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AN EFFICACY ALGORITHM FOR THE TWO DIMENSIONAL STEADY

NAVIER-STOKES EQUATIONS BY MULTI-GRID SCHEME

TONI SAYAH

Abstract. In this paper, we propose a multi-grid algorithm for solving the Navier-Stokes equations and
we analyze its convergence. The proposed method consists of multi-level grids, where in the first one
(the very coarse mesh ℎ0 = 𝐻) we solve one small nonlinear system of discrete Navier-Stokes equations,

then, in every intermediate mesh (ℎ𝑖 = ℎ2
𝑖−1 = 𝐻2𝑖 ) we solve two linear problems and in the last

one (the very fine mesh ℎ𝑛 = 𝐻2𝑛 ) we solve one linear system. Moreover, the algorithm produces a
numerical solution with an optimal asymptotic error estimate with respect to ℎ = ℎ𝑛. Finally, we give
some numerical illustrations showing the efficiency of the new multi-grid algorithm.

1. Introduction.

The purpose of the present work is to solve the non-stationary incompressible Navier-Stokes problem
using a multi-grid scheme on different levels of grids and to show that this algorithm global error is similar
to the one of the direct resolution of the non-linear problem on the finest grid. This strategy is a general
method for solving a non-linear Partial Differential Equation (PDE) with solution 𝑢. This technique
proceeds as follows : In a first step (step of order 𝑖 = 0), we discretize the fully non-linear PDE on a very
coarse grid of mesh-size ℎ0 = 𝐻 and we compute an approximate solution 𝑢𝐻 . Then recursively, for a
step of order 𝑖 (𝑖 = 1, . . . , 𝑛 − 1), we solve two linear problems. The first one consists of linearizing the

Navier-Stokes around 𝑢ℎ𝑖−1 to obtain the solution 𝑢
1/2
ℎ𝑖

and the second one around 𝑢
1/2
ℎ𝑖

to obtain 𝑢ℎ𝑖 .
Finally, at the step of order 𝑛, we do only the first linearized problem of the previous step. We prove
that, under suitable assumptions and if the mesh sizes ℎ𝑖 (𝑖 = 0, . . . , 𝑛) are well-chosen, the order of the
global error of the multi-grid algorithm ∥ 𝑢−𝑢ℎ𝑛 ∥ is similar to that of the non-linear problem discretized
directly on the finest grid ℎ = ℎ𝑛 = 𝐻2𝑛 .

Multi-grid discretizations (in particular two-grid ones) have been widely applied to linear and non-
linear elliptic boundary value problems: J. Xu has pioneered their development in [22], [23], [24]. These
methods have been extended to the steady Navier-Stokes equations, cf. for instance the work of W.
Layton [13], W. Layton & W. Lenferink [14] and V. Girault & J.-L. Lions [7]. Also, these methods have
been applied to the time-dependent Navier-Stokes problem, cf. V. Girault & J.-L. Lions [8] for an analysis
of a semi-discrete algorithm, H. Abboud & T. Sayah [2] and H. Abboud, V. Girault & T. Sayah [3] for an
analysis of a fully-discrete in time and space algorithm. In this work, we generalize the result obtained
by J.L. Lions and V. Girault in [7].

Let Ω be a convex bounded domain of IR2 with a polygonal boundary ∂Ω. Consider the following
Navier-Stokes problem for an incompressible fluid

−𝜈Δ𝑢(𝑥) + 𝑢(𝑥) ⋅ ∇𝑢(𝑥) +∇𝑝(𝑥) = 𝑓(𝑥) in Ω, (1.1)

with the incompressibility condition

div 𝑢(𝑥) = 0 in Ω (1.2)

and the homogeneous Dirichlet boundary condition

𝑢(𝑥) = 0 on ∂Ω, (1.3)
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2 T. SAYAH.

where 𝑢 and 𝑝 represent respectively the velocity and the pressure of the fluid. All the quantities are
taken at the point 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2. We suppose that the fluid density is constant (𝜌 = 1); 𝑓 denotes
the external forces applied to the fluid and 𝜈 denotes the viscosity. The notations 𝑢 ⋅ ∇𝑢,Δ𝑢 and div 𝑢
mean :

𝑢 ⋅ ∇𝑢 =

2∑
𝑖=1

𝑢𝑖
∂𝑢

∂𝑥𝑖
, Δ𝑢 =

2∑
𝑖=1

∂2𝑢

∂2𝑥𝑖
and div 𝑢 =

2∑
𝑖=1

∂𝑢𝑖
∂𝑥𝑖

.

The term 𝑢 ⋅ ∇𝑢 is the convection term and 𝜈Δ𝑢 is the diffusion one.

Setting 𝐿2
0(Ω) = {𝑞 ∈ 𝐿2(Ω);

∫
Ω

𝑞 𝑑𝑥 = 0} and assuming that 𝑓 belongs to 𝐻−1(Ω)2, it is well known

that (1.1)–(1.3) has the following variational formulation: find 𝑢 ∈ 𝐻1
0 (Ω)

2, such that

∀𝑣 ∈ 𝐻1
0 (Ω)

2, 𝜈(∇𝑢,∇𝑣) + (𝑢 ⋅ ∇𝑢, 𝑣)− (𝑝,div 𝑣) = ⟨𝑓, 𝑣⟩, (1.4)

∀𝑞 ∈ 𝐿2
0(Ω), (𝑞, div 𝑢) = 0. (1.5)

This problem has one and only one solution (𝑢𝑝) and we have the following regularity result:

Theorem 1.1. If Ω is convex and 𝑓 ∈ 𝐿2(Ω)2, then

𝑢 ∈ 𝐻2(Ω)2 and 𝑝 ∈ 𝐻1(Ω). (1.6)

For discretizing (1.4)–(1.5), let 𝜂 > 0 be a discretization parameter in space and for each 𝜂, let 𝒯𝜂 be a

corresponding regular (or non-degenerate) family of triangulations of Ω, consisting of triangles such that
any two triangles are either disjoint or share a vertex or an entire side. For an arbitrary triangle 𝜅, we
denote by 𝜂𝜅 the diameter of 𝜅 and by 𝜌𝜅 the diameter of the circle inscribed in 𝜅. Then 𝜂 denotes the
maximum of 𝜂𝜅 and we assume that 𝒯𝜂 is regular in the sense of Ciarlet [6] : there exists a constant 𝜎
independent of 𝜂 such that

sup
𝜅∈𝒯𝜂

𝜂𝜅
𝜌𝜅

= 𝜎𝜅 ≤ 𝜎. (1.7)

Let 𝑋𝜂 and 𝑀𝜂 be a ”stable” pair of finite-element spaces for discretizing the velocity 𝑢 and the pressure
𝑝, stable in the sense that it satisfies a uniform discrete inf-sup condition: there exists a constant 𝛽★ ≥ 0,
independent of 𝜂, such that

∀𝑞𝜂 ∈𝑀𝜂, sup
𝑣𝜂∈𝑋𝜂

1

∣𝑣𝜂∣𝐻1(Ω)

∫
Ω

𝑞𝜂 div 𝑣𝜂𝑑𝑥 ≥ 𝛽★ ∥ 𝑞𝜂 ∥𝐿2(Ω) . (1.8)

Let IP𝜅 denote the space of polynomials with total degree less than or equal to 𝜅. As the multi-grid
scheme is better adapted to finite-elements of low degree, we may choose for instance the “mini-element”
(see D. Arnold, F. Brezzi and M. Fortin in [5]), where in each triangle 𝜅, the pressure 𝑝 is a polynomial
of IP1 and each component of the velocity is the sum of a polynomial of IP1 and a “bubble” function 𝑏𝜅.

Denoting the vertices of 𝜅 by 𝑎𝑖, 1 ≤ 𝑖 ≤ 3, and its corresponding barycentric coordinates by 𝜆𝑖, the
basic bubble function 𝑏𝜅 is the polynomial of degree three given by

𝑏𝜅(𝑥) = 𝜆1(𝑥)𝜆2(𝑥)𝜆3(𝑥).

We observe that 𝑏𝜅(𝑥) = 0 on ∂𝜅 and that 𝑏𝜅(𝑥) > 0 on 𝜅. The graph of 𝑏𝜅 looks like a bulb attached to
the boundary of 𝜅, whence its name.
Therefore, the finite-element spaces are :

𝑋𝜂 =
{
𝑣𝜂 ∈ 𝐶0(Ω)2; ∀𝜅 ∈ 𝒯𝜂, 𝑣𝜂∣𝜅 ∈ 𝒫(𝜅), 𝑣𝜂∣∂Ω

= 0
}
, (1.9)

𝑀𝜂 =

{
𝑞𝜂 ∈ 𝐶0(Ω); ∀𝜅 ∈ 𝒯𝜂, 𝑞𝜂∣𝜅 ∈ ℙ1,

∫
Ω

𝑞𝜂𝑑𝑥 = 0

}
, (1.10)

where

𝒫(𝜅) = [ℙ1 ⊕ 𝑉 𝑒𝑐𝑡(𝑏𝜅)]
2. (1.11)
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There exists an approximation operator 𝑃𝜂 ∈ ℒ(𝐻1
0 (Ω)

2;𝑋𝜂) such that (see [9]) :

∀𝑣 ∈ 𝐻1
0 (Ω)

2, ∀𝑞𝜂 ∈𝑀𝜂,

∫
Ω

𝑞𝜂 div(𝑃𝜂(𝑣)− 𝑣)𝑑𝑥 = 0, (1.12)

for 𝑘 = 0 or 1,

∀𝑣 ∈ [𝐻1+𝑘(Ω) ∩𝐻1
0 (Ω)]

2, ∥ 𝑃𝜂(𝑣)− 𝑣 ∥𝐿2(Ω) ≤ 𝐶𝜂1+𝑘∣𝑣∣𝐻1+𝑘(Ω) (1.13)

and for all 𝑟 ≥ 2, 𝑘 = 0 or 1,

∀𝑣 ∈ [𝑊 1+𝑘,𝑟(Ω) ∩𝐻1
0 (Ω)]

2, ∣𝑃𝜂(𝑣)− 𝑣∣𝑊 1,𝑟(Ω) ≤ 𝐶𝑟𝜂
𝑘∣𝑣∣𝑊 1+𝑘,𝑟(Ω). (1.14)

In addition, as 𝑀𝜂 contains all polynomials of degree one, there exists an operator 𝑟𝜂 ∈ ℒ(𝐿2
0(Ω);𝑀𝜂),

such that for any real number 𝑠 ∈ [0, 2], we have

∀𝑞 ∈ 𝐻𝑠(Ω) ∩ 𝐿2
0(Ω), ∥ 𝑟𝜂(𝑞)− 𝑞 ∥𝐿2(Ω)≤ 𝐶𝜂𝑠∣𝑞∣𝐻𝑠(Ω). (1.15)

With these spaces, we propose the following multi-grid scheme for discretizing (1.4)–(1.5). Let 𝐻 be

the mesh step of the very coarse mesh and let ℎ𝑖 be the sequence defined by ℎ𝑖 = ℎ2𝑖−1 = 𝐻2𝑖 . We use

multi-regular nested triangulations 𝒯ℎ𝑖 (𝑖 = 0, . . . , 𝑛) of Ω such that 𝒯ℎ𝑖 is a refinement of 𝒯ℎ𝑖−1 . In that
case, the interpolation/projection procedure is easy.
On each of these, we define the same stable pair of finite-element spaces (𝑋ℎ𝑖 ,𝑀ℎ𝑖) such that𝑋ℎ𝑖−1 ⊂ 𝑋ℎ𝑖

and 𝑀ℎ𝑖−1 ⊂𝑀ℎ𝑖 . The multi-grid algorithm reads :

∙ Step 𝐻 = ℎ0 (non-linear problem on coarse grid): find (𝑢𝐻 , 𝑝𝐻) with values in 𝑋𝐻 × 𝑀𝐻 , solu-
tion of

∀𝑣𝐻 ∈ 𝑋𝐻 , 𝜈(∇𝑢𝐻 ,∇𝑣𝐻) + (𝑢𝐻 ⋅ ∇𝑢𝐻 , 𝑣𝐻) − (𝑝𝐻 ,div 𝑣𝐻) = ⟨𝑓, 𝑣𝐻⟩, (1.16)

∀𝑞𝐻 ∈𝑀𝐻 , (𝑞𝐻 ,div 𝑢𝐻) = 0. (1.17)

∙ Step ℎ𝑖 (𝑖 = 1, . . . , 𝑛 − 1) (linearized problem on fine grid ℎ𝑖): Having (𝑢ℎ𝑖−1 , 𝑝ℎ𝑖−1), find (𝑢ℎ𝑖 , 𝑝ℎ𝑖)
with values in 𝑋ℎ𝑖 ×𝑀ℎ𝑖 solution of

∀𝑣ℎ𝑖 ∈ 𝑋ℎ𝑖 , 𝜈(∇𝑢1/2ℎ𝑖
,∇𝑣ℎ𝑖) + (𝑢ℎ𝑖−1 ⋅ ∇𝑢1/2ℎ𝑖

, 𝑣ℎ𝑖) − (𝑝
1/2
ℎ𝑖
,div 𝑣ℎ𝑖) = ⟨𝑓, 𝑣ℎ𝑖 ⟩, (1.18)

∀𝑞ℎ𝑖 ∈𝑀ℎ𝑖 , (𝑞ℎ𝑖 ,div 𝑢
1/2
ℎ𝑖

) = 0, (1.19)

then

∀𝑣ℎ𝑖 ∈ 𝑋ℎ𝑖 , 𝜈(∇𝑢ℎ𝑖 ,∇𝑣ℎ𝑖) + (𝑢
1/2
ℎ𝑖

⋅ ∇𝑢ℎ𝑖 , 𝑣ℎ𝑖) − (𝑝ℎ𝑖 ,div 𝑣ℎ𝑖) = ⟨𝑓, 𝑣ℎ𝑖 ⟩ (1.20)

∀𝑞ℎ𝑖 ∈𝑀ℎ𝑖 , (𝑞ℎ𝑖 ,div 𝑢ℎ𝑖) = 0. (1.21)

∙ Step ℎ𝑛 (linearized problem on fine grid ℎ𝑛): Having (𝑢ℎ𝑛−1
, 𝑝ℎ𝑛−1

), find (𝑢ℎ𝑛
, 𝑝ℎ𝑛

) with values in
𝑋ℎ𝑛 ×𝑀ℎ𝑛 solution of

∀𝑣ℎ𝑛 ∈ 𝑋ℎ𝑛 , 𝜈(∇𝑢ℎ𝑛 ,∇𝑣ℎ𝑛) + (𝑢ℎ𝑛−1 ⋅ ∇𝑢ℎ𝑛 , 𝑣ℎ𝑛) − (𝑝ℎ𝑛 ,div 𝑣ℎ𝑛) = ⟨𝑓, 𝑣ℎ𝑛 ⟩, (1.22)

∀𝑞ℎ𝑛 ∈𝑀ℎ𝑛 , (𝑞ℎ𝑛 ,div 𝑢ℎ𝑛) = 0. (1.23)

The purpose of this two-grid algorithm is to reduce the time of computation for both velocity and pressure
without loosing precision. We will obtain the a priori error estimate

∣𝑢ℎ𝑛
− 𝑢∣1,Ω ≤ 𝐶ℎ

where ℎ = ℎ𝑛 and 𝐶 a constant independent of ℎ. This last error is similar to that of the non-linear
Navier-Stokes problem solved directly on the mesh of step ℎ.
In what follows, all constants are positive and independent of ℎ𝑖 (𝑖 = 0, . . . , 𝑛), and we refer them by a
generic one denoted 𝐶.
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Remark 1.2. In theory, the discrete nonlinear term of the first step (1.16)-(1.17) is written in an
antisymmetric form (cf. for instance [19]):

(𝑢𝐻 ⋅ ∇𝑢𝐻 , 𝑣𝐻) +
1

2
(div 𝑢𝐻 , 𝑢𝐻 ⋅ 𝑣𝐻),

so that it vanishes when 𝑣𝐻 = 𝑢𝐻 . In fact, this is not necessary; for the reader’s convenience, we refer to
[7] for the existence of the solutions for ℎ small enough and their strong convergence in 𝐻1

0 (Ω)
2 ×𝐿2

0(Ω),
without restrictions on the data 𝑓 and 𝜈.

The remainder of this paper is organized as follows: in section 2, we recall some conventions and notations
that will be used throughout the article. In section 3, we establish an error estimation for the algorithm
and, finally, in section 4, we confirm these results numerically.

2. Preliminaries.

Let (𝑘1, 𝑘2) denote a pair of non-negative integers, set ∣𝑘∣ = 𝑘1 + 𝑘2 and define the partial derivative

operator ∂𝑘 by ∂𝑘𝑣 =
∂∣𝑘∣𝑣

∂𝑥𝑘1
1 ∂𝑥

𝑘2
2

.For any non-negative integer 𝑚 and real number 𝑟 ≥ 1, we introduce

the space

𝑊𝑚,𝑟(Ω) = {𝑣 ∈ 𝐿𝑟(Ω); ∂𝑘𝑣 ∈ 𝐿𝑟(Ω),∀∣𝑘∣ ≤ 𝑚}
equipped with the seminorm

∣𝑣∣𝑊𝑚,𝑟(Ω) =
[ ∑
∣𝑘∣=𝑚

∫
Ω

∣∂𝑘𝑣∣𝑟𝑑𝑥
]1/𝑟

,

and the norm

∥ 𝑣 ∥𝑊𝑚,𝑟(Ω)=
[ ∑
0≤∣𝑘∣≤𝑚

∣𝑣∣𝑟𝑊𝑘,𝑟(Ω)

]1/𝑟
,

with the usual extension when 𝑟 = ∞. In the case where 𝑟 = 2, this space is the Hilbert space 𝐻𝑚(Ω).
In particular, the scalar product of 𝐿2(Ω) is denoted by ( . , . ).
For functions that vanish on the boundary, we recall Poincaré’s inequality: there exists a constant 𝒫 such
that

∀𝑣 ∈ 𝐻1
0 (Ω), ∥ 𝑣 ∥𝐿2(Ω)≤ 𝒫∣𝑣∣𝐻1(Ω). (2.1)

More generally, recall the inequalities of Sobolev imbedding in two dimensions: for each 𝑟 ∈ [2,∞[, there
exits a constant 𝑆𝑟 such that

∀𝑣 ∈ 𝐻1
0 (Ω) , ∥ 𝑣 ∥𝐿𝑟(Ω)≤ 𝑆𝑟∣𝑣∣𝐻1(Ω), (2.2)

where

∣𝑣∣𝐻1(Ω) =∥ ∇𝑣 ∥𝐿2(Ω) . (2.3)

When 𝑟 = 2, (2.2) reduces to Poincaré’s inequality and 𝑆2 is Poincaré’s constant. The case 𝑟 = ∞ is
excluded and is replaced by: for any 𝑟 > 2, there exists a constant 𝑀𝑟 such that

∀𝑣 ∈𝑊 1,𝑟
0 (Ω) , ∥ 𝑣 ∥𝐿∞(Ω)≤𝑀𝑟∣𝑣∣𝑊 1,𝑟(Ω). (2.4)

Owing to (2.1), we use the seminorm ∣.∣𝐻1(Ω) as a norm on 𝐻1
0 (Ω) and we use it to define the norm of

the dual space 𝐻−1(Ω) of 𝐻1
0 (Ω):

∥ 𝑓 ∥𝐻−1(Ω)= sup
𝑣∈𝐻1

0 (Ω)

⟨𝑓, 𝑣⟩
∣𝑣∣𝐻1(Ω)

,

where ⟨⋅, ⋅⟩ denotes the duality pairing between 𝐻−1(Ω) and 𝐻1
0 (Ω).
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3. Error estimations for the solution of the algorithm

In this section, we establish the error estimates of the algorithm.
We begin with the first step with the size mesh ℎ0 = 𝐻. The error analysis of (1.16)-(1.17) cannot be
done without additional assumptions. This can be easily seen by taking the difference between (1.4) and
(1.16). Either we impose on the size of the data the same restriction that guarantees uniqueness (cf. [15],
[19], or [9]), or we allow for multiple solutions and we assume that the particular solution we want to
discretize is nonsingular, as in [9]. We shall adopt here the second option, because it is less restrictive.
Thus, from now on, we assume that u is a nonsingular solution of (1.16)-(1.17). Then, according to [9],
there exists 𝜂0 > 0 such that for all 𝐻 ≤ 𝜂0, (1.16) has a nonsingular solution 𝑢𝐻 that is unique in a
neighborhood 𝒪 of 𝑢, and the radius of 𝒪 can be bounded by a constant independent of h.
If the solution 𝑢 is sufficiently smooth, we refer to [7] for the following result: there exists a constant 𝜂1
with 0 < 𝜂1 ≤ 𝜂0, such that for all 𝐻 ≤ 𝜂1 we have

∣𝑢𝐻 ∣1,Ω ≤ 𝐶1∣∣𝑓 ∣∣0,Ω,
∣𝑢− 𝑢𝐻 ∣1,Ω ≤ 𝐶2𝐻,

∣∣𝑢− 𝑢𝐻 ∣∣0,Ω ≤ 𝐶3𝐻
2,

(3.1)

where 𝐶1, 𝐶2 and 𝐶3 are constants independent of 𝐻.

At every step ℎ𝑖 (𝑖 = 1, . . . , 𝑛 − 1), we solve two linear problems (1.18)-(1.19) and (1.20)-(1.21). We
suppose that 𝐻 ≤ 𝜂1 and we proceed recursively beginning with 𝑖 = 1.

Theorem 3.1. If there exists a positif constant 𝐶4 such that 𝑢ℎ𝑖−1 satisfies

∣𝑢− 𝑢ℎ𝑖−1 ∣1,Ω ≤ 𝐶4ℎ𝑖−1, (3.2)

and if ℎ𝑖−1 is sufficiently small, then, the problem (1.18)-(1.19) has one and only one solution such that

∣𝑢1/2ℎ𝑖
∣1,Ω ≤ 𝐶∣∣𝑓 ∣∣0,Ω. (3.3)

Proof. We denote by 𝑎(𝑢
1/2
ℎ𝑖
, 𝑣ℎ𝑖) = 𝜈(∇𝑢1/2ℎ𝑖

,∇𝑣ℎ𝑖) + (𝑢ℎ𝑖−1 ⋅∇𝑢1/2ℎ𝑖
, 𝑣ℎ𝑖) the bilinear form of the problem

(1.18)-(1.19). Using the incompressibility condition (1.2), we have :

𝑎(𝑣ℎ𝑖 , 𝑣ℎ𝑖) = 𝜈(∇𝑣ℎ𝑖 ,∇𝑣ℎ𝑖) + (𝑢ℎ𝑖−1 ⋅ ∇𝑣ℎ𝑖 , 𝑣ℎ𝑖)

= 𝜈∣∇𝑣ℎ𝑖
∣21,Ω + ((𝑢ℎ𝑖−1

− 𝑢) ⋅ ∇𝑣ℎ𝑖
, 𝑣ℎ𝑖

)

≥ ∣𝑣ℎ𝑖 ∣21,Ω(𝜈 − 𝑆2
4 ∣𝑢ℎ𝑖−1 − 𝑢∣1,Ω)

≥ ∣𝑣ℎ𝑖 ∣21,Ω(𝜈 − 𝐶4𝑆
2
4ℎ𝑖−1).

For ℎ𝑖−1 <
𝜈

𝐶4𝑆2
4

, the bilinear form 𝑎(., .) is coercive which guarantees the existence and the uniqueness

of the solution of (1.18)-(1.19). The bound (3.3) is obtained by taking 𝑣ℎ𝑖 = 𝑢
1/2
ℎ𝑖

in equation (1.18). □

Theorem 3.2. Under the assumptions of theorem 3.1, if there exists a positif constant 𝐶5 such that

∣∣𝑢− 𝑢ℎ𝑖−1 ∣∣0,Ω ≤ 𝐶5ℎ
2
𝑖−1, (3.4)

and if the solution (𝑢, 𝑝) of (1.4)-(1.5) satisfies 𝑢 ∈ 𝐻2(Ω)2, ∇𝑢 ∈ 𝐿∞(Ω)2 and 𝑝 ∈ 𝐻1(Ω), then, the
numerical solution of (1.18)-(1.19) verifies

∣𝑢− 𝑢
1/2
ℎ𝑖

∣1,Ω ≤ 𝐶ℎ𝑖. (3.5)

Proof. We choose in equation (1.4) 𝑣 = 𝑣ℎ𝑖 , take the difference with equation (1.18), insert ±𝑃ℎ𝑖𝑢 and

then take 𝑣ℎ𝑖 = 𝑃ℎ𝑖𝑢− 𝑢
1/2
ℎ𝑖

to obtain:

𝜈∣𝑃ℎ𝑖𝑢− 𝑢
1/2
ℎ𝑖

∣1,Ω = 𝜈(𝑃ℎ𝑖𝑢− 𝑢, 𝑣ℎ𝑖) + (𝑝− 𝑝
1/2
ℎ𝑖
, 𝑑𝑖𝑣 𝑣ℎ𝑖)− (𝑢∇𝑢− 𝑢ℎ𝑖−1∇𝑢1/2ℎ𝑖

, 𝑣ℎ𝑖). (3.6)
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The property (1.13) leads to the following bound for the first term of the right hand side

∣𝜈(𝑃ℎ𝑖𝑢− 𝑢, 𝑣ℎ𝑖)∣ ≤ 𝐶ℎ𝑖. (3.7)

Using (1.12), the second term of the right hand side writes:

(𝑝− 𝑝
1/2
ℎ𝑖
, 𝑑𝑖𝑣 (𝑃ℎ𝑖𝑢− 𝑢

1/2
ℎ𝑖

)) = (𝑝− 𝑟ℎ𝑖𝑝, 𝑑𝑖𝑣 (𝑃ℎ𝑖𝑢− 𝑢
1/2
ℎ𝑖

)) ≤ 𝐶ℎ∣𝑃ℎ𝑖𝑢− 𝑢
1/2
ℎ𝑖

∣1,Ω.
From the the incompressibility condition (1.2), the third term of the right hand side can be written as

(𝑢∇𝑢− 𝑢ℎ𝑖−1∇𝑢1/2ℎ𝑖
, 𝑣ℎ𝑖) = (𝑢∇(𝑢− 𝑢

1/2
ℎ𝑖

), 𝑣ℎ𝑖) + ((𝑢− 𝑢ℎ𝑖−1)∇(𝑢
1/2
ℎ𝑖

− 𝑢), 𝑣ℎ𝑖)

+ ((𝑢− 𝑢ℎ𝑖−1)∇𝑢, 𝑣ℎ𝑖)

= (𝑢∇(𝑢− 𝑃ℎ𝑖𝑢), 𝑣ℎ𝑖) + ((𝑢− 𝑢ℎ𝑖−1)∇(𝑢
1/2
ℎ𝑖

− 𝑃ℎ𝑖𝑢), 𝑣ℎ𝑖)

+ ((𝑢− 𝑢ℎ𝑖−1)∇(𝑃ℎ𝑖𝑢− 𝑢), 𝑣ℎ𝑖) + ((𝑢− 𝑢ℎ𝑖−1)∇𝑢, 𝑣ℎ𝑖).

(3.8)

Using (2.2) and theorem 3.2, we get the bound

(𝑢∇𝑢− 𝑢ℎ𝑖−1∇𝑢1/2ℎ𝑖
, 𝑣ℎ𝑖) ≤ 𝐶6

(
∣𝑣ℎ𝑖 ∣1,Ω∣𝑢∣1,Ω∣𝑢− 𝑃ℎ𝑖𝑢∣1,Ω + ∣𝑢− 𝑢ℎ𝑖−1 ∣1,Ω∣𝑣ℎ𝑖 ∣21,Ω

+∣𝑢− 𝑢ℎ𝑖−1 ∣1,Ω∣𝑃ℎ𝑖𝑢− 𝑢∣1,Ω∣𝑣ℎ𝑖 ∣1,Ω
+∣∣𝑢− 𝑢ℎ𝑖−1 ∣∣0,Ω∣∣∇𝑢∣∣𝐿∞(Ω)2 ∣∣𝑣ℎ𝑖 ∣∣0,Ω

)
≤ 𝐶7(ℎ

2
𝑖−1 + ℎ𝑖)∣𝑣ℎ𝑖 ∣1,Ω + 𝐶6ℎ𝑖−1∣𝑣ℎ𝑖 ∣21,Ω.

(3.9)

Then, (3.6) gives

𝜈∣𝑃ℎ𝑖𝑢− 𝑢
1/2
ℎ𝑖

∣1,Ω ≤ 𝐶8(ℎ
2
𝑖−1 + ℎ𝑖) + 𝐶6ℎ𝑖−1∣𝑣ℎ𝑖 ∣1,Ω.

For ℎ𝑖−1 <
𝜈

𝐶6
, we get

∣𝑃ℎ𝑖𝑢− 𝑢
1/2
ℎ𝑖

∣1,Ω ≤ 𝐶9(ℎ
2
𝑖−1 + ℎ𝑖),

which leads, with the triangular inequality ∣𝑢−𝑢1/2ℎ𝑖
∣1,Ω ≤ ∣𝑢−𝑃ℎ𝑖𝑢∣1,Ω+∣𝑃ℎ𝑖𝑢−𝑢1/2ℎ𝑖

∣1,Ω, to the result. □

Theorem 3.3. Under the assumptions of theorem 3.2 and if ℎ𝑖 is sufficiently small, the problem (1.20)-
(1.21) has a unique solution which satisfies

∣𝑢ℎ𝑖 ∣1,Ω ≤ 𝐶∣∣𝑓 ∣∣0,Ω. (3.10)

Proof. The proof is analogue to that of theorem 3.1. □

Theorem 3.4. Under the assumptions of theorem 3.3, the solution of (1.20)-(1.21) satisfies

∣𝑢− 𝑢ℎ𝑖 ∣1,Ω ≤ 𝐶ℎ𝑖 (3.11)

and

∣∣𝑢− 𝑢ℎ𝑖 ∣∣0,Ω ≤ 𝐶ℎ2𝑖 . (3.12)

Proof. To establish the bound (3.11), we choose in equation (1.4) 𝑣 = 𝑣ℎ𝑖 , take the difference with
equation (1.20), insert ±𝑃ℎ𝑖𝑢 and take 𝑣ℎ𝑖 = 𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖 to obtain:

𝜈∣𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖 ∣21,Ω = 𝜈(𝑃ℎ𝑖𝑢− 𝑢, 𝑣ℎ𝑖) + (𝑝− 𝑝ℎ𝑖 , 𝑑𝑖𝑣 𝑣ℎ𝑖)− (𝑢∇𝑢− 𝑢
1/2
ℎ𝑖

∇𝑢ℎ𝑖 , 𝑣ℎ𝑖). (3.13)

The property (1.13) leads to the following bound for the first term of the right hand side

∣𝜈(𝑃ℎ𝑖𝑢− 𝑢, 𝑣ℎ𝑖)∣ ≤ 𝐶ℎ𝑖. (3.14)

Using (1.12), the second term of the right hand side writes:

(𝑝− 𝑝ℎ𝑖 , 𝑑𝑖𝑣 (𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖)) = (𝑝− 𝑟ℎ𝑖𝑝, 𝑑𝑖𝑣 (𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖)) ≤ 𝐶ℎ∣𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖 ∣1,Ω.
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From the incompressibility condition (1.2), the third term of the right hand side can be written as

(𝑢∇𝑢− 𝑢
1/2
ℎ𝑖

∇𝑢ℎ𝑖 , 𝑣ℎ𝑖) = (𝑢∇(𝑢− 𝑢ℎ𝑖), 𝑣ℎ𝑖) + ((𝑢− 𝑢
1/2
ℎ𝑖

)∇(𝑢ℎ𝑖 − 𝑢), 𝑣ℎ𝑖)

+ ((𝑢− 𝑢
1/2
ℎ𝑖

)∇𝑢, 𝑣ℎ𝑖)

= (𝑢∇(𝑢− 𝑃ℎ𝑖𝑢), 𝑣ℎ𝑖) + ((𝑢− 𝑢
1/2
ℎ𝑖

)∇(𝑢ℎ𝑖 − 𝑃ℎ𝑖𝑢), 𝑣ℎ𝑖)

+ ((𝑢− 𝑢
1/2
ℎ𝑖

)∇(𝑃ℎ𝑖𝑢− 𝑢), 𝑣ℎ𝑖) + ((𝑢− 𝑢
1/2
ℎ𝑖

)∇𝑢, 𝑣ℎ𝑖).

(3.15)

Using (2.2) and theorem 3.2, we get the bound

(𝑢∇𝑢− 𝑢
1/2
ℎ𝑖

∇𝑢ℎ𝑖 , 𝑣ℎ𝑖) ≤ 𝐶
(
∣𝑣ℎ𝑖 ∣1,Ω∣𝑢∣1,Ω∣𝑢− 𝑃ℎ𝑖𝑢∣1,Ω + ∣𝑣ℎ𝑖 ∣21,Ω∣𝑢− 𝑢

1/2
ℎ𝑖

∣1,Ω
)

+∣𝑢− 𝑢
1/2
ℎ𝑖

∣1,Ω∣𝑃ℎ𝑖
𝑢− 𝑢∣1,Ω∣𝑣ℎ𝑖

∣1,Ω
+∣𝑢− 𝑢

1/2
ℎ𝑖

∣1,Ω∣𝑢∣1,Ω∣𝑣ℎ𝑖 ∣1,Ω
)

≤ 𝐶1(𝑢, 𝑝,Ω)ℎ𝑖 ∣𝑣ℎ𝑖 ∣1,Ω + 𝐶2ℎ𝑖∣𝑣ℎ𝑖 ∣21,Ω.

(3.16)

Then, (3.14) gives

𝜈∣𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖 ∣1,Ω ≤ 𝐶(𝑢, 𝑝,Ω)ℎ𝑖 + 𝐶2ℎ𝑖∣𝑣ℎ𝑖 ∣1,Ω.
For ℎ𝑖 <

𝜈

𝐶2
, we get

∣𝑃ℎ𝑖
𝑢− 𝑢ℎ𝑖

∣1,Ω ≤ 𝐶3ℎ𝑖,

which leads, with the triangular inequality ∣𝑢− 𝑢ℎ𝑖 ∣1,Ω ≤ ∣𝑢− 𝑃ℎ𝑖𝑢∣1,Ω + ∣𝑃ℎ𝑖𝑢− 𝑢ℎ𝑖 ∣1,Ω, to (3.11).

In order to show the bound (3.12), we introduce the following problem of discrete Navier-Stokes equations

Find 𝑤ℎ𝑖
∈ 𝑋ℎ𝑖

, 𝜉ℎ𝑖
∈𝑀ℎ𝑖

such that

∀𝑣ℎ𝑖 ∈ 𝑋ℎ𝑖 , 𝜈(∇𝑤ℎ𝑖 ,∇𝑣ℎ𝑖) − (𝜉ℎ𝑖 ,div 𝑣ℎ𝑖) = ⟨𝑓, 𝑣ℎ𝑖 ⟩ − (𝑤ℎ𝑖 ⋅ ∇𝑤ℎ𝑖 , 𝑣ℎ𝑖),

∀𝑞ℎ𝑖 ∈𝑀ℎ𝑖 , (𝑞ℎ𝑖 ,div𝑤ℎ𝑖) = 0.

(3.17)

The same argument used for the first step of the algorithm (step 𝐻) gives the following: there exists
𝜂𝑖 > 0 such that, for all ℎ𝑖 ≤ 𝜂𝑖 we have

∣𝑤ℎ𝑖
∣1,Ω ≤ 𝐶1∣∣𝑓 ∣∣0,Ω,

∣𝑢− 𝑤ℎ𝑖 ∣1,Ω ≤ 𝐶2ℎ𝑖,

∣∣𝑢− 𝑤ℎ𝑖 ∣∣0,Ω ≤ 𝐶3ℎ
2
𝑖 .

(3.18)

We take the difference between (1.20) and the first equation of (3.17), choose 𝑣ℎ𝑖 = 𝑢ℎ𝑖 − 𝑤ℎ𝑖 , use the

relations (𝜉ℎ𝑖 − 𝑝ℎ𝑖 ,div 𝑣ℎ𝑖) = 0 and (𝑣∇𝑤,𝑤) + 1

2
(div 𝑣 𝑤,𝑤) = 0, 𝑤 ∈ 𝐻1

0 (Ω)
2, and the property (2.4)

to obtain:

𝜈(∇(𝑢ℎ𝑖 − 𝑤ℎ𝑖),∇𝑣ℎ𝑖) = (𝑤ℎ𝑖 ⋅ ∇𝑤ℎ𝑖 − 𝑢
1/2
ℎ𝑖

⋅ ∇𝑢ℎ𝑖 , 𝑣ℎ𝑖)

= −(𝑢
1/2
ℎ𝑖

⋅ ∇(𝑢ℎ𝑖 − 𝑤ℎ𝑖), 𝑣ℎ𝑖)− ((𝑢
1/2
ℎ𝑖

− 𝑤ℎ𝑖) ⋅ ∇(𝑤ℎ𝑖 − 𝑢), 𝑣ℎ𝑖)− ((𝑢
1/2
ℎ𝑖

− 𝑤ℎ𝑖) ⋅ ∇𝑢, 𝑣ℎ𝑖)

=
1

2
(div (𝑢

1/2
ℎ𝑖

− 𝑢)(𝑢ℎ𝑖 − 𝑤ℎ𝑖), 𝑣ℎ𝑖)− ((𝑢
1/2
ℎ𝑖

− 𝑤ℎ𝑖) ⋅ ∇(𝑤ℎ𝑖 − 𝑢), 𝑣ℎ𝑖)− ((𝑢
1/2
ℎ𝑖

− 𝑤ℎ𝑖) ⋅ ∇𝑢, 𝑣ℎ𝑖)

≤ 𝐶ℎ2𝑖 ∣𝑣ℎ𝑖 ∣1,Ω + ∣((𝑢1/2ℎ𝑖
− 𝑢) ⋅ ∇𝑢, 𝑣ℎ𝑖)∣+ ∣((𝑢− 𝑤ℎ𝑖) ⋅ ∇𝑢, 𝑣ℎ𝑖)∣

(3.19)
Using (2.2), we get the following

∣((𝑢− 𝑤ℎ𝑖) ⋅ ∇𝑢, 𝑣ℎ𝑖)∣ ≤ ∣∣𝑢− 𝑤ℎ𝑖 ∣∣0,Ω∣∣∇𝑢∣∣𝐿∞(Ω)2 ∣∣𝑣ℎ𝑖 ∣∣0,Ω
≤ 𝐶ℎ2𝑖 ∣𝑣ℎ𝑖 ∣1,Ω.

(3.20)
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To bound the term ∣((𝑢1/2ℎ𝑖
− 𝑢) ⋅ ∇𝑢, 𝑣ℎ𝑖)∣, we use the integration by part formula. Thus, we obtain, for

any any constant 𝐶𝑇 on the triangle 𝑇

((𝑢
1/2
ℎ𝑖

− 𝑢) ⋅ ∇𝑢, 𝑣ℎ𝑖) =
∑

𝑇∈𝒯ℎ𝑖

∫
𝑇

(𝑢
1/2
ℎ𝑖

− 𝑢) ⋅ ∇(𝑢− 𝐶𝑇 ) 𝑣ℎ𝑖

= −
∑

𝑇∈𝒯ℎ𝑖

{∫
𝑇

𝑑𝑖𝑣(𝑢
1/2
ℎ𝑖

− 𝑢) (𝑢− 𝐶𝑇 ) 𝑣ℎ𝑖 +

∫
𝑇

(𝑢
1/2
ℎ𝑖

− 𝑢) ⋅ ∇𝑣ℎ𝑖 (𝑢− 𝐶𝑇 )

−
∫
∂𝑇

(𝑢
1/2
ℎ𝑖

− 𝑢) ⋅ 𝑛 (𝑢− 𝐶𝑇 ) 𝑣ℎ𝑖

}
≤ 𝐶∣∣∇𝑢∣∣𝐿∞(Ω)2 ℎ

2
𝑖 .

(3.21)
Finally, we use the last two bounds in (3.19) and the triangular inequality ∣∣𝑢−𝑢ℎ𝑖 ∣∣0,Ω ≤ ∣∣𝑢−𝑤ℎ𝑖 ∣∣0,Ω+
∣∣𝑤ℎ𝑖 − 𝑢ℎ𝑖 ∣∣0,Ω to obtain (3.12). □
Corollary 3.5. Under the assumptions of theorem 3.4 and for 𝐻 sufficiently small, we have

∣𝑢− 𝑢ℎ𝑖 ∣1,Ω ≤ 𝐶ℎ𝑖, for all 𝑖 = 0, . . . , 𝑛.

Proof. If 𝐻 is sufficiently small, then ℎ𝑖 = 𝐻2𝑖 is also sufficiently small. The result is obtained using
theorems 3.1, 3.2, 3.3 and 3.4 recursively for 𝑖 = 1, . . . , 𝑛. □

Remark: The proposed algorithm (multi-grid method) allows us to solve the Navier-Stokes equations
much faster than one-grid method without loosing precision. The order of the obtained error is similar
to the one due to resolution of the Navier-Stokes problem directly on the finest mesh ℎ𝑛.

4. Numerical results

In this section, we numerically validate the algorithm discribe above. We perform several experiments
using the FreeFem++ software (see [11]). On the square domain ]0, 1[×]0, 1[, the numerical velocity and
the pressure are taken as (𝑢, 𝑝) = (curl 𝜓, 𝑝), where:

𝜓(𝑥, 𝑦) = 𝑦2(𝑦 − .5)2(𝑦 − .75)2(𝑦 − 1)2 sin(4𝜋𝑥)2 and 𝑝(𝑥, 𝑦) = cos(2𝜋𝑥) sin(2𝜋𝑦).

For the numerical results, we take the three-grid method where 𝑛 = 2.
In figures 1 and 2, we show color comparison between the exact and the numerical solution for both the
velocity and the pressure. We have taken ℎ0 = 𝐻 = 1/3, ℎ1 = 1/9 and ℎ1 = 1/81.
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Vec Value
0
0.00048199
0.000963979
0.00144597
0.00192796
0.00240995
0.00289194
0.00337393
0.00385592
0.00433791
0.0048199
0.00530189
0.00578388
0.00626586
0.00674785
0.00722984
0.00771183
0.00819382
0.00867581
0.0091578

Vec Value
0
0.000481348
0.000962696
0.00144404
0.00192539
0.00240674
0.00288809
0.00336944
0.00385078
0.00433213
0.00481348
0.00529483
0.00577618
0.00625752
0.00673887
0.00722022
0.00770157
0.00818292
0.00866427
0.00914561

Figure 1. Velocity solution : exact (left) and numerical (right).

IsoValue
-0.949267
-0.849304
-0.749342
-0.64938
-0.549417
-0.449455
-0.349492
-0.24953
-0.149568
-0.0496052
0.0503572
0.15032
0.250282
0.350244
0.450207
0.550169
0.650132
0.750094
0.850056
0.950019

IsoValue
-0.950281
-0.85019
-0.750099
-0.650008
-0.549916
-0.449825
-0.349734
-0.249643
-0.149552
-0.0494604
0.0506308
0.150722
0.250813
0.350904
0.450996
0.551087
0.651178
0.751269
0.85136
0.951452

Figure 2. Pressure solution : exact (left) and numerical (right).
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The values of the error estimations, in the logarithmic scale, are displayed in the following table :

meshes 𝐻1 velocity error 𝐿2 pressure error

𝐻 = 1/3, ℎ1 = 1/4, ℎ2 = 1/16 -0.330536 -2.17046
𝐻 = 1/3, ℎ1 = 1/5, ℎ2 = 1/25 -0.718651 -2.55617
𝐻 = 1/3, ℎ1 = 1/6, ℎ2 = 1/36 -1.0353 -2.88805
𝐻 = 1/3, ℎ1 = 1/7, ℎ2 = 1/49 -1.29178 -3.157
𝐻 = 1/3, ℎ1 = 1/8, ℎ2 = 1/64 -1.51285 -3.38946
𝐻 = 1/3, ℎ1 = 1/9, ℎ2 = 1/81 -1.70537 -3.59519

𝐻 = 1/4, ℎ1 = 1/6, ℎ2 = 1/36 -1.03265 -2.88559
𝐻 = 1/4, ℎ1 = 1/7, ℎ2 = 1/49 -1.29237 -3.15699
𝐻 = 1/4, ℎ1 = 1/8, ℎ2 = 1/64 -1.51283 -3.38965
𝐻 = 1/4, ℎ1 = 1/9, ℎ2 = 1/81 -1.70539 -3.5952
𝐻 = 1/4, ℎ1 = 1/10, ℎ2 = 1/100 -1.87084 -3.77885
𝐻 = 1/4, ℎ1 = 1/11, ℎ2 = 1/121 -2.01468 -3.94475
𝐻 = 1/4, ℎ1 = 1/12, ℎ2 = 1/144 -2.13968 -4.09586

For 𝐻 = 3, the 𝐻1(Ω)2 velocity error slope is of order 1.95 and the 𝐿2(Ω) pressure error one is of order
2.02. For 𝐻 = 4, the previous slops are respectively 1.83 and 2.009.
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Figure 3. Comparison between the errors of the multi-grid algorithm and those of the
one-grid method using the finest mesh: 𝐻1(Ω)2 velocity error (left) and 𝐿2(Ω) pressure
error (right).

Figure 3 shows the curves of the errors obtained by multi-grid method taking 𝐻 = 3, ℎ1 = 4, 5, 6, 7, 8, 9
and ℎ2 = ℎ21 = 16, 25, 36, 49, 64, 81, and the one grid method in the finest mesh. We notice that the slops
of the curves are almost similar and confirm the theoretical results.
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CPU comparison and advantage of the multi-grid method.
The goal of the multi-grid strategy is to gain in time of computation of the solution.

We denote by 𝑡3𝐺 and 𝑡1𝐺 respectively the computation time (in seconds) of the resolution of the problem
by the tree-grid strategy and by the one grid. First we take ℎ0 = 𝐻 = 1/3, ℎ1 = 1/9 and ℎ2 = 1/81, and
second we take ℎ0 = 𝐻 = 1/4, ℎ1 = 1/16 and ℎ2 = 1/144.

ℎ0 = 𝐻 = 1/3, ℎ1 = 1/9, ℎ2 = 1/81 ℎ0 = 𝐻 = 1/4, ℎ1 = 1/12( ∕= ℎ20), ℎ2 = 144

𝑡1𝐺 en secondes 208.5 471.5

𝑡3𝐺 en secondes 31.03 125

∣𝑡3𝐺 − 𝑡1𝐺∣
𝑡1𝐺

(en %) 85.1 73

Table 1. CPU comparison.

As shown in table 1, it is clear that the resolution of the Navier-Stokes problem by the multi-grid strategy
is less expensive in time of computation than that obtained by the fine grid method.
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