.
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Thanks to Hypothesis H2 concerning the bounds on the cross section, it comes that

D(|u|) ≥ β1
1− e2

4

∣∣Sd−2
∣∣ |u|2.

One can then apply Jensen’s inequality to Ψ(v) = |v|3 and to the probability measure
f(v∗) dv∗, together with conservative properties of equation (1.1) in order to get

∫

Rd

f(v∗)Ψ(|v − v∗|)dv∗ ≥ Ψ

(∣∣∣∣v
∫

Rd

f(v∗)dv∗ −
∫

Rd

v∗f(v∗)dv∗

∣∣∣∣
)

= Ψ(|v|).

Using equality (1.5) about the behaviour of the energy, it comes that

(1.6)
d

dt
E(t) ≤ −βe E(t)−a

∫

Rd

f(t, v)|v|3dv,

where βe is given by

βe = β1
1− e2

4

∣∣Sd−2
∣∣ .

Moreover, applying Hölder inequality with s = 3/2 and its conjugate s′ = 3 to the map
v 7→ f(v)|v|2, one gets thanks to mass conservation

(1.7)

(∫

Rd

f(v)|v|2dv
)3

2

≤
∫

Rd

f(v)|v|3dv.

Using Fubini Theorem for nonnegative measurable function and gathering inequalities
(1.6) and (1.7), we finally find a closed differential inequality for E(f), namely

(1.8)
d

dt
E(t) ≤ −βe E(t)−a+ 3

2 , for t < Tc.

According to this inequality, the cooling process will depend on the nonnegative coef-
ficient a from H1. We now have to describe rigorously the spaces of solutions to (1.1), in
order to introduce the corresponding Cauchy problem and the main results of this article.

1.1 Functional Framework and Main Results

Let us present some functional spaces needed in the paper. We denote by L1
q for q ∈

[1,+∞) the following weighted Lebesgue space

L1
q =

{
f : Rd → R measurable; ‖f‖L1

q
:=

∫

Rd

|f(v)|〈v〉qdv <∞
}
,
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where 〈v〉 :=
√

1 + |v|2. Thanks to this definition, we can introduce the sets of distribu-
tion of given mass 1, zero momentum and energy E > 0 as

G :=

{
f ∈ L1

1 :

∫

Rd

f(v)dv = 1,

∫

Rd

f(v)v dv = 0

}

and

GE :=

{
f ∈ G :

∫

Rd

f(v)|v|2dv = E
}
.

Then, we denote by W 1,1
q the weighted Sobolev space

W 1,1
q :=

{
f ∈ L1

q ;∇f ∈ L1
q

}
.

We also introduce the space BVq of weighted bounded variations functions, given as the
set of weak limits in D′ of sequences of smooth functions which are bounded in W 1,1

q .
Finally, M1(Rd) is the space of probabilities measures on R

d.
The Cauchy problem (1.1)-(1.2) has been extensively investigated in the past few

years, starting with paper [2] and then by A. Bobylev, Cercignani and G. Toscani in [7],
where Maxwellian molecules were considered using Fourier transform. A lot of properties
of a more general model which include elastic and inelastic collisions for Maxwellian
molecules as a particular case (but not hard spheres) have also been studied in the
chapter of book [6] of A. Bobylev, Cercignani and I. Gamba. Concerning hard spheres
kernel, S. Mischler and C. Mouhot proved existence and uniqueness of weak solutions to
the associated Cauchy problem in [14]. It can be defined in the following way:

Definition 2. Given a nonnegative initial condition fin ∈ L1
2∩G , a nonnegative function

f defined on [0, T ]× R
d is said to be solution to the Cauchy problem (1.1)-(1.2) if

f ∈ C
(
0, T ;L1

2

)
,

and if (1.1)-(1.2) holds in weak sense, namely,
∫ T

0

(∫

Rd

f(t, v)∂tψ(t, v)dv + 〈Qe(f, f)(t, ·), ψ〉
)
dt =

∫

Rd

fin(v)ψ(0, ·)dv,

for any ψ ∈ C1
c

(
[0, T ]× R

d
)
.

One can notice that it is always possible to assume the initial condition in G, namely
of mass 1 and zero momentum, since we may always reduce to this case by a scaling and
translation argument, using invariance properties of the collision operator.

Let us now introduce the cooling time Tc of f as the time before blow up, namely

Tc := sup {T > 0 : E(t) > 0, ∀t < T}.
For a collisional cross section given by H1 and H2, Theorem 1.4 of [14] states well-
posedness in L1

3 of Cauchy problem for the granular gases equation, together with the
existence of the cooling process:
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Theorem 1.1. Let fin be a nonnegative distribution satisfying

fin ∈ L1
3 ∩ G and fin ∈ BV4 ∩ L1

5.

Then, the following results hold for a cross section given by H1 and H2:

(i) the cooling time Tc is well define and positive;

(ii) for each T ∈]0, Tc[, there exists a unique solution f ∈ C(0, T ;L1
2) ∩ L∞(0, T ;L1

3) to
initial value problem (1.1)-(1.2). Such a solution is nonnegative, mass and momen-
tum conservative, and kinetic energy dissipative;

(iii) the energy of f is subject to the following asymptotic behaviour

(1.9) E(t) → 0 and f(t, ·)⇀ δv=0 when t→ Tc,

where the convergence of f occurs for weak-* topology of M1(Rd).

We now state main results of this paper concerning cooling process and blow up
solutions to the anomalous model. It is known from [14] that if a is greater than 1/2, Tc
is finite, meaning that blow up of f occurs in finite time whereas it takes infinite time for
a ≤ 1/2. We give accurate asymptotic behaviour of the energy in the main theorems of
this article, for all nonnegative values of the parameter a.

Theorem 1.2. Let the collision operator be subjects to assertions H1 and H2. If f is
solution to (1.1), whose initial condition 0 ≤ fin ∈ L1

3 ∩ G1 ∩ Lp for p > 1, there exist
some positive constants Ci, i ∈ {1, ..., 6} and Tc, depending on e, a and fin such that

(i) sub-critical case: if 0 ≤ a < 1/2, and then α = 1/(2a− 1) < 0,

1

(C1t + 1)−2α
≤ E(t) ≤ 1

(C2t+ 1)−2α
, ∀t > 0;

(ii) critical case: if a = 1/2,

e−C3t ≤ E(t) ≤ e−C4t, ∀t > 0;

(iii) super-critical case: if a > 1/2, and then α = 1/(2a− 1) > 0,

(−C5t + 1)2α ≤ E(t) ≤ (−C6t + 1)2α , ∀t < Tc.

Moreover, for all a ≥ 0, there exist a function V ∈ C1(0, Tc) and a nonnegative profile
G ∈ L1

3 ∩ G1 such that the distribution

F (t, v) := V (t)dG(V (t)v) for (t, v) ∈ (0, Tc)× R
d,

is solution to (1.1), called self-similar solution.
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We propose in Section 2 a proof of this Theorem based on the analysis of self-similar
solutions to the inelastic Boltzmann equation with a linear drift term (widely studied in
[12, 13]) and the asymptotic analysis of the time derivative of the energy. To this end,
we introduce a new self-similar scaling, nonexplicit and strongly nonlinear.

Remark 1 . One can check that the point (i) of this theorem is in good agreement with
the one proven in [12] with a = 0, and which is known as Haff’s Law [11]:

m1

(1 + t)2
≤ E (ft) ≤

M1

(1 + t)2
.

We then state a theorem of existence and uniqueness (up to a translation of time)
of self-similar solutions to equation (1.1) with a ≥ 0. We also obtain convergence of
solutions to (1.1) bounded in L1

3 toward these particular solutions.

Theorem 1.3. Let the collision operator be subjects to assertions H1 and H2 with a ≥ 0.
There exists a constructive e∗ ∈ (0, 1) such that for all e ∈ [e∗, 1),

(i) the self-similar profile G = Ge ∈ L1
3 ∩ G1 is unique and if Fe and F̄e are two self-

similar solutions to (1.1), there is a time t0 < Tc such that F̄e(t, v) = Fe(t + t0, v)
for t > max{0,−t0}.

(ii) For any M0 > 0, there exists η ∈ (0, 1) such that if

{
fin ∈ L1

3 ∩ G1,

‖fin‖L1
3
≤M0,

the solution f to equation (1.1) satisfies for a nonnegative constant C

‖f(t, ·)− Fe(t, ·)‖L1 ≤





C

(1 + C2t)−αµe
if a < 1/2,

Ce−C4µet/2 if a = 1/2,

C(1− C6t)
αµe if a > 1/2,

where α = 1/(2a− 1) and µe = (1− η) +O(1− e).

The proof of this Theorem is also based on the analysis of self-similar solutions to
the inelastic Boltzmann equation with drift term, together with the use of the explicit
cooling processes of Theorem 1.2.
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1.2 Plan of the Paper

The article is organized as follows. We prove Theorem 1.2 in Section 2. We give a
nonlinear rescaling that allows us to treat the three different cooling process at once in
Subsection 2.1. We then use the expression of this rescaling to give a relation between
energy in classical and self-similar variables. Subsequently, we show in Subsection 2.2
results concerning the asymptotic behaviour of solutions to the granular equation with
and without drift term, that is an estimate of the third order moment of solutions to the
latter one (proven thanks to the classical Haff’s Law) and that the time derivative of the
energy of solutions to the former tends to 0. We finally use this result in Subsection 2.3
to prove cooling process.

We then apply in Section 3 this precise asymptotic behaviour together with a Theorem
of uniqueness of self-similar profiles already proven in [13] of S. Mischler and C. Mouhot
to show Theorem 1.3 about rate of convergence toward self-similar solutions.

2 Proof of Theorem 1.2

This section presents the proof of Theorem 1.2 which studies the cooling process for sub-
critical (a < 1/2), critical (a = 1/2) and super-critical (a > 1/2) cases. To this end, we
will prove some new estimates for the granular equation, with and without drift term.
Let us start by introducing some nonclassical self-similar variables.

2.1 Nonlinear Self-similar Variables

We shall use a rescaling (seen e.g. in [10] and [12]), in order to prevent the blow up of f
by “zooming” on the distribution and studying it in self-similar variables.

We will assume that the cross section follows hypotheses H1 and H2 with a ≥ 0.
Granular gases equation (1.1) reads

(2.1)
∂f

∂t
(t, v) = E(t)−aQe(f, f)(t, v),

where the collision operator is given for test functions ψ by

〈Qe(f, g), ψ〉 =
1

2

∫

Rd×Rd×Sd−1

|u|f∗ g (ψ′ + ψ′

∗ − ψ − ψ∗) b1(û · ω)dω dv dv∗.

The rescaling of the distribution f will be written according to [10] as

(2.2)





f(t, v) = V (t)dg(T (t), V (t)v),

V (0) = 1, T (0) = 0,

lim
t→Tc

T (t) = lim
t→Tc

V (t) = +∞.
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We shall determine functions T and V (the self-similar variables) and derive the
equation followed by the distribution g = g(s, w) with s = T (t) and w = V (t)v. The
term V (t)d in front of g is simply given by mass conservation. Moreover, by making a
change of variables in the expression of the collision operator and thanks to hard sphere
collision kernel, one gets that

Qe (g(λ ·), g(λ ·)) (v) = λ−d−1Qe(g, g)(λv).

Especially, bilinearity of operator Qe together with (2.2) yields

(2.3) Qe(f, f)(t, ·) = (V (t))d−1Qe(g, g)(s, ·).

One can note at this point that our approach of the problem cannot be immediately
extended to the case of variable restitution coefficient. Indeed a simple parametrization
of restitution coefficient is given by

1− e2(|u · ω|) = 2e0|u · ω|p,

for nonnegative p (e.g. [1] for more details). This is the so-called generalized visco-
elastic hard spheres model. We can compute dissipation rate D(|u|) in this case using
microscopic energy dissipation (1.3), and find that the upper bound of Haff’s Law is given
by

d

dt
E(t) ≤ −CE(t)−a+ 3+p

2 , for t < Tc.

for a nonnegative constant C depending on p and the dimension. This partial result
agrees with the cooling law found by T. Schwager and T. Pöschel in [15] (and rigorously
proved in [1], the difficult part being lower bound), namely that a gas of visco-elastic
hard spheres (a = 0, p = 1/5) cools down slowly than a gas of hard spheres with constant
restitution coefficient:

0 ≤ E(t) ≤ M1

(1 + µ0t)
5/3
, ∀t ≥ 0.

This model arises a new difficulty: introducing self-similar variables (2.2) in relation (2.3)
gives

Qe(f, f)(t, ·) = (V (t))2Qẽ(t,·)(g, g)(s, ·),
that is collision operator becomes time dependent through a new restitution coefficient ẽ.
Finally, the new collision equation is not “autonomous”, which prevents us to use some
previous results on this equation as we will do in the following (e.g. Haff’s Law).

Now, if f follows rescaling (2.2), its time derivative becomes

(2.4) ∂tf = (V (t))d−1 (T ′(t)V (t)∂sg + V ′(t)∇w · (wg)) .



Anomalous Granular Gases 12

Thanks to relations (2.3) and (2.4), if f is solution to equation (2.1), the distribution g
is solution to

(2.5) T ′(t)V (t)∂sg + V ′(t)∇w · (wg) = E(f)(t)−aQe(g, g).

We shall get rid of the term in (2.5) involving a negative power of energy to obtain a
simpler equation, the classical homogeneous Boltzmann equation with an anti-drift term.

To this end, let us assume the rescaling to be “nonlinear” by asking it to depend on
the energy of the solution itself:

{
V ′(t) = τ E (f) (t)−a,

T ′(t)V (t) = V ′(t)/τ,

where τ is a nonnegative parameter. The functions V and T are not explicit but one
can see that they are well defined and agree to (2.2). Indeed, the map t 7→ E(f)(t)−a

is increasing on [0, Tc) thanks to asymptotic behaviour (1.9), is 1 when t = 0 given that
energy of the initial distribution fin has been normalized to this value and tends to infinity
when t→ Tc. Moreover, one has T (t) = log(V (t))/τ .

With such an expression for V and T plugged in (2.5), distribution g is solution to
the following equation:

(2.6)
∂g

∂s
+ τ ∇w · (wg) = Qe(g, g).

Actually, this is the granular equation for inelastic hard spheres with constant restitution
coefficient, complemented with an anti-drift term. This last term will act like an input
of energy and will prevent blow up of g(s, ·) toward a Dirac mass when s → ∞. This
equation has been thoroughly studied in articles [12, 13]. Especially, one has the following
result.

Theorem 2.1. Let gin ∈ G ∩ Lp for a fixed p > 1 be an initial datum for (2.6) with
constant restitution coefficient e. If g is solution to the associated Cauchy problem, then

(2.7) 0 < c0 ≤ E (g) (s) ≤ c1 <∞, ∀s ≥ 0.

Moreover, there exists a self-similar profile 0 ≤ G ∈ L1
2 ∩ G:

τ ∇w · (wG)−Qe(G,G) = 0.

Summarizing, the distribution f defined by




f(t, v) = V (t)dg(T (t), V (t)v),

V ′(t) = τ E(f)(t)−a,

T (t) = log(V (t))/τ,
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is solution to granular equation (2.1) for all times as soon as the function g is solution
to drift/collision equation (2.6). Conversely, if f is solution to (2.1), one can associate a
solution g to rescaled equation (2.6) by setting

g(s, w) = e−dτsf
(
V −1 (eτs) , e−τsw

)
.

Note that the inverse V −1 of V is well defined, by the discussion above.
Moreover, using change of variables w = V (t)v, the following relation holds between

energies of f and g:
E(g)(T (t)) = (V (t))2E(f)(t).

Then function V can be written for all 0 ≤ t < Tc as

V (t) =

(E(g)(T (t))
E(f)(t)

)1/2

.

Using this expression, the bounds (2.7) of the energy of g and the raw cooling process
(1.9), one has another proof that V (t) → ∞ and T (t) = log(V (t)) → ∞ when t→ Tc.

Finally, if G is a self-similar profile, that is a stationary solution to (2.6), we may
associate a self-similar solution F to the original equation (2.1) by setting

F (t, v) = V (t)dG(V (t)v), ∀(t, v) ∈ (0, Tc)× R
d.

Such a G exists thanks to Theorem 2.1, which proves last assertion of Theorem 1.2.

2.2 Preliminary Results

We will show in this Subsection two asymptotic results concerning solutions to the gran-
ular equation with and without drift term, that we will need in order to prove cooling
process.

Let h = h(t, v) for nonnegative t and v ∈ R
d be solution to the inelastic Boltzmann

equation

(2.8)
∂h

∂t
= Qe(h, h),

that is collision equation (2.1) with a = 0. According to [1] or [12], the (sub-critical)
Haff’s Law holds:

(2.9)
m

(1 + µ0t)2
≤ E(h)(t) ≤ M

(1 + µ0t)2
, ∀t > 0.

An upper control of the third order moment of h can be deduced from this law. Let ml

denotes the 2l-th order moment of a distribution h, that is

ml(h) =

∫

Rd

h(v)|v|2ldv.
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Lemma 2.1. Let h be solution to equation (2.1) for a = 0, with an initial condition
hin ∈ G. There exists a nonnegative constant κ such that if m3/2(hin) ≤ κ, then for all
t > 0,

(2.10) m3/2(h)(t) ≤
κ

(1 + µ0t)
3 .

Proof. Setting ml = ml(h) and multiplying (2.1) with a = 0 by |v|3, one gets after
integration in velocity space

d

dt
m3/2(t) =

∫

Rd

Qe(h, h)(t, v)|v|3dv.

Some more informations are then needed regarding the third order moment of the collision
operator. A.V. Bobylev, I.M. Gamba and V.A. Panferov had shown in [4] (Lemma 3) the
following estimate:

∫

Rd

Qe(h, h)(t, v)|v|3dv ≤ −(1− γ)m2(t) + γS3/2(t),

where 0 < γ < 1 and

S3/2 =

[ 54 ]∑

k=1

(
3/2
k

)
(mk+1/2mp−k +mkmp−k+1/2),

=
3

2
(m3/2m1/2 +m2

1).

By definition, m1 = E(h). Besides, by convexity, m2 ≥ m
4/3
3/2 and m1 ≥ m2

1/2. Thus,

m3/2(ht) verifies thanks to sub-critical Haff’s Law (2.9):

d

dt
m3/2(t) ≤ −(1− γ)m3/2(t)

4/3 +
3

2
γ
(
E(t)2 +m3/2(t) E(t)1/2

)
,

≤ −(1− γ)m3/2(t)
4/3 +

3

2
γ

(
M2

(1 + µ0t)
4 +m3/2(t)

M1/2

1 + µ0t

)
.

Then, one has

d

dt

(
m3/2(t)−

κ

(1 + µ0t)
3

)
≤− (1− γ)m3/2(t)

4/3 +
3µ0κ

(1 + µ0t)
4

+
3

2
γ

(
M2

(1 + µ0t)
4 +m3/2(t)

M1/2

1 + µ0t

)
,
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where κ is a nonnegative constant such that m3/2(0) ≤ κ. Then inequality (2.10) is
fulfilled for t = 0 and by continuity, the lemma is proved for t < t∗ with a positive time
t∗. For t = t∗, one gets m3/2(t∗) = κ(1+µ0t∗)

−3, and the last differential inequality reads

d

dt

(
m3/2(t∗)−

κ

(1 + µ0t∗)
3

)
≤
(
−(1 − γ)κ4/3 + C1κ+

3

2
γM2

)
1

(1 + µ0t∗)
4 ,

where C1 = 3
(
µ0 + γ

√
M/2

)
. If the constant κ is chosen large enough, the right hand

side of this inequality is negative, which concludes the proof.

Thanks to this estimate, one is now able to compute the limit of the time derivative
of the energy of a distribution g = g(s, w) solution to (2.6):

Proposition 2.1. If g is solution to the inelastic Boltzmann equation with drift term
(2.6), then

lim
s→+∞

d

ds
E(g)(s) = 0.

Proof. It is possible to define a new distribution h by setting as in [14]

h(t, v) := V0(t)
dg(T0(t), V0(t)v),

in which {
V0(t) = 1 + µ0t,

T0(t) = log(1 + µ0t).

Then h is solution to the inelastic Boltzmann equation (2.8). Thanks to the expression
of this rescaling,

E (g(T0(t)) = V0(t)
2E(h)(t).

Differentiating this relation with respect to time, one gets

d

dt
E (g(T0(t)) = A(t) +B(t),

with
A(t) = 2µ0(1 + µ0t)E(h)(t), B(t) = (1 + µ0t)

2 (E(h))′ (t).
Therefore, using once again sub-critical Haff’s Law (2.9), if t > 0,

2µ0m

1 + µ0t
≤ A(t) ≤ 2µ0M

1 + µ0t
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and then A(t) → 0 if t → ∞. Moreover, by the weak expression of Q(h, h), equation
(2.1) with a = 0 and hypothesis H2, one has on the one hand

B(t) = (1 + µ0t)
2

∫

Rd

Q(h, h)|v|2dv,

≤ −βe (1 + µ0t)
2

∫∫

Rd×Rd

hh∗|v − v∗|3dv dv∗ ≤ 0.(2.11)

On the other hand, Fubini Theorem and mass conservation yield
∫∫

Rd×Rd

hh∗|v − v∗|3dv dv∗ ≤ 8m3/2(h).

Then, using inequality (2.10) of Lemma 2.1 and the weak expression of Q(h, h), B satisfies

B(t) ≥ − κβ ′

e

1 + µ0t
.

By (2.11) it comes that B(t) → 0 if t → ∞. The conclusion of the Proposition is finally
given by the fact that the map T0 is one-to-one.

We are now ready to prove Theorem 1.2.

2.3 Anomalous Cooling Process

We will prove in this Subsection the cooling process of an anomalous gas for nonnegative
a, that is points (i), (ii) and (iii) of Theorem 1.2. Both upper and lower bounds for energy
of f will be obtained together, thanks to the results of Subsection 2.2.

For the sake of simplicity, let us denote for t < Tc

E(t) := E(f)(t) and Ē(t) := E (g(T (t)) ,

and set τ = 1. We have already seen that V (t) = Ē(t)1/2E(t)−1/2 and that

E(t)−a = V ′(t),

=
Ē ′(t)

2(E(t)Ē(t))1/2
− Ē(t)1/2E ′(t)

2E(t)3/2
.(2.12)

Thanks to the expression of Ē and a chain rule, one has on the one hand

Ē ′(t) =
d

dt

(∫

Rd

g(T (t), w)|w|2dw
)
,

= T ′(t)χ(t),(2.13)
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where we defined

χ :=
d

ds
(E(g)) ◦ T.

On the other hand, the time derivative of T is given by

(2.14) T ′(t) =
V ′(t)

V (t)
=
E(t)−a+1/2

Ē(t)1/2
.

Finally, gathering relations (2.12), (2.13), (2.14) and dividing by E(t)−a, it comes that

(2.15)
χ(t)

2Ē(t)
− 1

2
Ē(t)1/2E ′(t)E(t)a−3/2 = 1.

Following the result of Proposition 2.1, one has χ(t) → 0 when t→ Tc, because T (t) → ∞
when t→ Tc, thanks to (1.9). Thus, using uniform bounds (2.7) on Ē,

lim
t→Tc

χ(t)

2Ē(t)
= 0.

Therefore, using equality (2.15) and the bounds of Ē once more, there exists a time t0 > 0
and two positive constants D1 and D2 such that if t0 < t < Tc,

(2.16) −D1 ≤ E ′(t)E(t)a−3/2 ≤ −D2.

Then, if 0 ≤ a < 1/2 integration of the two sides of inequality (2.16) between 0 and t
and the fact that E(0) = 1 yields

1

(C1t+ 1)−2α
≤ E(t) ≤ 1

(C2t + 1)−2α
,

with α = 1/(2a − 1) < 0 and Ci = −2αDi > 0. This is the point (i) of Theorem 1.2.
Moreover, if a = 1/2, the same argument gives the point (ii), namely

exp(−D1t) ≤ E(t) ≤ exp(−D2t).

Finally, taking a > 1/2 gives the point (iii) with Ci = −2αDi < 0:

(1− C1t)
2α ≤ E(t) ≤ (1− C2t)

2α.

Let us now show the result concerning self-similar profiles of equation (1.1).
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3 Proof of Theorem 1.3

For a ≥ 0, we will study in this Section the uniqueness of self-similar profiles of the
inelastic Boltzmann equation with drift (2.6). The cooling process found in the previous
Subsection will allow us to state a Theorem concerning convergence of solutions to (1.1)
towards self-similar solutions.

We shall use a Theorem concerning the convergence toward self-similar profiles for
small inelasticity in granular equation (2.6), which has been shown in [13]. For this, let
us set

τ = τe := 1− e,

in order to balance the dissipation of kinetic energy by the drift. Thanks to this scaling,
is has been shown in [13] (Theorem 1.1.iv) that:

Theorem 3.1. There exists a constructive e∗ ∈ (0, 1) such that for all e ∈ [e∗, 1), the self-
similar profile Ge from Theorem 2.1 is unique and globally attractive on bounded subsets
of L1

3: for any M > 0, there exists η ∈ (0, 1) such that if

gin ∈ L1
3 ∩ G, ‖gin‖L1

3
≤M0,

solution g to equation (2.6) satisfies

(3.1) ‖g(t, ·)−Ge‖L1
2
≤ e−(1−η)νet,

where νe = τe +O (τ 2e ).

Let us show thanks to this Theorem the trend to self-similar solution of our problem.
We have already seen in Subsection 2.1 that if g is solution to (2.6) then f is solution to
(1.1) with f(t, v) = V (t)dg(T (t), V (t)v), where

(3.2)





V (t) =

(E(g)(T (t))
E(f)(t)

)1/2

,

T (t) =
log(V (t))

τe
.

Thus, if Ge is the unique self-similar profile of equation (2.6), one can find a self-similar
solution to equation (1.1) by setting Fe(t, v) = V (t)dGe(V (t)v). The uniqueness of this
solution up to a translation of time can be shown as in [13] to prove the first point of
Theorem 1.3.

Moreover, transformation w → V (t)v and rate of convergence (3.1) give

‖f(t, ·)− Fe(t, ·)‖L1 = V (t)d
∫

Rd

|g(T (t), V (t)v)−Ge(V (t)v)| dv,

≤ ‖g(T (t), ·)−Ge‖L1
2

,

≤ e−(1−η)νeT (t).(3.3)
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Besides, thanks to the expression (3.2) of self-similar variables and the choice τe = 1− e,
one has

νeT (t) = log(V (t)) +O(1− e).

The positive lower bound of E
(
gT (t)

)
of Theorem 2.1 together with inequality (3.3) and

relation (3.2) yield
‖f(t, ·)− Fe(t, ·)‖L1 ≤ CE(f)(t)µe/2,

where µe = 1− η +O(1− e) and C is a nonnegative constant. Finally, using the cooling
process of Theorem 1.2 that we have shown in last Subsection, we can conclude the proof
of Theorem 1.3, that is trend to self-similar solution of the solutions to (1.1) and rate of
convergence depending on (weak) inelasticity 1− e and a.

Conclusion and Perspectives

We have given in this paper the asymptotic behaviour of the space-homogeneous inelastic
Boltzmann equation for anomalous gases. Depending on a parameter, we can observe
in this model a blow up in finite time. We quantified the time of blow up and gave the
associated self-similar profiles. Under a weak inelasticity hypothesis, we also obtained the
uniqueness (up to a translation of the time) of the self-similar solutions to this equation,
and the convergence of the classical solutions toward them.

To prove these theorems, we introduced a new energy-dependant self-similar scaling,
which leads to the study of the inelastic Boltzmann equation with a linear drift term. We
gave some results concerning the asymptotic behaviour of the energy of the solutions to
this equation, by using some well known theorems about this equation.

Concerning the perspectives of this work, we would like to adapt our results to non-
constant restitution coefficient models, such as the viscoelastic one. We also want to
prove the rate of cooling using a more classical self-similar scaling, generalising the one
used in [10] and [12], and moments methods. That would perhaps allow to give up the
rather unphysical Lp hypothesis on the initial condition for the proof of Haff’s Law.
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