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Nancy - Université, CNRS UMR 7039,

BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France,

Phone: (33) 3 83 68 44 73 - Fax: (33) 3 83 68 44 62

Preprint submitted to Journal of Theoretical Biology February 25, 2011



Abstract

Hit and target models of tumour growth, typically assume that all surviving cells

have a constant and homogeneous sensitivity during the radiotherapy period. In

this study, we propose a new multinomial model based on a discrete-time Markov

chain, able to take into account cell repair, cell damage heterogeneity and cell pro-

liferation. The proposed model relies on the ’Hit paradigm’ and ’Target’ theory in

radiobiology and assumes that a cancer cell contains m targets which must be all

deactivated to produce cell death. The surviving cell population is then split up into

m categories to introduce the variation of cancer cell radio-sensitivity according to

their damage states. New expressions of the tumour control probability (TCP) and

normal tissue complication probability (NTCP) are provided. Moreover, we show

that hit and target models may be regarded as particular cases of the multinomial

model. Numerical results should permit to keep the efficiency of treatment with a

lower total radiation dose then that given by the typical hit models, which allows

to decrease side effects.
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Introduction

The aim of radiotherapy is to deliver enough radiation to the tumour to con-

trol it without irradiating normal tissue to a dose that will lead to serious

complications (morbidity). Since radiation delivery at a precise point of cells

is generally described as a random variable, the effects of the radioactive treat-

ments on cancer and healthy cells are characterized by two probabilities: (i)

the Tumour Control Probability (TCP) and (ii) the Normal Tissue Compli-

cation Probability (NTCP)3–5. The optimum choice of radiation dose delivery

technique in the treatment of a given tumour has to maximize the TCP so

that at the same time the NTCP must be lower than an acceptable level.

The model-based probabilities TCP and NTCP are then used to choose the

’best’ treatment plan. Since Holthusen in6, TCP and NTCP dose functions

have been used to determine the ’optimal’ dose to be delivered by maximiz-

ing biological objective functions like TCP (1−NTCP ). An evolution of this

objective function is proposed in7. In clinical radiotherapy a typical choice is

TCP ≥ 0.5 and NTCP ≤ 0.058. Expressions for TCP and NTCP can be

derived using survival curves9, stochastic cell population-dynamic models10,11

or cell-cycle models12. Here, we focus on a popular class of models used in

radiotherapy, i.e. the hit models coming from target theory.

Target theory and hit-modeling paradigm were introduced in the 1920s when

biologists were beginning to develop quantum approaches to inactivation phe-

nomena in irradiated biological tissue13–15. The modeling of radiation effects

on living cells were continued both theoretically and experimentally by K. C.

Atwood and A. Norman16, D. E. Lea17, E. C. Pollard and coworkers18,19. Since

these seminal works, a lot of mathematical models expressing the interaction
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of radiation particles with biological cells have been proposed20–25. In target

theory, a cell has different vital sites called targets which must be inactivated

to kill the cell. For instance, it is accepted that the chromosomes are sensi-

tive targets26 but there is additional evidence that the nuclear membrane, or

some cell organelles close to the nuclear membrane can also be regarded as

targets27. Each target is deactivated when it is hit by a number of radiation

particules. There are several classes of hit models classified by the number

of targets and the number of hits. In these models, it is generally assumed

that cells have homogeneous behaviour. In practice, there are at least three

main reasons to put this hypothesis into question. The first cause of hetero-

geneity comes from the nonuniform spatial distribution of the radiation dose.

The second cause is due to the differences between the cell types (necrotic,

quiescent, proliferating, stem cells, etc.) and the nonuniform concentration of

oxygen and nutrients. A third factor corresponds to a cell-to-cell variability

of damages and to the variation of the cell sensitivity to radiation. The first

two points may be handled by reducing the modeling scale to a voxel level,

i.e. a sub-volume in which we can reasonably suppose that distribution doses

and cell types are homogeneous. For the last point, the hit models typically

assume that cell sensitivity to radiation is constant over the time course of

radiotherapy. In other words, after a radiation dose, a surviving cell is thought

to be about as viable as an unirradiated cell and all cells are supposed having

the same survival probability. However, evidence suggests that the cell radi-

ation sensitivity increases with the number of dose fraction and even the cell

is still alive, it partially loses the ability to resist as an unirradiated cell. Our

aim is to focus on this last issue and a triple objective is addressed:

• to propose an extension of hit models based on a Markov chain formalism
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able to describe the target reparation between two consecutive dose frac-

tions of the radiation schedule, the heterogeneity of damages induced by

radiations and the cell proliferation;

• to determine the TCP and NTCP;

• through numerical computations, we compare the multinomial model with

typical hit models and we draw the optimal total dose from the TCP/NTCP

curves.

This paper is structured as follows: we present a brief overview of hit models

and target theory in Section 1. We give a detailed development of the tu-

mour growth multinomial model in Section 2. In Section 3 we review existing

classical TCP models. Based on the multinomial model, we propose a new

expression of TCP in Section 3 and NTCP in Section 4. In Section 5, we

integrate the cell proliferation into our approach. Numerical results are pre-

sented in Section 6. Finally, the main results, limits and perspectives of the

multinomial model are drawn in Section 7.

1 Radiation, hit models and target theory

The main notations used thereafter are presented in Table 1.

1.1 Hit process

For a radiation dose u0, the number of delivered radiation particles is

np = u0 ρ, (1.1)
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Table 1
Main notations

Notations

Not. Definition

k discrete time

np number of delivered radiation particles per a radiation dose u0

qh probability that a radiation particle hits a target

Nh number of radiation particles that hit a critical target

qc probability of cell death after radiation

pc survival probability of a cell after treatment

v voxel (subvolume) of a 3-D scan

Zk number of deactivated targets in the cell

Π transition matrix associated with the Markov chain (Zk)

P matrix associated with treatment effects

R matrix associated with cell repair process

Xk,v(i) number of cancer cells in state i in the voxel v at time k

X̄k,v(i) number of normal cells in state i in the voxel v at time k

m number of targets in a cancer cell

q probability to deactivate a target in a cancer cell

r probability for an inactived target to be reactivated in a cancer cell

n0 initial total number of cancer cells in the tumour

nt total number of tumour voxels

nv initial number of cancer cells in a tumour voxel v

m̄ number of targets in a normal cell

q̄ probability to deactivate a target in a normal cell

r̄ probability for an inactive target to be reactivated in a normal cell

n̄0 initial total number of normal cells in the irradiated zone

n̄t total number of normal tissue voxels

n̄v initial number of cells in a normal tissue voxel v

n̄ the complication threshold number of dead normal cells
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with ρ the number of radiation particles per unit dose and the subscript p

corresponds to particules. Thereafter, np is assumed to be an integer for sim-

plification. The underlying assumptions23 of the hit models are:

(1) a cell has at least one critical target;

(2) the probability qh (the subscript h corresponds to hit) that a radiation

particle hits a critical target is the same for all targets;

(3) the hit events are independent from each other.

Let Nh be the random variable denoting the number of radiation particles

that hit a given target. Then, Nh ∼ B(np, qh) (binomial distribution) and the

probability that exactly j radiation particles hit a given critical target is:

Pr(Nh = j) = (
np

j )qjh(1− qh)np−j, j = 0, 1, 2, · · · , np. (1.2)

If np is large enough and qh is low, such as np qh = λ ∈ [0, 10], the distribution

of Nh can be approximated by the Poisson distribution P(λ). Fixing

α = ρqh, (1.3)

then according to (1.1), λ = np qh = αu0 and the probability that exactly j

radiation particles hit a target becomes

Pr(Nh = j) =
(αu0)j

j!
e−αu0 , j = 0, 1, 2, · · · (1.4)

αu0 is the expected number of primary lesions caused by the radiation dose

u0 and the parameter α can be interpreted as a characteristic of the damage

process itself, i.e. radiosensitivity in its literal sense28. There are several classes

of hit models classified by the numbers of targets and hits.
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1.2 Single target–single-hit models

In single target–single-hit models, it is assumed that a cell has one lethal target

and that the cell dies when its target is hit by one or more radiation particles.

Therefore, the cell dies with probability

qc := P (Nh ≥ 1) = 1− e−αu0 . (1.5)

1.3 Single target–multi-hit models

In single target–multi-hit models, the cell dies when the target is hit by at least

ht radiation particles, where ht is a threshold number of cell inactivations also

called extrapolation number. Therefore, the probability that the cell dies is

qc := P (Nh ≥ ht) =
∞∑
j=ht

(αu0)j

j!
e−αu0 = 1−e−αu0−· · ·− (αu0)ht−1

(ht − 1)!
e−αu0 . (1.6)

1.4 Linear-quadratic model

The linear-quadratic model considers that a cell contains one single target.

This model is based on a radiobiological approach1: after a radiation dose u0,

the cell dies either by a single lethal event on the target which is represented

by a linear component or by the combination of two sublethal events close

enough in time and space, which is represented by a quadratic component.

8



Thus, the cell death probability after a radiation dose u0 is defined as

qc = 1− pc = 1− e−(αu0+βu20), (1.7)

where α and β are two positive parameters.

Dawson and Hillen4 provide a detailed explanation using radiation physics and

leading to (1.7). Note that the linear quadratic (LQ) model has been gaining

popularity these recent years2.

However, under the single-target assumption, the surviving cell population is

homogeneous in terms of radiation injuries in cells. That is why we revisite

in this paper the target modeling theory in a stochastic framework able to

handle the heterogeneity of damages.

1.5 Multi-target–single-hit models

Here, the cell has m distinct targets and dies when the m targets have been

inactivated. Each target can be deactivated by a single hit. According to (1.5),

this event occurs with probability 1 − e−αu0 . Under the assumption that the

deactivation of targets are independent events, the probability that the cell

dies is

qc = (1− e−αu0)m. (1.8)

Similarly to the single target models, the variation in cell radio-sensitivity has

not been taken into account and all cells have the same survival probability

pc = 1− qc.
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2 Multinomial model of a tumor

Two main aspects of tumor growth are generally missing in the typical hit

models: (i) the heterogeneity of damages induced by radiations in the cancer

cell population after each dose fraction and (ii) the target reparation between

two consecutive dose fractions. Thereafter, we thus propose to take these two

issues into account in the multinomial model29. In this section, we detail the

multinomial model without the cell proliferation which will be introduced

afterward in Section 5.

2.1 Radiation scheduling

We restrict our study to fractionated radiation schedules that have 5 dose

fractions per week. More specifically, the first fraction is given on Monday

morning, and there is no treatment on the weekends. The treatment is based

on a static (i.e. fraction sizes do not vary over time) scheme illustrated in

Figure 1 by an impulse train u(k) in which u0 denotes the magnitude of each

dose fraction (typically u0 = 2Gy) and k is the discrete time based on a daily

sampling rate. Thus, d(k) =
∑k
i=0 u(i) is the cumulated dose of radiation up

to time k. The treatment planning process is composed of the following steps:

• the patient image data is acquired, typically fully 3-D Computed Tomogra-

phy (CT) scans;

• based on this CT scan, the physician outlines the tumor and important

normal structures on a computer like the gross target volume, the clinical

target volume, and the planning target volume;

• each 3-D CT scan is decomposed into subvolumes called voxels. It is sup-
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posed that each voxel v received a uniform dose u0,v per fraction, but the

latter may vary from a voxel to another one.

2.2 Heterogeneity of cell states after radiations

We consider that a cell contains m targets. Each target can be made inactive

by radiation particules and the cell death occurs when the m targets are

deactivated. After a fraction of treatment, a cell may have m + 1 possible

states:

• state i, the cell has i inactive targets, i ∈ {0, 1, . . . ,m− 1}, these are the m

states of a surviving cell;

• state m, the cell having m inactive targets is a dead cell.

Figure 2 shows the case of a 3-target cell and the corresponding cell states.

2.3 Discrete-time Markov chain model of a cancer cell

A discrete-time Markov chain model is proposed to describe the heterogeneity

of cellular damages during the fractionated treatment.

Let us first consider a single cell composed of m targets. Let Zk be the random

variable describing the state of the cell at time k, Zk = i ∈ {0, 1, · · · ,m} is the

number of deactivated targets at time k. We suppose that (Zk) is a discrete-

time Markov chain, i.e. the cell state at time k+1 only depends on the current

state at time k and let Π the corresponding transition matrix. We determine

thereafter the expression of Π which models both of effects of dose fractions

and repair mechanisms.
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2.3.1 Treatment effect modeling.

We adopt the convention that the first row and first column of a matrix will

be noted by the index value 0. Denote P(i, j) the probability to deactivate j

targets at time k+1 when i targets are disabled at time k. Let q the probability

to inactivate a target after a dose fraction u0. Moreover, we suppose that the

disabling of targets in the cell are independent events. Thus after applying a

fraction dose, the possible states at time k + 1 of a cell in state i at time k

are {i, i + 1, . . . ,m}. The cell may switch at time k + 1 to the state j by the

deactivation of j − i target(s) among the m− i active ones. Consequently,

P(i, j) = (m−ij−i )qj−i(1− q)m−j. (2.1)

Then, we obtain the general expression of the matrix P,

P(i, j) =


(m−ij−i )qj−i(1− q)m−j i ≤ j

0 j < i

(2.2)

and the explicit expression is

P =



(1− q)m (m1 )q(1− q)m−1 . . . qm

0 (1− q)m−1 . . . qm−1

...
...

...

0 0 . . . q

0 0 . . . 1



. (2.3)
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Figure 3 shows the transition graph of the radiation process before taking

the repair of inactive targets into account, for the case of a 3-target cell, i.e.

m = 3.

The target deactivation parameter q is the probability to deactivate an active

target after a radiation dose fraction u0. To connect this parameter with the

real treatment schedule, we consider the following possibilities:

• If we assume that a target is deactivated when it is hit by one or more

radiation particules, then according to (1.4), we have

q = P (Nh ≥ 1) = 1− e−αu0 , (2.4)

where Nh is the random number of radiation particules that hit a given

target.

• According to the (LQ) model, recall that after a dose fraction u0 a cell dies

with probability qc = 1 − e−αu0−βu20 . However, it is clear that in our model

qc = P(0,m) = qm. Consequently,

q = (1− e−αu0−βu20) 1
m . (2.5)

2.3.2 Reparation modeling in surviving cells.

We introduce now repair mechanisms of deactivated targets which occur be-

tween the application of two consecutive dose fractions. Let r the probability

of an inactive target in a living cell to revive during the period that separates

two consecutive dose fractions. We assume that any target can be repaired

independently from each other. The possible states at time k + 1 of a cell in

state i at time k are {0, 1, . . . , i}. Denote R(i, j) the probability that the cell
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switches at time k + 1 to the state j. Since i− j targets among the i inactive

targets are repaired, then

R(i, j) =


(ij)r

i−j(1− r)j j ≤ i < m

0 i < j.

(2.6)

For i = m, R(m,m) = 1 and R(m, j) = 0 for all j 6= m. The explicit

expression is

R =



1 0 0 . . . 0

r 1− r 0 . . . 0

r2 (2
1)r(1− r) (1− r)2 . . . 0

...
...

...
...

rm−1 (m−1
1 )rm−2(1− r) . . . . . . 0

0 0 0 . . . 1



. (2.7)

2.3.3 Transition matrix of (Zk).

We model the dynamics of the Markov chain (Zk)k∈N by taking firstly the

effects of dose fractions and secondly repair mechanisms into account as follows

Π = PR, (2.8)
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where P models the effects of dose fractions, and R describes repair mecha-

nisms.

In the case of a 3-target cell,

Π =



(rq + q′)3 − (rq)3 3r′qq′2 + 6rr′q2q′ 3q2q′r′2 q3

rq′2 + 2r2qq′ r′q′2 + 4rr′qq′ 2r′2qq′ q2

r2q′ 2rr′q′ r′2q′ q

0 0 0 1



(2.9)

where q′ = 1 − q and r′ = 1 − r. Figure 4 shows the transition graph corre-

sponding to the Markov chain (Zk) after taking the repair of inactive targets

into account.

2.3.4 Probability distribution of Zk.

Set νk = (ν0
k , . . . , ν

m
k ) the probability distribution vector of Zk: ν

i
k = P (Zk =

i). Using the Markov chain property, νk may be expressed in terms of Π and

ν0:

νk = ν0Πk. (2.10)

If we assume that the cell is initially in state 0, then ν0 = (1, 0, . . . , 0) and

νik = Πk(0, i) i ∈ {0, . . . ,m}. (2.11)
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2.3.5 Comparison with hit models.

The multi-target–single-hit model is a special case of the multinomial model

by considering that all sublethal damages are completely repaired between

dose fractions, i.e. by taking the repair parameter r equal to 1. Indeed, when

r = 1, a cell is either dead or in state 0, then the surviving cell population

is homogeneous. This and assuming q verifies (2.4) lead to the case of the

multi-target–single-hit model.

Similarly, if we fix the target number parameter m = 1 and the deactivation

target parameter q equals to (2.5), we get the the linear quadratic model.

2.4 Multinomial model of the tumour

Consider a group of n0 cells that compose the tumour. We divide the tumour

into nt voxels. We suppose that a voxel v of the computerized tomography

scan contains nv cells i.e.

n0 =
nt∑
v=1

nv. (2.12)

In each voxel v we assume that:

• cells behave independently and with the same dynamics (cf Section 2.3);

• the probability qv to deactivate a target in a cell is the same for all cells

located in v;

• the probability of target repair r is constant and does not depend on v.

For each cell j, we associate a discrete-time Markov chain (Z
(j)
k ), where Z

(j)
k

is the random number of deactivated targets. Therefore, the Markov chains

{(Z(j)
k )}j∈{1,...,nv} are independent and have the same transition matrix Πv.

16



Let Xk,v(i) be the random number of cells in state i ∈ {0, . . . ,m}, at time k,

among the nv initial cells in the voxel v. Since Z
(1)
k , . . . , Z

(nv)
k are i.i.d., and

follow a categorial distribution, then
(
Xk,v(0), · · · , Xk,v(m)

)
follows a multi-

nomial distribution with parameters nv and νk = (ν0
k , . . . , ν

m
k ). Consequently,

Pr(Xk,v(0) = h0, . . . , Xk,v(m) = hm), is given by


nv !

h0!...hm!
(ν0
k)h0 . . . (νmk )hm if

∑m
i=0 hi = nv

0 otherwise

(2.13)

where hi, i ∈ {0, . . . ,m}, are non-negative integers.

Note that the number Xk,v(i) of cells in state i at time k follows the binomial

distribution:

Xk,v(i) ∼ B
(
nv,Π

k
v(0, i)

)
. (2.14)

Consequently, its average number is

E(Xk,v(i)) = nvΠ
k
v(0, i). (2.15)

2.5 Number of surviving cells

In the multinomial model, the number of surviving cells in the voxel v after

the kth dose fraction is given by

Nk,v = Xk,v(0) + . . .+Xk,v(m− 1) = nv −Xk,v(m). (2.16)
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Since Xk,v(m) ∼ B(nv,Π
k
v(0,m)), then

Nk,v ∼ B
(
nv, 1− Πk

v(0,m)
)
. (2.17)

This implies that

E(Nk,v) = nv
(
1− Πk

v(0,m)
)
, (2.18)

and

V ar(Nk,v) = nv
(
1− Πk

v(0,m)
)
Πk
v(0,m). (2.19)

3 Tumor Control Probability

The probability that no cancer cell remains in a tumor after radiation is known

as the Tumor Control Probability (TCP). This probability may be useful to

evaluate either the quality of a treatment planning or for its optimization.

Recall that the tumor is decomposed into nt voxels (cf Section 2.4) and these

voxels are supposed to be independent, then the TCP at k is given by

TCPk =
nt∏
v=1

V CPk,v, (3.1)

where V CPk,v denotes the Voxel Control Probability at time k, i.e. the prob-

ability of having no cancer cell in the voxel v.

Expressions of VCP

The binomial and Poisson formulations of V CP , for a uniformly irradiated

volume v (voxel), are generally used in radiotherapy planning30–32. First, let
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pc,v(k) denote the probability that a cancer cell located in the voxel v survives

after k dose fractions with magnitude u0. Since we have supposed that all cells

behave independently, then the number of surviving cancer cells after the kth

dose fraction follows a binomial distribution B(nv, pc,v(k)), and we obtain

V CPk,v = (1− pc,v(k))nv . (3.2)

When the distribution B(nv, pc,v(k)) may be approximated by the Poisson

distribution P(nvpc,v(k)), we have

V CPk,v = e−nvpc,v(k). (3.3)

The main drawback of hit models presented in Section 1 is to ignore the repair

mechanism and the heterogeneous distribution of the cellular damages over the

tumor and over time, since pc,v(k) is defined as

pc,v(k) = (pc,v)
k, (3.4)

where pc,v = pc,v(1) is determined by equations (1.5), (1.6), (1.7) and (1.8)

according to each model. The above relation (3.4) means that after each dose

fraction a surviving cell has the same probability pc,v to survive after the next

dose fraction.

However, considering the multinomial model presented in Section 2.4, the cell

radiation sensitivity increases with the number of dose fraction and for a cell

initialy in state 0 we have

pc,v(k) = 1− Πk
v(0,m). (3.5)
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Then, the multinomial V CP at time k is defined according to (3.2) as

V CPk,v =
(
Πk
v(0,m)

)nv

. (3.6)

Therefore, according to (3.1) we obtain the TCP for the whole tumour :

TCPk =
nt∏
v=1

(
Πk
v(0,m)

)nv

. (3.7)

4 Normal Tissue Complication Probability

The main undesirable effect due to radiotherapy is the irradiation of normal

tissue. Normal organs and tissues have different responses to radiations due

to their distinct architecture. Niemierko and Goitein33 proposed a division of

normal tissues into three different architectures: serial architecture (e.g. nerves

or spinal cord), parallel architecture (e.g. kidney, liver or lung) and graduated

response (e.g. skin or mucous membranes).

We restrict ourselves to the parallel architecture. It is supposed that organs

are composed of functional subunits (FSUs) and that organ function is com-

promised when a certain critical fraction of these FSUs is damaged.

The Normal tissue Voxel Complication Probability, noted NV CPk,v, is defined

as the probability that a complication appears in a normal tissue voxel v at

time k. The Normal Tissue Complication Probability NTCPk in the whole

tissue at time k is the probability that at least one voxel among the n̄t voxels

of the normal tissue has been damaged. If we assume that radiation injury to
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voxels are independant events, then

NTCPk = 1−
n̄t∏
v=1

(1−NV CPk,v). (4.1)

For a uniformly irradiated voxel with n̄v FSUs and a reserve capacity of (n̄−1)

FSUs, it is supposed that34,36:

• a complication appear if the number of damaged FSUs exceeds n̄;

• each FSU among the n̄v ones is damaged with a probability pFSU ;

• all FSUs behave independently.

Let NFSU be the random number of damaged FSUs among the n̄v ones after

irradiation, then it has a Binomial distribution B(n̄v, pFSU) and the probability

of complication in the voxel v can be expressed mathematically as

NV CPv = P (NFSU ≥ n̄) =
n̄v∑
i=n̄

(n̄v
i ) (pFSU)i(1− pFSU)n̄v−i. (4.2)

Multinomial NVCP

In our model, we suppose that each FSU is one normal cell. Assume that

the dynamic of normal cells is similar to the one of cancer cells and given by

the multinomial model, defined in Section 2.4, but with different values of the

parameters. Then, a normal cell contains m̄ targets, each of them is deactivated

with a probability q̄ and it is repaired with a probability r̄. However, if the

treatment plan is correctly designed, radiation doses are lower in the voxels of

normal tissue than in the ones of the tumour. As a consequence, the probability
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that a radiation particle inactivates a target in a normal cell, is lower than

for a cancer cell (q̄ < q). Moreover, the repair mechanism for normal tissue

cells is better for fractionated radiation than tumour cells for reasons which

are not yet explained. Consequently, the probability for an inactive target to

be reactivated is greater for a normal cell than for a cancer cell (r̄ > r).

For simplicity, we use the same notation, as for cancer cells, to denote the

probability Π̄k
v(0, m̄) that a normal cell, located in a voxel v, is in state m̄

at time k (dead cell). X̄k,v(m̄) is the number of dead cells at time k among

the n̄v initial cells in a normal voxel v. Obviously, X̄k,v(m̄) is the analogue of

Xk,v(m) (cf Section 2.4). Since the complication in the normal voxel v occurs

when the dead cell number is larger than n̄, then the NV CPv expression at

time k can be written as

NV CPk,v = P (X̄k,v(m̄) ≥ n̄) =
n̄v∑
i=n̄

(n̄v
i ) (Π̄k

v(0, m̄))i(1− Π̄k
v(0, m̄))n̄v−i. (4.3)

Note that, equation (4.3) is a special case of (4.2) for pFSU = Π̄k
v(0, m̄). In

particular, if complications only occur when all cells are killed i.e. n̄v = n̄, the

the definitions of NVCP and VCP coincide and the normal voxel complication

probability becomes

NV CPk,v = (Π̄k
v(0, m̄))n̄v . (4.4)

Finally, integrating (4.3) in (4.1), we obtain the NTCP for the normal tissue

in the irradiated zone.
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5 Cell proliferation modeling

First let us describe the new behavior of a given cell taking the reproduction

phase into account. Once the kth dose fraction is applied, the cell may be

damaged, thus repair mechanisms and proliferation follow until the k+1th dose

fraction. The damage and repair phases are again modelled as in Section 2.3.

We suppose that the cell may reproduce if only it remains in state 0 after

the application of a dose fraction, which occurs with a probability P(0, 0) =

(1− q)m. A cell that stays in state 0, divides and gives birth to two daughter

cells in state 0 with probability µ or it remains unchanged with probability

1 − µ. It is convenient for our computation, in the case of cell division, to

consider the mother cell is still alive and a new one (in state 0) is artificially

added.

Consider a voxel v that contains nv cells in state 0. All cells behave as described

previously and independently. Let S1 be the random number of the additional

cells in state 0 resulting from cell reproduction after applying the first dose

fraction on the nv cells. Since a new cell is produced with a probability µ(1−

qv)
m, then

S1 ∼ B
(
nv, µ(1− qv)m

)
. (5.1)

Consequently,

η1 := E(S1) = nvµ(1− qv)m. (5.2)

The number Xp
1,v(0) of cells in state 0, at time k = 1, after including the cell

proliferation becomes

Xp
1,v(0) = X1,v(0) + S1, (5.3)

where X1,v(0) is the number of cells in state 0 after the first dose fraction and
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the repair phase, among the nv initial cells,

X1,v(0) ∼ B
(
nv,Πv(0, 0)

)
.

We replace S1 in the next steps by its mean value η1 = E(S1) and recall that

these new cells are in state 0. We deduce that modeling the treatment effects,

repair mechanisms and cell proliferation in the initial cell population of nv

cells is considered to be equivalent to model the treatment effects and repair

mechanisms on these cells and to add η1 cells in state 0. This analysis can be

repeated at each time k adding a number ηk of cells in state 0 resulting from

cell reproduction. The sequence ηk is given recursively by


η0 = nv

ηk+1 = µ(1− qv)m
∑k
j=0 Πk−j

v (0, 0)ηj k ≥ 0

(5.4)

and the new expression of the VCP becomes

V CPk+1 =
k∏
j=0

(
Πk+1−j
v (0,m)

)ηj
k ≥ 0. (5.5)

6 Numerical analysis

6.1 Comparative analysis with typical VCP/NVCP

Recall that we have observed that classical hit models are particular cases of

the multinomial model by fixing the target reparation parameter r and r̄ for
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cancer and normal cells respectively at r = r̄ = 1 or by taking the single-target

assumtion i.e. m = 1. Therefore the comparison between VCP/NVCP typical

model vs VCP/NVCP multinomial model reduces to study the influence of

the parameter r (and r̄) on the VCP/NVCP models.

For simplicity we only consider one voxel. The multinomial VCP and NVCP

equations (3.6) and (4.3) were implemented in the Matlab environment. The

parameters were fixed to m = 3, qv = 0.7, nv = 10000 for cancer cells; m̄ = 3,

q̄v = 0.6 and n̄ = n̄v = 1000 for normal cells. We chose parameter values

avoiding numerical complications so that they permit to obtain numerical

results without any specific biological interpretations. The values of the repair

parameters for the multinomial VCP/NVCP curves are r = 0.3 and r̄ =

0.5; and recall that r = r̄ = 1 for the classical VCP/NVCP models. The

radiation treatment is decomposed into 50 dose fractions. Note that V CPk,v

and NV CPk,v given by (3.6) and (4.3) respectively, are functions of k. In

practice, it is more convenient to express them in terms of the cumulated dose

d(k) = ku0. Figure 5 presents the VCP/NVCP curves obtained as functions of

the cumulated dose d. Blue lines denote the VCP curves; the solid and dashed

lines correspond to r = 0.3 and r = 1 (typical assumption) respectively.

Similary, red curves represent the NVCP with r̄ = 0.5 (solid line) and r̄ = 1

(dashed line). For each couple of VCP/NVCP curves, an optimal dose OD is

estimated by maximizing the total dose with the constraint NVCP≤ 0.05.

The optimal total doses OD1 and OD2 are deduced from the NVCP curves,

as

OD1 = max{d, multinomial NV CP (d) ≤ 0.05},

OD2 = max{d, typical NV CP (d) ≤ 0.05}.
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We observe that the optimal dose OD2 ≈ 46Gy derived from the typical

VCP/NVCP curves (r = r̄ = 1) is clearly greater than the optimal dose OD1

≈ 27Gy corresponding to the multinomial VCP/NVCP curves calculated with

r = 0.3 and r̄ = 0.5.

The above numerical results show an important difference between the out-

come of each couple of the VCP/NVCP curves. This is mainly due to het-

erogeneity of cell states and reparation process in cancer and normal cells,

quantified by the multinomial modeling. As a therapeutical consequence, this

approach may reduce the total radiation dose to be delivered and thus the

risk of side effects.

6.2 VCP calculation for a clinical schedule

We present here a VCP calculation taking into account the proliferation of

cells with a given real value of dose fraction u0. The VCP equation (5.5) was

implemented in the Matlab environment using for the parameter q the relation

(2.5) depending on α and β (1.7). The parameters were fixed to m = 3, r = 0.3,

µ = 1, nv = 10000 and we consider the couple (α, β) = (0.3, 0.03) used in35.

Figure 6 displays the variation of the VCP as function of the cumulated dose

d. The solid curve represents the VCP function for u0 = 1Gy and the dashed

one corresponds to u0 = 2Gy. This shows the sensitivity of the VCP prediction

to the u0 values. It is expected that the efficiency of the treatment increases

with the value of the dose fraction u0.
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7 Conclusion

In this paper, we proposed a multinomial model suited to treatment in radio-

therapy, which takes into account (i) the variety of cell responses according

to their biological states and (ii) the repair mechanisms that occur between

dose fractions. Moreover we included the proliferation of cells that may pro-

duce during the treatment period. The radio-sensitivity of cells due to their

positions in the cell cycle and the angiogenesis process (tumour blood supply)

have not been considered in our model.

The new model is composed of only three parameters: the number m of critical

targets which allows to quantify the heterogeneity of intracellular damages

during the treatment plan, the probability q for a target to be deactivated by

radiation and the probability r for an inactive target in an alive cell to be

reactivated. The parameter q is related to the radiation dose u0 through the

intrinsic sensitivity of a target to radiation. Moreover, the multinomial model

is a generalization of typical hit models. Based on the multinomial model,

new expressions of the TCP and NTCP have been proposed for nonuniform

radiations which permits to deduce the optimal total dose to be delivered. We

point out the important influence of the repair parameter r which could lead

to reduce both the total radiation dose to be delivered and the risk of side

effects.
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Figure 1. Radiation static scheme: u(k) is an impulse train of dose fractions daily
delivered, five days a week; d(k) is the cumulated dose of radiation.

Figure 2. Heterogeneous states of a cell (m = 3) after radiation exposure.
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Figure 3. Transition graph of radiation process, with m = 3 and before taking target
repair mechanisms into account.
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Figure 4. Transition graph of the Markov chain (Zk)k∈N where m = 3 and after
including the repair of inactive targets.
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Figure 5. Calculated values of VCP and NVCP as functions of the cumulative dose
d. Blue curves represent VCP functions: solid line for r = 0.3 and the dashed line
for r = 1 (typical VCP). Red curves represent the NVCP functions, where r̄ = 0.5 in
solid line and r̄ = 1 (typical NVCP) in dashed line. For r = r̄ = 1, the corresponding
optimal dose OD2, that maximizes the VCP with the constraint NV CP ≤ 0.05, is
larger then the optimal dose OD1 obtained with the other VCP/NVCP functions.
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Figure 6. Calculated values of VCP as function of the cumulative dose d taking
into account the cell proliferation for the fixed parameters m = 3, r = 0.3, µ = 1,
nv = 10000, (α, β) = (0.3, 0.03). The solid curve represents the VCP function for
u0 = 1Gy and the dashed one corresponds to u0 = 2Gy.
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