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Blow Up Analysis for Anomalous Granular Gases∗

Thomas Rey†

Abstract

We investigate in this article the long-time behaviour of the solutions to the
energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard
spheres. This model describes a diluted gas composed of hard spheres under statis-
tical description, that dissipates energy during collisions. We assume that the gas
is “anomalous”, in the sense that the energy dissipation increases when the tem-
perature decreases. This allows the gas to cool down in finite time. We study the
existence, uniqueness and attractiveness of blow up profiles for this model and the
cooling law associated, generalizing the classical Haff’s Law for granular gases. To
this end, we give some new estimates about the third order moment of the inelastic
Boltzmann equation with drift term and we introduce new strongly “non-linear”
self-similar variables.

1 Introduction

1.1 Granular Gases Equation

We are interested in this paper in a particular model of granular gases. A granular gas is
a set of particles which interact by energy dissipating contact interactions. This is a quite
different model than perfect molecular gas where the energy is conserved, because the
particles are “microscopic” regarding the scale of the system, but “macroscopic” in the
sense that there are not molecules at all, but rather grains of a given size. For example,
a suspension of pollen in a fluid or a planetary ring can be seen as a granular gas, each
one in a different scale.

Our goal in this article is to investigate the global behaviour of the kinetic energy of
a space-homogeneous gas of inelastic hard spheres interacting via binary collisions (that
is a granular gas), and the existence of blow up profiles associated. The study of this
kind of system started with the physics paper [15] of P.K. Haff, and has since generated
a large increase of interest, both in Physics (a complete introduction of the subject can
be found in the textbook [8] by N. Brilliantov and T. Pöschel) and Mathematics (cf.
the review article [21] by C. Villani). It involves some complicated phenomena, such as
kinetic collapse (cf. K. Shida [20]) where the gas freezes completely, clustering at the
hydrodynamic level for inhomogeneous gases, or even spontaneous loss of homogeneity.
This article will especially deal with the case of a gas whose particle’s collision rate
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Anomalous Granular Gases 2

increases with dissipation of energy. Such a gas is sometimes called anomalous (see the
article [18] of S. Mischler and C. Mouhot), because of the unusual behaviour of this
collision rate.

Such systems can be described in a purely Newtonian way, but the number of macro-
scopic particles involved (ranging from 106 to 1010) leads to adopt a statistical physics’
point of view. Therefore, we study the so-called inelastic homogeneous Boltzmann equa-
tion (also known as the homogeneous granular gases equation), given by

(1.1)
∂f

∂t
= Qe(f, f),

where f = f(t, v) represents the distribution function of the particles, depending on time
t ≥ 0 and velocity v ∈ R

d. The collision operator Qe(f, g), which will be made precise
in the next section (particularly concerning the meaning of the subscript e), models a
binary inelastic collision process of hard spheres type, localized in time. This equation
will be supplemented with the initial value

(1.2) f(0, ·) = fin.

The inelasticity is characterized by a collision mechanics where mass and momentum
are conserved and kinetic energy is dissipated. At the microscopic level, it can be de-
scribed as follows: given two particles of pre-collisional velocities v and v∗, their respective
post-collisional velocities, denoted by v′ and v′∗, are given by





v′ = v −
1 + e

2
(u · ω)ω,

v′∗ = v∗ +
1 + e

2
(u · ω)ω,

where u := v− v∗ is the relative velocity of the pair of particles, ω is the impact direction
and e ∈ [0, 1] the dissipation parameter, known as restitution coefficient (see Figure 1.1
for a sketch of the collision process). Physically, it means that the energy is dissipated
in the impact direction only. The parameter e can depend on the relative velocity and
the kinetic energy of the particles. For the need of the analysis, we will simply assume
that e is a constant, which is a rather good physical approximation. Besides, e will
also be taken different from 1, since e = 1 concerns the classical elastic case, in which
no dissipation occurs. The inelastic case e < 1 can also be characterized by the fact
that the impact direction ω does not bisect the angle between the pre-collisional and
post-collisional velocities.

The parametrization of the post-collisional velocities can also be found by using the
properties of the model. Indeed, it is equivalent to the conservation of impulsion and the
dissipation of energy:

v′ + v′∗ = v + v∗,

|v′|2 + |v′∗|
2 − |v|2 − |v∗|

2 = −
1 − e2

2
|u · ω|2 ≤ 0.(1.3)

One of our goal will be the study of the macroscopic dissipation of the energy, some-
times referred as the cooling process of the gas. This phenomenon has been investigated
mathematically by S. Mischler and C. Mouhot in [16] for the case of constant restitution
coefficient e, and by R. Alonso and B. Lods in [1] for visco-elastics hard spheres, more
realistic at the physical level. In the latter one, the energy dissipation is a power law of
the relative velocity of the colliding particles. We will use ideas of these two articles to
write some of the results we present in the following.
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Figure 1.1: Geometry of collision (dashed lines are elastic and solid lines inelastic)

1.2 Inelastic Collision Operator and Dissipation of Energy

We shall now present the model of collision operator we consider throughout the rest
of the article. Let us assume that f and g are two non-negative particles distribution
functions only depending on v ∈ R

d. The collision operator Qe(f, g), where e ∈ [0, 1) is
the constant restitution coefficient, can be expressed in the following weak form: given a
regular test function ψ,

(1.4) 〈Qe(f, g), ψ〉 :=
1

2

∫

Rd×Rd×Sd−1

|u|f∗ g (ψ′ + ψ′
∗ − ψ − ψ∗) b (û · ω, E(f))dω dv dv∗,

where we have used the usual shorthand notation ψ′ := ψ(v′), ψ′
∗ := ψ(v′∗), û := u/|u|

and

E (f) :=

∫

Rd

|v|2f(v)dv

denotes the kinetic energy of f . Moreover, b is a positive function known as the collisional
cross section. We will assume through this article the following properties for the cross
section:

H1. The cross section can be written as a product

b(·, E) = b1(·) E
−a,

for a non-negative constant a and a non-negative function b1 of mass 1 in the unit
sphere.

H2. The function b1 involved in the cross section is bounded by below and above by
positive constants β1 and β2:

∀x ∈ [−1, 1], 0 < β1 ≤ b1(x) ≤ β2 <∞.
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Taking successively ψ(v) = 1, v and |v|2 in (1.4) gives the macroscopic conservation
of mass and momentum, and the dissipation of kinetic energy. This implies that the
equilibria of this collision operator are the Dirac distributions ρ δv=v0 of prescribed mass
ρ and momentum v0. In order to prevent the apparition of these trivial solutions, one can
add a diffusive term to give an input of energy, as was studied for example by Cercignani,
R. Illner and C. Stoica in [9] and by A. Bobylev and Cercignani in [5] for Maxwell
molecules. It is also possible to add a drift term thanks to a proper rescaling, as was
done by M. Ernst and R. Brito in [12], to study self-similar profiles.

Let us now describe more precisely the cooling process of the gas, and then assume
that the distribution f is time dependent, of mass 1 and zero momentum. If one multiplies
the equation (1.1) by |v|2 and integrates in velocity, using the weak formulation (1.4) of
the collision operator and the hypothesis H1, one gets the dissipation of kinetic energy:

(1.5)
d

dt
E (ft) = −E (ft)

−a

∫∫

Rd×Rd

ft(v)ft(v∗)|u|D (|u|)dv dv∗,

where D is a non-negative quantity usually called the dissipation rate, given by

D(|u|) =
1− e2

4

∫

Sd−1

|u · ω|2 b1(û · ω)dω.

Thanks to the Hypothesis H2 concerning the bounds on the cross section, it comes that

D(|u|) ≥ β1
1− e2

4

∣∣Sd−2
∣∣ |u|2.

One can then apply the Jensen inequality to the function Ψ(v) = |v|3 and to the proba-
bility measure f(v∗) dv∗ in order to get

∫

Rd

f(v∗)Ψ(|v − v∗|)dv∗ ≥ Ψ

(∣∣∣∣v
∫

Rd

f(v∗)dv∗ −

∫

Rd

v∗f(v∗)dv∗

∣∣∣∣
)

= Ψ(|v|),

thanks to the conservative properties of equation (1.1). Using the equality (1.5) about
the behaviour of the energy, it comes that

d

dt
E (ft) ≤ −βe E (ft)

−a

∫

Rd

ft(v)|v|
3dv,

where βe is given by

βe = β1
1− e2

4

∣∣Sd−2
∣∣ .

Moreover, applying the Hölder inequality with s = 3/2 and its conjugate s′ = 3 to the
map v 7→ f(v)|v|2, one gets

(∫

Rd

f(v)|v|2dv

)3

2

≤

∫

Rd

f(v)|v|3dv,

thanks to the conservation of mass. Using the Fubini Theorem for non-negative mea-
surable function and gathering the last two inequalities, a closed differential inequality
involving the energy E(f) is found, namely

(1.6)
d

dt
E (ft) ≤ −βeE (ft)

−a+ 3

2 , for t < Tc.

According to this inequality, the control of the cooling of f (that is its blow up) will
depend on the non-negative coefficient a from H1.
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Remark 1 . It is pointed out in [21] (and the full derivation of this expression can be
found e.g. in the articles [2, 3] of A. Bobylev, J. Carrillo and I. Gamba) that if one
denotes by ′v and ′v∗ the pre-collisional velocities of two particles of given velocities v
and v∗, and if J is the Jacobian of the map (v, v∗) 7→ ( ′v, ′v∗), then one can write the
collision operator Qe on the following strong form:

Qe(f, g)(v) =

∫

Rd×Sd−1

|u|

(
J
|′u|

|u|
′f ′g∗ − fg∗

)
b(û · ω, E(f))dω dv∗,

= Q+
e (f, g)(v)− f(v)L(g)(v).

In the last equation, Q+
e (f, g)(v) is usually known as the gain term because it can be

seen as the number of particles of velocity v created by the collisions of particles of pre-
collisional velocities ′v and ′v∗, whereas f(v)L(g)(v) is the loss term, modelling the loss
of particles of pre-collisional velocities v. One can notice that J is not identically equal
to 1. Since e is a non-zero constant, one has

J =
|u|

e2|′u|
.

In order to investigate the long-time behaviour of the kinetic energy of the granular
gas, we have to describe rigorously the spaces of solutions to our model, as well as its
Cauchy problem. This is the subject of the following Subsection.

1.3 The Cauchy Problem

Let us introduce some functional spaces needed in the rest of the paper. We denote by
L1
q for q ∈ [1,+∞) the following weighted Lebesgue space

L1
q =

{
f : Rd → R measurable; ‖f‖L1

q
:=

∫

Rd

|f(v)|〈v〉qdv <∞

}
,

where 〈v〉 :=
√

1 + |v|2. Thanks to this definition, we can introduce the sets of functions
of given mass ρ, momentum u ∈ R

d and energy E , that is

Cρ,u :=

{
f ∈ L1

1 :

∫

Rd

f(v)dv = ρ,

∫

Rd

f(v)v dv = u

}
;

Cρ,u,E :=

{
f ∈ L1

2 :

∫

Rd

f(v)dv = ρ,

∫

Rd

f(v)vdv = u,

∫

Rd

f(v)|v|2dv = E

}
.

Then, we denote by W 1,1
q the weighted Sobolev space

W 1,1
q :=

{
f ∈ L1

q ;∇f ∈ L1
q

}
.

We also introduce the space BVq of weighted bounded variations functions, given as the
set of the weak limits in D′ of sequences of smooth functions which are bounded in W 1,1

q .
Finally, M1(Rd) is the space of probabilities measures on R

d.
The Cauchy problem (1.1)-(1.2) has been extensively investigated in the past few

years, starting with the paper [2] and then by A. Bobylev, Cercignani and G. Toscani in
[7], where Maxwellian molecules were considered using Fourier transform. A lot of prop-
erties of a more general model which include elastic and inelastic collisions for Maxwellian
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molecules as a particular case (but not hard spheres) have also been studied in the chap-
ter of book [6] of A. Bobylev, Cercignani and I. Gamba. Concerning hard spheres kernel,
the paper [18] deals with weak solutions to the associated Cauchy problem, which may
be defined in the following way:

Definition 1. Given a non-negative initial condition fin ∈ L1
2 ∩ C1,0 , a non-negative

function f defined on [0, T ] × R
d is said to be a solution to the Cauchy problem (1.1)-

(1.2) if
f ∈ C

(
0, T ;L1

2

)
,

and if (1.1)-(1.2) holds in the weak sense, namely,
∫ T

0

(∫

Rd

ft(v)∂tψ(t, v)dv + 〈Qe (ft, ft) , ψ〉

)
dt =

∫

Rd

fin(v)ψ(0, ·)dv,

for any ψ ∈ C1
c

(
[0, T ]× R

d
)
.

This article introduces the cooling time Tc of f as the time before blow up, namely

Tc := sup {T > 0 : E (ft) > 0, ∀t < T}.

For a collisional cross section given by H1 and H2, they show the well-posedness in L1
3

of the Cauchy problem for the homogeneous granular gases equation, together with the
existence of the cooling process:

Theorem 1.1 ([18], Theorem 1.4). Let fin be a non-negative distribution satisfying

fin ∈ L1
3 ∩ C1,0 and fin ∈ BV4 ∩ L

1
5.

Then, the following results hold for a cross section given by H1 and H2:

(i) the cooling time Tc is well define and positive;

(ii) for each T ∈]0, Tc[, there exists a unique solution f ∈ C(0, T ;L1
2) ∩ L∞(0, T ;L1

3)
to the initial value problem (1.1)-(1.2). Such a solution is non-negative, mass and
momentum conservative, and kinetic energy dissipative;

(iii) the energy of f is subject to the following asymptotic behaviour

(1.7) E (ft) → 0 and ft ⇀ δv=0 when t→ Tc,

where the convergence of f occurs for the weak-* topology of M1(Rd).

We now state the main results of this paper concerning cooling process and blow up
solutions to the anomalous model.

1.4 Main Results

We know from [18] that if a is greater than 1/2, Tc is finite, meaning that the cooling
(and blow up of f) occurs in finite time whereas it takes infinite time for a ≤ 1/2. We
give the accurate asymptotic behaviour of the energy in the main theorems of this article,
for all the non-negative values of the parameter a.

More precisely, we adopt another strategy than [18] by using a “non-linear” rescaling
and moment estimates to first show that the energy decreases like an inverse power of
the time if 0 ≤ a < 1/2, (we call this case sub-critical), exponentially if a = 1/2, (critical
case) and polynomially if a > 1/2 (super-critical case).
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Theorem 1.2. Let the collision operator be subjects to the assertions H1 and H2. If f is
a solution to (1.1), whose initial condition 0 ≤ fin ∈ L1

3 ∩ C1,0,1, there exist some positive
constants Ci, i ∈ {1, ..., 6} and Tc, depending on e, a and fin such that

(i) if 0 ≤ a < 1/2, and then α = 1/(2a− 1) < 0,

1

(C1t+ 1)−2α
≤ E (ft) ≤

1

(C2t+ 1)−2α
, ∀t > 0;

(ii) if a = 1/2,
e−C3t ≤ E (ft) ≤ e−C4t, ∀t > 0;

(iii) if a > 1/2, and then α = 1/(2a− 1) > 0,

(−C5t+ 1)2α ≤ E (ft) ≤ (−C6t+ 1)2α , ∀t < Tc.

Moreover, for all a ≥ 0, there exist a function V ∈ C1(0, Tc) and a non-negative profile
G ∈ L1

3 ∩ C1,0,1 such that the distribution

F (t, v) := V (t)dG(V (t)v) for (t, v) ∈ (0, Tc)× R
d,

is a solution to (1.1), called self-similar solution.

Remark 2 . One can check that the point (i) of this theorem is in good agreement with
the one proved in [16] with a = 0, and which is known as the Haff’s Law [15]:

m1

(1 + t)2
≤ E (ft) ≤

M1

(1 + t)2
.

We then state a theorem of existence and uniqueness (up to a translation of time) of
the self-similar solutions to equation (1.1) with a ≥ 0, using once more the non-linear
rescaling. We also obtain the convergence of the solutions to (1.1) bounded in L1

3 toward
these profiles.

Theorem 1.3. Let the collision operator be subjects to the assertions H1 and H2 with
a ≥ 0. There exists a constructive e∗ ∈ (0, 1) such that for all e ∈ [e∗, 1),

(i) the self-similar profile G = Ge ∈ L1
3 ∩ C1,0,1 is unique and if Fe and F̄e are two self-

similar solutions to (1.1), there is a time t0 < Tc such that F̄e(t, v) = Fe(t + t0, v)
for t > max{0,−t0}.

(ii) For any M0 > 0, there exists η ∈ (0, 1) such that if
{
fin ∈ L1

3 ∩ C1,0,1,

‖fin‖L1
3
≤M0,

the solution f to the equation (1.1) satisfies for a non-negative constant C

‖ft − Fe(t, ·)‖L1 ≤





C

(1 + C2t)−αµe
if a < 1/2,

Ce−C4µet/2 if a = 1/2,

C(1− C6t)
αµe if a > 1/2,

where α = 1/(2a− 1) and µe = (1− η) +O(1− e).
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1.5 Sketch of the Proof

The article is organized as follows. We prove in Section 2 the Theorem 1.2, starting by
giving a non-linear rescaling that allows us to treat the three different cooling process at
once in Subsection 2.1. We then use the expression of this rescaling to give a relation
between the energy in classical and self-similar variables. Subsequently, we show in
Subsection 2.2 two new results concerning the asymptotic behaviour of a solution to the
granular equation with and without drift term, that is an estimate of the third order
moment of the solution to the latter one (proven thanks to the classical Haff’s Law) and
that the time derivative of the energy of a solution to the former tends to 0. We finally
use this result in Subsection 2.3 to prove the cooling process.

We then apply in Section 3 this precise asymptotic behaviour together with a Theorem
of uniqueness and attractiveness of self-similar profiles taken from the paper [17] of S.
Mischler and C. Mouhot to prove Theorem 1.3 about rate of convergence toward self-
similar solutions.

Finally, an alternative proof of the asymptotic behaviour in the sub-critical case can
be found in Section 4. This proof is conceptually simpler than the first one, because it
uses the “classical” self-similar variables and moments estimates, but allow only to deal
with the sub-critical case. We give in Subsection 4.2 the proof of the cooling law (point
(i) of Theorem 1.2) by computing new a priori estimates involving the second and third
order moment of self-similar solutions. We then prove the existence of self-similar profiles
by using in Subsection 4.4 an abstract Theorem concerning fixed point of evolution semi-
groups. In order to apply it, we show some stability estimates concerning self-similar
solutions in the the sub-critical case in Subsection 4.3.

2 Proof of Theorem 1.2

This section presents the proof of Theorem 1.2 which studies the cooling process for the
sub-critical (a < 1/2), critical (a = 1/2) and super-critical (a > 1/2) cases. To this
end, we will prove some new estimates for the homogeneous granular equation, with and
without drift term. Let us start by introducing some non-classical self-similar variables.

2.1 Non-linear Self-similar Variables

We shall use a rescaling (seen for the first time for the granular equation in the article
[12] and then for example in [16]), in order to prevent the blow up of f by “zooming” on
the distribution and studying it in self-similar variables.

We will assume that the cross section follows the hypotheses H1 and H2 with a ≥ 0.
The granular gases equation (1.1) now reads

(2.1)
∂f

∂t
= E(f)−aQe(f, f),

where the collision operator is given for test functions ψ by

〈Qe(f, g), ψ〉 =
1

2

∫

Rd×Rd×Sd−1

|u|f∗ g (ψ′ + ψ′
∗ − ψ − ψ∗) b1(û · ω)dω dv dv∗.
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The rescaling of the distribution f will be written according to [12] as

(2.2)





f(t, v) = V (t)dg(T (t), V (t)v),

V (0) = 1, T (0) = 0,

lim
t→TC

T (t) = lim
t→TC

V (t) = +∞.

We shall determine the functions T and V (the self-similar variables) and derive the
equation followed by the distribution g = gs(w) with s = T (t) and w = V (t)v. The term
V (t)d in front of g is simply given by mass conservation. Moreover, by making a change
of variables in the expression of the collision operator and thanks to the hard sphere
collision kernel, one gets that

Qe(·) (g(λ ·), g(λ ·)) (v) = λ−d−1Qe( ·

λ)
(g, g)(v).

Especially, the bilinearity of the operator Qe together with (2.2) yields

(2.3) Qe(f, f)(t, ·) = (V (t))d−1Qe(g, g),

One can note at this point that our approach of the problem cannot be immediately
extended to the case of variable restitution coefficient. Indeed a simple parametrization
of the restitution coefficient is given by

1− e2(|u · ω|) = 2e0|u · ω|
p,

for non-negative p (e.g. [1] for more details). This is the so-called generalized visco-elastic
hard spheres model. We can compute the dissipation rate D(|u|) in this case using the
microscopic energy dissipation (1.3), and find that the upper bound of the Haff’s Law is
given by

d

dt
E (ft) ≤ −CE (ft)

−a+ 3+p
2 , for t < Tc.

for a non-negative constant C depending on p and the dimension. This partial result
agrees with the formal cooling law found by T. Schwager and T. Pöschel in [19] (and
rigorously proved in [1], the difficult part being the lower bound), namely that a gas of
visco-elastic hard spheres (a = 0, p = 1/5) cools down slowly than a gas of hard spheres
with constant coefficient of restitution:

0 ≤ E (ft) ≤
M1

(1 + µ0t)
5/3
, ∀t ≥ 0.

This model arises a new difficulty: introducing the self-similar variables (2.2) in the
relation (2.3) gives

Qe(f, f)(t, ·) = (V (t))2Qẽ(t,·)(g, g),

that is the collision operator becomes time dependent because of ẽ. Finally, the new
collision equation is not “autonomous” any more, and this prevent us to use some previous
results on this equation as we will do in the following (e.g. the Haff’s Law). This is one
of the reasons why we assumed that the restitution coefficient e is constant.

Now, if f follows the rescaling (2.2), its time derivative becomes

(2.4) ∂tf = (V (t))d−1 (T ′(t)V (t)∂sg + V ′(t)∇w · (wg)) .
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Thanks to the relations (2.3) and (2.4), if f is a solution to the homogeneous equation
(2.1), the distribution g is a solution to

(2.5) T ′(t)V (t)∂sg + V ′(t)∇w · (wg) = E(f)−aQe(g, g).

We shall get rid of the term in (2.5) involving a negative power of the energy to obtain a
simpler equation, the classical homogeneous Boltzmann equation with an anti-drift term.

To this end, let us assume the rescaling to be “non-linear” by asking it to depend on
the energy of the solution itself:

{
V ′(t) = τ E (ft)

−a ,

T ′(t)V (t) = V ′(t)/τ,

where τ is a non-negative parameter. The functions V and T are not explicit but one
can see that they are well defined and agree to (2.2). Indeed, the map t 7→ E (ft)

−a is
increasing on [0, Tc) thanks to the asymptotic behaviour (1.7), is 1 when t = 0 given that
the energy of the initial distribution fin has been normalized to this value and tends to
infinity when t→ Tc. Moreover, one has T (t) = log(V (t))/τ .

With such an expression for V and T plugged in (2.5), the distribution g is a solution
to the following equation:

(2.6) ∂sg + τ ∇w · (wg) = Qe(g, g).

Actually, this equation is the homogeneous granular equation for inelastic hard spheres
with constant restitution coefficient, complemented with an anti-drift term. This last
term will act like an input of energy and will prevent the blow up of gs to a Dirac
mass when s → ∞. This equation has been thoroughly studied in the articles [16, 17].
Especially, one has the following result.

Theorem 2.1 ([16]). Let gin ∈ C1,0 be an initial datum for (2.6) with a constant restitu-
tion coefficient e. The energy of a solution g to the Cauchy problem is such that

(2.7) 0 < c0 ≤ E (gs) ≤ c1 <∞, ∀s ≥ 0.

Moreover, there exists a self-similar profile 0 ≤ G ∈ L1
2 ∩ C1,0:

τ ∇w · (wG)−Qe(G,G) = 0.

Remark 3 . The above Theorem will be shown in a new proof in Section 4 because the
sub-critical case 0 ≤ a < 1/2 includes the granular equation with drift (2.6).

Summarizing, the distribution f defined by




f(t, v) = V (t)dg(T (t), V (t)v),

V ′(t) = τ E (ft)
−a ,

T (t) = log(V (t))/τ,

is solution to the homogeneous granular equation (2.1) for all times as soon as the function
g is solution to the drift/collision equation (2.6). Conversely, if f is a solution to (2.1),
one can associate a solution g to the rescaled equation (2.6) by setting

g(s, w) = e−dτsf
(
V −1 (eτs) , e−τsw

)
.
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Note that the inverse V −1 of V is well defined, by the discussion above.
Moreover, using the change of variables w = V (t)v, the following relation holds be-

tween the energies of f and g:

E
(
gT (t)

)
= (V (t))2E (ft) .

Then the function V can be written for all 0 ≤ t < Tc as

V (t) =

(
E
(
gT (t)

)

E (ft)

)1/2

.

Using this expression, the bounds (2.7) of the energy of g and the raw cooling process
(1.7), one has another proof that V (t) → ∞ when t → Tc. Given that T (t) = log(V (t)),
then T (t) → ∞ when t→ Tc, which are the properties we are looking for.

Finally, if G is a self-similar profile, that is a stationary solution to the equation (2.6)
(such a profile exists thanks to Theorem 2.1), we may associate a self-similar solution F
(also known as a blow-up profile) to the original equation (2.1) by setting

F (t, v) = V (t)dG(V (t)v), ∀(t, v) ∈ (0, Tc)× R
d,

which prove the last assertion of Theorem 1.2.

2.2 Two Useful Results

We will show in this Subsection two asymptotic results concerning solutions to the ho-
mogeneous granular equation with and without drift term, that we will need in order to
prove the cooling process.

Let h = ht(v) for non-negative t and v ∈ R
d be a solution to the homogeneous inelastic

Boltzmann equation
∂th = Q(h, h),

that is the collision equation (2.1) with a = 0. One can use the works [1] or [16] to give
the cooling process of h, namely the (sub-critical) Haff’s Law:

(2.8)
m

(1 + µ0t)2
≤ E (ht) ≤

M

(1 + µ0t)2
, ∀t > 0.

An upper control of the third order moment of h can be deduced from this law. Let ml

denotes the 2l-th order moment of a distribution h, that is

ml = ml(h) =

∫

Rd

h(v)|v|2ldv.

Lemma 2.1. Let h be a solution to the equation (2.1) for a = 0, with an initial condition
hin ∈ C1,0. There exists a non-negative constant κ such that if m3/2(hin) ≤ κ, then for all
t > 0,

(2.9) m3/2(ht) ≤
κ

(1 + µ0t)
3 .
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Proof. Multiplying the equation (2.1) with a = 0 by |v|3, one gets after integration in the
velocity space

d

dt
m3/2(ht) =

∫

Rd

Qe(ht, ht)|v|
3dv.

Some more informations are then needed regarding the third order moment of the collision
operator. A.V. Bobylev, I.M. Gamba and V.A. Panferov had shown in [4] (Lemma 3) the
following estimate:

∫

Rd

Qe(h, h)|v|
3dv ≤ −(1 − γ)m2(h) + γS3/2(h),

where 0 < γ < 1 and

S3/2(h) =

[ 54 ]∑

k=1

(
3/2
k

)
(mk+1/2mp−k +mkmp−k+1/2),

=
3

2
(m3/2m1/2 +m2

1),

=
3

2
E(h)2,

because m1 = E(h) and m1/2 = 0 by momentum conservation. Besides, by convexity,

m2 ≥ m
4/3
3/2. Thus, m3/2(ht) verifies thanks to the sub-critical Haff’s Law (2.8):

d

dt
m3/2(ht) ≤ −(1− γ)m3/2(ht)

4/3 +
3

2
γE (ht)

2 ,

≤ −(1− γ)m3/2(ht)
4/3 +

3

2

γM2

(1 + µ0t)
4 .

Then, one has

d

dt

(
m3/2(ht)−

κ

(1 + µ0t)
3

)
≤ −(1 − γ)m3/2(ht)

4/3 +
3

2

γM2

(1 + µ0t)
4 +

3µ0κ

(1 + µ0t)
4 ,

where κ is a non-negative constant to be determined thereafter.
If κ is assumed such that m3/2(hin) ≤ κ, then the inequality (2.9) is fulfilled for t = 0

and by continuity, the lemma is proved for t < t∗ with a positive time t∗. Else, one gets
m3/2(ht∗) = κ(1 + µ0t∗)

−3, and the last differential inequality reads

d

dt

(
m3/2(ht∗)−

κ

(1 + µ0t∗)
3

)
≤− (1− γ)

(
κ

(1 + µ0t∗)
3

)4/3

+
3

2

γM2

(1 + µ0t∗)
4 +

3µ0κ

(1 + µ0t∗)
4 ,

=

(
−(1− γ)κ4/3 + 3µ0κ+

3

2
γM2

)
1

(1 + µ0t∗)
4 .

If the constant κ is chosen large enough, the right hand side of this inequality is negative,
which concludes the proof.

Thanks to this estimate, one is now able to compute the limit of the time derivative
of the energy of a distribution g = gs(w) solution to (2.6):
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Proposition 2.1. If g is a solution to the homogeneous inelastic collision equation with
drift term (2.6), then

lim
s→+∞

d

ds
E (gs) = 0.

Proof. It is possible to define a new distribution h by setting as in [18]

h(t, v) := V0(t)
dg(T0(t), V0(t)v),

in which {
V0(t) = 1 + µ0t,

T0(t) = log(1 + µ0t).

This is also the rescaling (4.2) for the sub-critical case a = 0 and h is a solution to the
homogeneous inelastic Boltzmann equation

∂th = Q(h, h).

Thanks to the expression of this rescaling,

E
(
gT0(t)

)
= V0(t)

2E (ht)

Differentiating the relation with respect to time, one gets

d

dt
E
(
gT0(t)

)
= A(t) +B(t),

where we have set

A(t) = 2µ0(1 + µ0t)E (ht) , B(t) = (1 + µ0t)
2E ′ (ht) .

Therefore, using once again the sub-critical Haff’s Law (2.8), if t > 0,

2µ0m

1 + µ0t
≤ A(t) ≤

2µ0M

1 + µ0t

and then A(t) → 0 if t→ ∞. Moreover, by the weak expression of Q(h, h), the equation
(2.1) with a = 0 and the hypothesis H2 about the bounds of the cross section,

B(t) = (1 + µ0t)
2

∫

Rd

Q(h, h)|v|2dv,

≤ −βe (1 + µ0t)
2

∫∫

Rd×Rd

hh∗|v − v∗|
3dv dv∗.

Especially, B(t) ≤ 0. On the other hand, one has by Fubini Theorem and mass conser-
vation that ∫∫

Rd×Rd

hh∗|v − v∗|
3dv dv∗ ≤ 8m3/2(h).

Then, using the inequality (2.9) of Lemma 2.1 and the weak expression of Q(h, h), B is
such that:

B(t) ≥ −
κβ ′

e

1 + µ0t
,

and then B(t) → 0 if t → ∞. The conclusion of the Proposition is finally given by the
fact that the map T0 is one-to-one.

We are now ready to prove Theorem 1.2.
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2.3 Anomalous Cooling Process

We will prove in this Subsection the cooling process of an anomalous gas for non-negative
a, that is the points (i), (ii) and (iii) of Theorem 1.2. Both upper and lower bounds for
the energy of f will be obtained together, thanks to the usual Haff’s Law for classical
granular gases, applied on the equation (2.6). The limit of the time derivative of the
energy of a solution to the rescaled Boltzmann equation will be computed to this end.

For the sake of simplicity, let us denote for t < Tc

E(t) := E (ft) and Ē(t) := E
(
gT (t)

)
,

and set τ = 1. We have already seen that V (t) = Ē(t)1/2E(t)−1/2 and that

E(t)−a = V ′(t),

=
Ē ′(t)

2(E(t)Ē(t))1/2
−
Ē(t)1/2E ′(t)

2E(t)3/2
.

Thanks to the expression of Ē and a chain rule, one has on the one hand

Ē ′(t) =
d

dt

(∫

Rd

gT (t)(w)|w|
2dw

)
,

= T ′(t)χ(t), with χ(t) :=

(
d

ds
E(gs)

)
∣∣s=T (t)

.

On the other hand, the time derivative of T is given by

T ′(t) =
V ′(t)

V (t)
=
E(t)−a+1/2

Ē(t)1/2
.

Finally, gathering the last three equalities and dividing by E(t)−a, it comes that

(2.10)
χ(t)

2Ē(t)
−

1

2
Ē(t)1/2E ′(t)E(t)a−3/2 = 1.

Following the result of Proposition 2.1, one has χ(t) → 0 when t→ Tc, because T (t) → ∞
when t→ Tc. Thus, thanks to the uniform bounds (2.7) on Ē,

lim
t→Tc

χ(t)

2Ē(t)
= 0.

Therefore, using the equality (2.10) and the bounds of Ē once more, there exists a time
t0 > 0 and two constant D1 and D2 such that if t0 < t < Tc,

−∞ < −D1 ≤ E ′(t)E(t)a−3/2 ≤ −D2 < 0.

Integrating the two sides of this inequality with successively a < 1/2, a = 1/2 and
a > 1/2, one has shown respectively the points (i), (ii) and (iii) of Theorem 1.2 concerning
cooling process. Let us now show the result concerning self-similar profiles of equation
(1.1).
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3 Proof of Theorem 1.3

We will study in this Section the uniqueness of the self-similar profiles of the granular
Boltzmann equation with drift (2.6), together with their attractiveness. Using the cooling
process found in the previous Subsection, this will allow us to state a Theorem concerning
the convergence of the solutions to (1.1) towards the self-similar solutions. Let us fix a ≥ 0
and denote the constant restitution coefficient by e.

We will use a Theorem concerning the convergence toward self-similar profiles for
small inelasticity in the equation (2.6), which has been shown in [17]. For this, we have
to set

τ = τe := 1− e,

in order to balance the dissipation of kinetic energy by the drift. Thanks to this scaling,
one has:

Theorem 3.1 ([17], Theorem 1.1.iv). There exists a constructive e∗ ∈ (0, 1) such that
for all e ∈ [e∗, 1), the self-similar profile Ge from Theorem 2.1 is unique and globally
attractive on bounded subsets of L1

3: for any M > 0, there exists η ∈ (0, 1) such that if

gin ∈ L1
3 ∩ C1,0, ‖gin‖L1

3
≤M0,

the solution g to the granular equation with drift (2.6) satisfies

(3.1) ‖gt −Ge‖L1
2

≤ e−(1−η)νet,

where νe = τe +O (τ 2e ).

Let us show thanks to this Theorem the trend to the self-similar solution of our
problem. We have already seen in Subsection 2.1 that if g is a solution to (2.6) then f is
a solution to (1.1) with f(t, v) = V (t)dg(T (t), V (t)v), where

(3.2)





V (t) =

(
E
(
gT (t)

)

E (ft)

)1/2

,

T (t) =
log(V (t))

τe
.

Thus, if Ge is the unique self-similar profile of the equation (2.6), one can find a self-similar
solution to the equation (1.1) by setting Fe(t, v) = V (t)dGe(V (t)v). The uniqueness of
this solution up to a translation of the time can be shown as in [17] to prove the first
point of Theorem 1.3.

Moreover, the transformation w → V (t)v and the rate of convergence (3.1) give

‖f(t, ·)− Fe(t, ·)‖L1 = V (t)d
∫

Rd

|g(T (t), V (t)v)−Ge(V (t)v)| dv,

≤
∥∥gT (t) −Ge

∥∥
L1
2

,

≤ e−(1−η)νeT (t).

Besides, thanks to the expression (3.2) of the self-similar variables and the choice of
τe = 1− e,

νeT (t) = log(V (t)) +O(1− e).
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The positive lower bound of E
(
gT (t)

)
of Theorem 2.1 together with the last inequality

yields
‖f(t, ·)− Fe(t, ·)‖L1 ≤ CE(ft)

µe/2,

where µe = 1− η+O(1− e) and C is a non-negative constant. Finally, using the cooling
process of Theorem 1.2 that we have shown in the last Subsection, we can conclude the
proof of Theorem 1.3, that is the attractiveness of the self-similar solution to the equation
(1.1), together with the rate of convergence depending on the (weak) inelasticity 1 − e
and a.

4 Alternative Proof in the Sub-critical Case: the

Classical Self-similar Variables

In this section, we are going to work with another set of self-similar variables in order to
give a partial (sub-critical case) but alternative and self-contained proof of Theorems 1.2
and 1.3. We shall derive the cooling process (or Haff’s Law) and existence of self-similar
profiles, with constructive constants. The cooling part is partly inspired of the article [1]
and the core of the proof is based on a new estimate involving the third order moment of
the rescaled distribution g, given in Lemma 4.1. We were not able to extend this Lemma
to the critical and super-critical cases, and then to give their cooling process with this
proof. The part concerning existence of self-similar profile is partly based on the article
[16].

We will present in the following Subsection the classical rescaling, allowing to prevent
the blow up for 0 ≤ a ≤ 1/2.

4.1 Classical Self-similar Variables

If a 6= 1/2, the differential inequality (1.6) gives the following control of the energy of f :

(4.1) 0 ≤ E (ft) ≤

(
E(fin)

a− 1

2 −
βe
2α
t

)2α

, ∀t < Tc,

where α =
1

2a− 1
.

The study of the cooling process will be conditioned by the sign of α. We shall focus
on the rescaling of f for negative α. Indeed, if one has 0 ≤ a < 1/2, α is negative and
we know from [18] that Tc = ∞: the gas is sub-critical and the inequality (4.1) gives one
half of the Haff’s Law, namely the upper bound which is its easy part. One needs to
rescale the equation (2.1) so as to get some new informations on E(f) to obtain the lower
bound.

The rescaling of the distribution f will still be written as

(4.2)

{
f(t, v) = Va(t)

dg(Ta(t), Va(t)v),

Va(0) = 1, Ta(0) = 0.

We shall determine as in Subsection 2.1 the functions Ta and Va and derive the equation
followed by the distribution g = gs(w) with s = Ta(t) and w = Va(t)v. We have seen
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thanks to (2.3) and (2.4) that if f is a solution to the homogeneous equation (2.1), the
function g is a solution to

(4.3) T ′
a(t)Va(t)∂sg + V ′

a(t)∇w · (wg) = (Va(t))
2aE(g)−aQe(g, g).

We also used for deriving this equation the relation between the energy of f and the one
of g, namely that E

(
gTa(t)

)
= (Va(t))

2E (ft).
We want the rescaling to be consistent with the steady-state solutions (the self-similar

profiles) to the homogeneous granular equation. If G = G(v) is such a profile, then E(G)
is a constant, and V ′

a(t) = C(Va(t))
2a for a non-negative constant C. This last expression

exactly integrates as
Va(t) = (1 + µat)

−α,

for a non-negative constant µa depending on the initial condition gin = fin. Moreover,
for the sake of simplicity one wants the equation on g to be autonomous. The easier way
to do this is to assume that

T ′
a(t)

Va(t)

V ′
a(t)

= 1,

that is Ta(t) = −α log(1 + µat). Moreover, using the expressions of α and Va,

(Va(t))
2a

V ′
a(t)

= −
1

αµa
.

Summarizing this and using equation (4.3), for any self-similar profile G solution to
the stationary equation

(4.4) ∇v · (vG)−KaE(G)
−aQe(G,G) = 0,

where Ka = − 1
αµa

> 0, we may associate a self-similar solution F to the original equation

(2.1) by setting
F (t, v) = (1 + µat)

−dαG(−(1 + µat)
−αv).

Besides, G is a stationary solution to the following rescaled equation

(4.5) ∂sg +∇w · (wg) = KaE(g)
−aQe(g, g).

More generally, the distribution

f(t, v) := (1 + µat)
−dαg(−α log(1 + µat), (1 + µat)

−αv)

is solution to the equation (2.1) for all times as soon as the function g is solution to (4.5).
Similarly, if f is a solution to (2.1), one can associate a solution g to the rescaled equation
by defining g as

g(s, w) = e−dsf
(
µ−1
a

(
e−s/α − 1

)
, e−sw

)
.

According to the expression of the rescaling (4.2), we have shown the following result:

Proposition 4.1. The distribution f is a solution to (2.1) as soon as one can write





f(t, v) = Va(t)
dg(Ta(t), Va(t)v),

Va(t) = (1 + µat)
−α,

Ta(t) = log V (t),
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where g is a solution to (4.5). The converse also holds true. Moreover, the following
relation holds for any non-negative integer k

∀t ≥ 0,





‖ft‖L1(|·|k) = (1 + µat)
kα
∥∥g−α log(1+µat)

∥∥
L1(|·|k)

,

‖gs‖L1(|·|k) = eks
∥∥∥fµ−1

a (exp(−s/α)−1)

∥∥∥
L1|(|·|k)

.

Thus, the knowledge of the behaviour of the 2nd order moment of g (its energy), which
seems easier to obtain because of the expected lack of explosion, will give us the cooling
law for f by using the relation

(4.6) E (ft) =
E
(
g−α log(1+µat)

)

(1 + µat)−2α
,

where α = 1/(2a− 1) is negative.

Remark 4 . The non-linear rescaling of Section 2 can give us a similar relation as (4.6),
but the lack of explicit representation of the self-similar variables in this case prevents us
to find the cooling law just by using the bounds on the energy of the g.

Now that the classical self-similar variables have been introduced, we shall be able to
prove the part of Theorems 1.2 and 1.3 concerning the sub-critical case, using estimates
on the moments in self-similar variables.

4.2 Sub-critical Cooling Process

In this subsection, we are going to study the energy of a distribution g in classical self-
similar variables for the sub-critical case, solution for a non-negative constant a < 1/2 to

(4.7) ∂sg +∇w · (wg) = E(g)−aQe(g, g).

The constant Ka has been taken equal to one in this last equation, which is made possible
by assuming for example that it appears in the definition of the collisional cross section
b. According to the Proposition 4.1 we shall give some positive upper and lower bounds
for E(g), in order to yield the cooling law of f .

Upper Bound Let g ∈ C (0,+∞;L1
2) be a solution to equation (4.7), whose initial

condition gin ∈ C1,0. Using the weak form of the collision operator, it is easy to show that
these quantities are conserved with respect to time. Multiplying the rescaled equation
by |v|2, integrating in velocity and applying successively the flux-divergence formula,
Jensen’s and Hölder’s inequalities, it comes as in Subsection 1.2 that:

d

ds
E(gs) ≤ −βe E(gs)

−a

∫∫

Rd×Rd

gs(w)gs(w∗)|w − w∗|
3dw dw∗ +

∫

Rd

gs(w)w · ∇|w|2dw,

≤ −βe E(gs)
−a

∫

Rd

gs(w)|w|
3dw + 2 E(gs),

≤ βe E(gs)

(
2

βe
− E(gs)

−a+ 1

2

)
.
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From this later differential inequality, and according to the fact that −a+ 1/2 = −1/2α
is positive, if the energy is such that

E(gs) ≥

(
2

βe

)−2α

,

then E(gs) ≤ E(gin). One has therefore shown a maximum principle which allows to write
the uniform upper bound for E(gs):

(4.8) sup
s≥0

E (gs) ≤ max

{(
2

βe

)−2α

, E(gin)

}
=:M.

Lower Bound Some estimates on the third order moment of g will be needed in this
section. Therefore, gin will be taken in L1

3 ∩ C1,0. For a sake of clarity, we will drop the
s-dependency on g when it is not absolutely necessary. Thanks to the Fubini Theorem
for non-negative functions and to conservation of mass, one has

∫∫

Rd×Rd

gg∗|w − w∗|
3dw dw∗ ≤ 23

∫

Rd

g(w∗)dw∗

∫

Rd

g(w)|w|3dv

= 8m3/2,

where the quantity mk for non-negative k denotes the 2k-th order moment of g. Multi-
plying the rescaled equation by |v|2 and integrating in velocity again, a new differential
inequality involving the energy and the third order moment of g is found, namely

(4.9)
d

ds
E(g) ≥ 2E(g)− β ′

em3/2E(g)
−a,

where β ′
e = 2β2(1 − e2)

∣∣Sd−2
∣∣ thanks to Hypothesis H2 on the cross section. A control

of m3/2 by a certain power (at least greater than 1 + a) of E(g) will then be needed in
order to give a lower bound to the energy.

Lemma 4.1. Let g be a solution to the equation (4.7) for 0 ≤ a < 1/2, with an initial
condition gin ∈ L1

3 ∩ C1,0. There exists two non-negative constants κa and K such that if
E(gin) ≤ K and

m3/2(gin) ≤ κaE (gin)
1+a+η ,

then the following inequality holds for all η in the range
(
−a + 1

2
, 1− 2a

)
:

(4.10) m3/2(gs) ≤ κaE (gs)
1+a+η , ∀s ≥ 0.

Proof. Multiplying the rescaled equation (4.7) by |w|3, one gets after integration in ve-
locity space and by the flux-divergence formula

d

ds
m3/2(gs) = E(g)−a

∫

Rd

Qe(g, g)|w|
3dw + 3m3/2.

Using again the estimates of [4], the third order moment of Qe(g, g) is such that

∫

Rd

Qe(g, g)|w|
3dw ≤ −(1 − γ)m2 + γS3/2,
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where 0 < γ < 1 and

S3/2 =
3

2
E(g)2,

because m1 = E(g) and m1/2 = 0 by momentum conservation. Moreover, applying the
Jensen’s inequality to the function x→ x4/3 and to the probability measure g(w)dw, the
fourth order moment of g is such that

m2 =

∫

Rd

(
|w|3

)4/3
g(w) dw ≥ m

4/3
3/2.

Thus, one can have a differential inequality for m3/2, namely

d

ds
m3/2(gs) ≤ E(g)−a

(
−(1 − γ)m

4/3
3/2 +

3

2
γE(g)2

)
+ 3m3/2.

Gathering this latter inequality with (4.9) and differentiating in time, it comes that

(4.11)

d

ds
U(s) ≤− (1− γ)m

4/3
3/2E(g)

−a +
3

2
γE(g)2−a − 2κa(1 + a + η)E(g)1+a+η

+m3/2 (3 + β ′
e κa(1 + a + η)E(g)η) ,

where κa is a non-negative constant to be determined thereafter and

U(s) := m3/2(gs)− κaE(gs)
1+a+η.

If 0 < η < 1−2a, then 1+a+η < 2−a (because 0 ≤ a < 1/2 yields 2−a > 3/2 > 1+a).
Thus, if the energy of g is such that

E(g) <

(
4κa(1 + a+ η)

3γN0

) 3

1−2a−η

,

for a constant N0 > 1, then using monotonicity argument,

3

2
γE(g)2−a − 2κa(1 + a + η)E(g)1+a+η ≤ −2κa(1 + a + η)

N0 − 1

N0
E(g)1+a+η.

Besides, thanks to the Jensen’s inequality and the conservation of mass,

m3/2 ≥ E(g)3/2.

Then, the inequality (4.11) becomes

d

ds
U(s) ≤− (1− γ)E(g)2−a − 2κa(1 + a + η)

N0 − 1

N0
E(g)1+a+η

+m3/2 (3 + β ′
e κa(1 + a+ η)E(g)η) .

Let us suppose that the positive constant κa is such that m3/2(gin) ≤ κaE(gin)
1+a+η. If

this inequality is strict, then for s < s∗ with a positive time s∗, the lemma is proved.
Else, one gets m3/2(gs∗) = κaE (gs∗)

1+a+η, and the last differential inequality now reads

d

ds
U(s∗) ≤− (1− γ)E (gs∗)

2−a − 2κa(1 + a+ η)
N0 − 1

N0
E (gs∗)

1+a+η

+ κaE (gs∗)
1+a+η (3 + β ′

e κa(1 + a+ η)E (gs∗)
η) ,

≤− (1− γ)E (gs∗)
2−a + κaE (gs∗)

1+a+η

(
3 + (1 + a + η)

(
−2 +N1 +

2

N0

))
,
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if the energy at time s∗ is such that

E (gs∗) < min

{(
4κa(1 + a + η)

3γN0

) 3

1−2a−η

,

(
N1

β ′
e κa

)1/η
}

=: K(N0, N1),

for a positive constant N1.
Provided that a < 1/2, then 1 + a + η > 3/2 if η > −a + 1/2. The conditions that η

has to fulfil are now sharpened:

−a + 1/2 < η < 1− 2a.

Thus 3− 2(1+ a+ η) = −Λ for a non-negative constant Λ and the differential inequality
on U(s∗) is now

d

ds
U(s∗) ≤− (1− γ)E (gs∗)

2−a + κaE (gs∗)
1+a+η

(
−Λ + (1 + a+ η)

(
N1 +

2

N0

))
,

< 0,

where N0 and N1 are respectively large and small enough to have

N1 +
2

N0

<
Λ

(1 + a+ η)
.

One has shown that for the times s > s∗, the quantity U(s) = m3/2(gs)−κaE (gs)
1+a+η is

non-increasing (and is equal to 0 in s∗). Taking K = K(N0, N1) concludes the proof.

Using the result (4.10) of the Lemma 4.1 in the inequality (4.9), one finds that if
0 ≤ a < 1/2

d

ds
E (gs) ≥ νa E(gs)

(
2

νa
− E(gs)

η

)
,

in which νa := β ′
e κa. The lower bound comes again using a maximum principle which

yields:

(4.12) sup
s≥0

E (gs) ≥ min

{(
2

νa

)1/η

, E(gin)

}
=: m > 0,

for all η ∈
(
−a+ 1

2
, 1− 2a

)
.

Gathering the uniform bounds (4.8) and (4.12) on the energy of a solution g to the
rescaled equation (4.7), and the relation (4.6) between the energy of a solution f to the
classical homogeneous granular equation (2.1) and the one of g, one has shown the point
(i) of Theorem 1.2, that is the one concerning cooling in infinite time.

We are now going to use these uniform bounds to prove the existence of self-similar
profiles in classical self-similar variables, that is the existence of a distribution G solution
to (4.4) with Ka = 0 and 0 ≤ a < 1/2:

∇w · (wG)− E(G)−aQe(G,G) = 0.
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4.3 Stability Estimate

Let us assume that 0 ≤ a < 1/2 and that H1 and H2 hold.

Lemma 4.2. Let 0 ≤ gin, hin ∈ L1
3 be the initial condition of the Cauchy problem for the

rescaled equation (4.7), and g, h ∈ C(0, T ;L1
2)∩L

∞(0, T ;L1
3) the two associated solutions.

Then, there exists a constant Cstab depending on a, gin and hin such that

‖gs − hs‖L1
2
≤ ‖gin − hin‖e

Cstabs.

Proof. Multiplying the equation satisfied by g − h by ϕ(s, w) := sgn(gs(w)− hs(w))(1 +
|w|2) and integrating in velocity, one gets using the chain rule

d

ds
‖gs − hs‖L1

2
= −

∫

Rd

∇w · (w(gs(w)− hs(w))))ϕ(s, w)dw + I(s),

where the quantity I is given by

I :=

∫

Rd

(
E(g)−aQe(g, g)− E(h)−aQe(h, h)

)
ϕ(w) dw,

≤

∫

Rd

(
m−aQe(g, g)−M−aQe(h, h)

)
ϕ(w) dw,

thanks to the uniform bounds of the energy obtained in Subsection 4.2. Therefore, using
the weak form (1.4) of the collision operator and the bounds of the cross section, we have
on the one hand by symmetry and thanks to the change of variable (w,w∗) → (w∗, w),

I ≤ C1

∫∫∫

Rd×Rd×Sd−1

|w − w∗| ((g − h)h∗ + g(g∗ − h∗)) (ϕ
′ + ϕ′

∗ − ϕ− ϕ∗) dω dw dw∗,

≤ C1

∫∫∫

Rd×Rd×Sd−1

|w − w∗|(g − h)(g∗ + h∗) (ϕ
′ + ϕ′

∗ − ϕ− ϕ∗) dω dw dw∗,

≤ C2

∫∫

Rd×Rd

|w − w∗||g − h|(g∗ + h∗)
(
1 + |w∗|

2
)
dw dw∗.

On the other hand,

(4.13)

∫∫

Rd×Rd

|w − w∗|ψ1(w)ψ2(w∗)
(
1 + |w∗|

2
)
dw dw∗ ≤ ‖ψ1‖L1

2
‖ψ2‖L1

3
,

which is equivalent to the following inequality:

∫∫

Rd×Rd

|w − w∗|

(1 + |w|2) (1 + |w∗|2)
1/2
dµ(w,w∗) ≤ 1,

where µ is the probability distribution defined by

µ(dw, dw∗) :=
1

‖ψ1‖L1
2
‖ψ2‖L1

3

ψ1(w)ψ2(w∗)
(
1 + |w|2

) (
1 + |w∗|

2
)3/2

dw dw∗.

To prove(4.13), it then remains to use that

|w − w∗| ≤
(
1 + |w|2

) (
1 + |w∗|

2
)1/2

,
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which can been shown by taking the difference of the square of its two members. Finally,
setting ψ1 = g − h and ψ2 = g + h in (4.13) yields

I(s) ≤ C2‖gs − hs‖L1
2
‖gs + hs|L1

3
.

Coming back to the drift term, one has thanks to the divergence formula,

−

∫

Rd

∇w · (w (g(w)− h(w))ϕ(w) dv = −d‖g − h‖L1
2
+

∫

Rd

|g(w)− h(w)|∇w · w(1 + |w|2)dw,

= (d+ 2)‖g − h‖L1
2
.

Gathering these results, one gets

d

ds
‖gs − hs‖L1

2
≤ Cstab‖gs − hs‖L1

2
,

with Cstab := C2 sups≥0 ‖gs+hs‖L1
3
+d+2 and the conclusion comes thanks to the Gronwall

Lemma.

We are now ready to prove the existence of self-similar profiles in the sub-critical case.

4.4 Existence of Self-similar Profiles in the Sub-critical Case

We will prove the existence of a self-similar profile for the equation (4.5) thanks to the
following abstract Theorem, seen in the paper [13] of M. Escobedo, S. Mischler, R. Ricard
or in another form in the one [14] of I. Gamba, V. Panferov and C. Villani. This is a
simple consequence of the Schauder-Tychonoff fixed point Theorem (e.g. the textbook
[11] of Edwards, pp. 161-163).

Theorem 4.1. Let Y be a Banach space, and (Ts)s≥0 a continuous semi-group on Y such
that:

(i) there exists a non-empty convex subset Z of Y weakly (sequentially) compact, in-
variant under the action of Ts, for all s ≥ 0;

(ii) Ts is weakly (sequentially) continuous on Z , for all s ≥ 0.

Then, there exists z0 ∈ Z such that Tsz0 = z0, for all s ≥ 0.

We shall apply Theorem 4.1 to the evolution semi-group Ts of the equation (2.1)
with a < 1/2, on the Banach space Y := L1

2. We have to check some properties of this
semi-group.

First of all, (Ts)s≥0 is continuous on Y thanks to the study of the Cauchy problem
(Theorem 1.1). Moreover, the stability estimate of the Lemma 4.2 means that Ts is
(strongly) continuous on each bounded subset of Z.

Besides, if one sets

Z :=
{
0 ≤ f ∈ Y ∩ C1,0; ‖f‖L1

3
+ ‖f‖Lp ≤M0

}

for p > 1 and M0 > 0, then thanks again to Theorem 1.1 and to the uniform propagation
of Lp norms, TsZ ⊂ Z, for all s ≥ 0 (if one sets M sufficiently large). The assertion
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concerning Lp norms can been shown by doing the same proof than the one of Subsection
3.3 of [16], thanks to the energy bounds of g found in Subsection 4.2.

Then, being bounded for the Lp norm, and then uniformly integrable, the set Z
is weakly compact in Y , thanks to the Dunford-Pettis compactness criterion (e.g. the
textbook [10] of C. Dellacherie and Meyer, p. 27).

Finally, one can apply Theorem 4.1 to prove the existence of a non-negative distri-
bution G ∈ L1

3 ∩ C1,0 ∩ L
p solution to the stationary equation (4.4), that is a self-similar

profile for the granular equation. This ends the alternative proof of Theorem 1.3.
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