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AN EFFICACY ALGORITHM FOR THE TWO DIMENSIONAL STEADY NAVIER-STOKES EQUATIONS BY MULTI-GRID SCHEME

In this paper, we propose a multi-grid algorithm for solving the Navier-Stokes equations and we analyze its convergence. The proposed method consists of multi-level grids, where in the first one (the very coarse mesh ℎ 0 = 𝐻) we solve one small nonlinear system of discrete Navier-Stokes equations, then, in every intermediate mesh (ℎ 𝑖 = ℎ 2 𝑖-1 = 𝐻 2 𝑖 ) we solve two linear problems and in the last one (the very fine mesh ℎ𝑛 = 𝐻 2 𝑛 ) we solve one linear system. Moreover, the algorithm produces a numerical solution with an optimal asymptotic error estimate with respect to ℎ = ℎ𝑛. Finally, we give some numerical illustrations showing the efficiency of the new multi-grid algorithm.

Introduction.

The purpose of the present work is to solve the non-stationary incompressible Navier-Stokes problem using a multi-grid scheme on different levels of grids and to show that this algorithm global error is similar to the one of the direct resolution of the non-linear problem on the finest grid. This strategy is a general method for solving a non-linear Partial Differential Equation (PDE) with solution 𝑢. This technique proceeds as follows : In a first step (step of order 𝑖 = 0), we discretize the fully non-linear PDE on a very coarse grid of mesh-size ℎ 0 = 𝐻 and we compute an approximate solution 𝑢 𝐻 . Then recursively, for a step of order 𝑖 (𝑖 = 1, . . . , 𝑛 -1), we solve two linear problems. The first one consists of linearizing the Navier-Stokes around 𝑢 ℎ𝑖-1 to obtain the solution 𝑢 1/2 ℎ𝑖 and the second one around 𝑢 1/2 ℎ𝑖 to obtain 𝑢 ℎ𝑖 . Finally, at the step of order 𝑛, we do only the first linearized problem of the previous step. We prove that, under suitable assumptions and if the mesh sizes ℎ 𝑖 (𝑖 = 0, . . . , 𝑛) are well-chosen, the order of the global error of the multi-grid algorithm ∥ 𝑢 -𝑢 ℎ𝑛 ∥ is similar to that of the non-linear problem discretized directly on the finest grid ℎ = ℎ 𝑛 = 𝐻 2 𝑛 .

Multi-grid discretizations (in particular two-grid ones) have been widely applied to linear and nonlinear elliptic boundary value problems: J. Xu has pioneered their development in [START_REF] Xu | Some Two-Grid Finite Element Methods[END_REF], [START_REF] Xu | A novel two-grid method of semilinear elliptic equations[END_REF], [START_REF] Xu | Two-grid finite elemnt discretization techniques for linear and nonlinear PDE[END_REF]. These methods have been extended to the steady Navier-Stokes equations, cf. for instance the work of W. Layton [START_REF] Layton | A two-level discretization method for the Navier-Stokes equations[END_REF], W. Layton & W. Lenferink [START_REF] Layton | Lenferink Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number[END_REF] and V. Girault & J.-L. Lions [START_REF] Girault | Lions Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra[END_REF]. Also, these methods have been applied to the time-dependent Navier-Stokes problem, cf. V. Girault & J.-L. Lions [START_REF] Girault | Lions Two-grid finite-element schemes for the transient Navier-Stokes equations[END_REF] for an analysis of a semi-discrete algorithm, H. Abboud & T. Sayah [START_REF] Abboud | A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme[END_REF] and H. Abboud, V. Girault & T. Sayah [START_REF] Abboud | Two-grid finite element scheme for the fully discrete time-dependent Navier-Stokes problem[END_REF] for an analysis of a fully-discrete in time and space algorithm. In this work, we generalize the result obtained by J.L. Lions and V. Girault in [START_REF] Girault | Lions Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra[END_REF].

Let Ω be a convex bounded domain of IR 2 with a polygonal boundary ∂Ω. Consider the following Navier-Stokes problem for an incompressible fluid

-𝜈Δ𝑢(𝑥) + 𝑢(𝑥) ⋅ ∇𝑢(𝑥) + ∇𝑝(𝑥) = 𝑓 (𝑥) in Ω, (1.1) 
with the incompressibility condition div

𝑢(𝑥) = 0 in Ω (1.2)
and the homogeneous Dirichlet boundary condition

𝑢(𝑥) = 0 on ∂Ω, ( 1.3) 
where 𝑢 and 𝑝 represent respectively the velocity and the pressure of the fluid. All the quantities are taken at the point 𝑥 = (𝑥 1 , 𝑥 2 ) ∈ ℝ 2 . We suppose that the fluid density is constant (𝜌 = 1); 𝑓 denotes the external forces applied to the fluid and 𝜈 denotes the viscosity. The notations 𝑢 ⋅ ∇𝑢, Δ𝑢 and div 𝑢 mean :

𝑢 ⋅ ∇𝑢 = 2 ∑ 𝑖=1 𝑢 𝑖 ∂𝑢 ∂𝑥 𝑖 , Δ𝑢 = 2 ∑ 𝑖=1 ∂ 2 𝑢 ∂ 2 𝑥 𝑖 and div 𝑢 = 2 ∑ 𝑖=1 ∂𝑢 𝑖 ∂𝑥 𝑖 .
The term 𝑢 ⋅ ∇𝑢 is the convection term and 𝜈Δ𝑢 is the diffusion one.

Setting 𝐿 2 0 (Ω) = {𝑞 ∈ 𝐿 2 (Ω);

∫ Ω 𝑞 𝑑𝑥 = 0} and assuming that 𝑓 belongs to 𝐻 -1 (Ω) 2 , it is well known that (1.1)-( 1.3) has the following variational formulation: find 𝑢 ∈ 𝐻 1 0 (Ω) 2 , such that

∀𝑣 ∈ 𝐻 1 0 (Ω) 2 , 𝜈(∇𝑢, ∇𝑣) + (𝑢 ⋅ ∇𝑢, 𝑣) -(𝑝, div 𝑣) = ⟨𝑓, 𝑣⟩, (1.4) ∀𝑞 ∈ 𝐿 2 0 (Ω), (𝑞, div 𝑢) = 0. (1.5)
This problem has one and only one solution (𝑢𝑝) and we have the following regularity result:

Theorem 1.1. If Ω is convex and 𝑓 ∈ 𝐿 2 (Ω) 2 , then 𝑢 ∈ 𝐻 2 (Ω) 2 and 𝑝 ∈ 𝐻 1 (Ω). (1.6)
For discretizing (1.4)-(1.5), let 𝜂 > 0 be a discretization parameter in space and for each 𝜂, let 𝒯 𝜂 be a corresponding regular (or non-degenerate) family of triangulations of Ω, consisting of triangles such that any two triangles are either disjoint or share a vertex or an entire side. For an arbitrary triangle 𝜅, we denote by 𝜂 𝜅 the diameter of 𝜅 and by 𝜌 𝜅 the diameter of the circle inscribed in 𝜅. Then 𝜂 denotes the maximum of 𝜂 𝜅 and we assume that 𝒯 𝜂 is regular in the sense of Ciarlet [START_REF]Ciarlet The Finite Element Method for Elliptic Problems[END_REF] : there exists a constant 𝜎 independent of 𝜂 such that sup

𝜅∈𝒯𝜂 𝜂 𝜅 𝜌 𝜅 = 𝜎 𝜅 ≤ 𝜎. ( 1.7) 
Let 𝑋 𝜂 and 𝑀 𝜂 be a "stable" pair of finite-element spaces for discretizing the velocity 𝑢 and the pressure 𝑝, stable in the sense that it satisfies a uniform discrete inf-sup condition: there exists a constant 𝛽 ★ ≥ 0, independent of 𝜂, such that

∀𝑞 𝜂 ∈ 𝑀 𝜂 , sup 𝑣𝜂∈𝑋𝜂 1 |𝑣 𝜂 | 𝐻 1 (Ω) ∫ Ω 𝑞 𝜂 div 𝑣 𝜂 𝑑𝑥 ≥ 𝛽 ★ ∥ 𝑞 𝜂 ∥ 𝐿 2 (Ω) .
(1.8)

Let IP 𝜅 denote the space of polynomials with total degree less than or equal to 𝜅. As the multi-grid scheme is better adapted to finite-elements of low degree, we may choose for instance the "mini-element" (see D. Arnold, F. Brezzi and M. Fortin in [START_REF] Arnold | A stable finite element for the Stokes equations[END_REF]), where in each triangle 𝜅, the pressure 𝑝 is a polynomial of IP 1 and each component of the velocity is the sum of a polynomial of IP 1 and a "bubble" function 𝑏 𝜅 .

Denoting the vertices of 𝜅 by 𝑎 𝑖 , 1 ≤ 𝑖 ≤ 3, and its corresponding barycentric coordinates by 𝜆 𝑖 , the basic bubble function 𝑏 𝜅 is the polynomial of degree three given by

𝑏 𝜅 (𝑥) = 𝜆 1 (𝑥)𝜆 2 (𝑥)𝜆 3 (𝑥).
We observe that 𝑏 𝜅 (𝑥) = 0 on ∂𝜅 and that 𝑏 𝜅 (𝑥) > 0 on 𝜅. The graph of 𝑏 𝜅 looks like a bulb attached to the boundary of 𝜅, whence its name. Therefore, the finite-element spaces are :

𝑋 𝜂 = { 𝑣 𝜂 ∈ 𝐶 0 (Ω) 2 ; ∀𝜅 ∈ 𝒯 𝜂 , 𝑣 𝜂|𝜅 ∈ 𝒫(𝜅), 𝑣 𝜂| ∂Ω = 0 } , ( 1.9 
)

𝑀 𝜂 = { 𝑞 𝜂 ∈ 𝐶 0 (Ω); ∀𝜅 ∈ 𝒯 𝜂 , 𝑞 𝜂|𝜅 ∈ ℙ 1 , ∫ Ω 𝑞 𝜂 𝑑𝑥 = 0 } , ( 1.10) 
where

𝒫(𝜅) = [ℙ 1 ⊕ 𝑉 𝑒𝑐𝑡(𝑏 𝜅 )] 2 . (1.11)
There exists an approximation operator 𝑃 𝜂 ∈ ℒ(𝐻 1 0 (Ω) 2 ; 𝑋 𝜂 ) such that (see [START_REF] Girault | Raviart Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms[END_REF]) :

∀𝑣 ∈ 𝐻 1 0 (Ω) 2 , ∀𝑞 𝜂 ∈ 𝑀 𝜂 , ∫ Ω 𝑞 𝜂 div(𝑃 𝜂 (𝑣) -𝑣)𝑑𝑥 = 0, (1.12) for 𝑘 = 0 or 1, ∀𝑣 ∈ [𝐻 1+𝑘 (Ω) ∩ 𝐻 1 0 (Ω)] 2 , ∥ 𝑃 𝜂 (𝑣) -𝑣 ∥ 𝐿 2 (Ω) ≤ 𝐶𝜂 1+𝑘 |𝑣| 𝐻 1+𝑘 (Ω) (1.13)
and for all 𝑟 ≥ 2, 𝑘 = 0 or 1,

∀𝑣 ∈ [𝑊 1+𝑘,𝑟 (Ω) ∩ 𝐻 1 0 (Ω)] 2 , |𝑃 𝜂 (𝑣) -𝑣| 𝑊 1,𝑟 (Ω) ≤ 𝐶 𝑟 𝜂 𝑘 |𝑣| 𝑊 1+𝑘,𝑟 (Ω) . (1.14)
In addition, as 𝑀 𝜂 contains all polynomials of degree one, there exists an operator 𝑟 𝜂 ∈ ℒ(𝐿 2 0 (Ω); 𝑀 𝜂 ), such that for any real number 𝑠 ∈ [0, 2], we have

∀𝑞 ∈ 𝐻 𝑠 (Ω) ∩ 𝐿 2 0 (Ω), ∥ 𝑟 𝜂 (𝑞) -𝑞 ∥ 𝐿 2 (Ω) ≤ 𝐶𝜂 𝑠 |𝑞| 𝐻 𝑠 (Ω) . (1.15)
With these spaces, we propose the following multi-grid scheme for discretizing (1.4)-(1.5). Let 𝐻 be the mesh step of the very coarse mesh and let ℎ 𝑖 be the sequence defined by ℎ 𝑖 = ℎ 2 𝑖-1 = 𝐻 2 𝑖 . We use multi-regular nested triangulations 𝒯 ℎ𝑖 (𝑖 = 0, . . . , 𝑛) of Ω such that 𝒯 ℎ𝑖 is a refinement of 𝒯 ℎ𝑖-1 . In that case, the interpolation/projection procedure is easy. On each of these, we define the same stable pair of finite-element spaces (𝑋 ℎ𝑖 , 𝑀 ℎ𝑖 ) such that 𝑋 ℎ𝑖-1 ⊂ 𝑋 ℎ𝑖 and 𝑀 ℎ𝑖-1 ⊂ 𝑀 ℎ𝑖 . The multi-grid algorithm reads :

• Step 𝐻 = ℎ 0 (non-linear problem on coarse grid): find (𝑢 𝐻 , 𝑝 𝐻 ) with values in 𝑋 𝐻 × 𝑀 𝐻 , solu- tion of ∀𝑣 𝐻 ∈ 𝑋 𝐻 , 𝜈(∇𝑢 𝐻 , ∇𝑣 𝐻 ) + (𝑢 𝐻 ⋅ ∇𝑢 𝐻 , 𝑣 𝐻 ) -(𝑝 𝐻 , div 𝑣 𝐻 ) = ⟨𝑓, 𝑣 𝐻 ⟩, (1.16 
)

∀𝑞 𝐻 ∈ 𝑀 𝐻 , (𝑞 𝐻 , div 𝑢 𝐻 ) = 0.
(1.17)

• Step ℎ 𝑖 (𝑖 = 1, . . . , 𝑛 -1) (linearized problem on fine grid ℎ 𝑖 ): Having (𝑢 ℎ𝑖-1 , 𝑝 ℎ𝑖-1 ), find (𝑢 ℎ𝑖 , 𝑝 ℎ𝑖 ) with values in 𝑋 ℎ𝑖 × 𝑀 ℎ𝑖 solution of

∀𝑣 ℎ𝑖 ∈ 𝑋 ℎ𝑖 , 𝜈(∇𝑢 1/2 ℎ𝑖 , ∇𝑣 ℎ𝑖 ) + (𝑢 ℎ𝑖-1 ⋅ ∇𝑢 1/2 ℎ𝑖 , 𝑣 ℎ𝑖 ) -(𝑝 1/2 ℎ𝑖 , div 𝑣 ℎ𝑖 ) = ⟨𝑓, 𝑣 ℎ𝑖 ⟩, (1.18) ∀𝑞 ℎ𝑖 ∈ 𝑀 ℎ𝑖 , (𝑞 ℎ𝑖 , div 𝑢 1/2 ℎ𝑖 ) = 0, (1.19) then ∀𝑣 ℎ𝑖 ∈ 𝑋 ℎ𝑖 , 𝜈(∇𝑢 ℎ𝑖 , ∇𝑣 ℎ𝑖 ) + (𝑢 1/2 ℎ𝑖 ⋅ ∇𝑢 ℎ𝑖 , 𝑣 ℎ𝑖 ) -(𝑝 ℎ𝑖 , div 𝑣 ℎ𝑖 ) = ⟨𝑓, 𝑣 ℎ𝑖 ⟩ (1.20) ∀𝑞 ℎ𝑖 ∈ 𝑀 ℎ𝑖 , (𝑞 ℎ𝑖 , div 𝑢 ℎ𝑖 ) = 0. (1.21) • Step ℎ 𝑛 (linearized problem on fine grid ℎ 𝑛 ): Having (𝑢 ℎ𝑛-1 , 𝑝 ℎ𝑛-1 ), find (𝑢 ℎ𝑛 , 𝑝 ℎ𝑛 ) with values in 𝑋 ℎ𝑛 × 𝑀 ℎ𝑛 solution of ∀𝑣 ℎ𝑛 ∈ 𝑋 ℎ𝑛 , 𝜈(∇𝑢 ℎ𝑛 , ∇𝑣 ℎ𝑛 ) + (𝑢 ℎ𝑛-1 ⋅ ∇𝑢 ℎ𝑛 , 𝑣 ℎ𝑛 ) -(𝑝 ℎ𝑛 , div 𝑣 ℎ𝑛 ) = ⟨𝑓, 𝑣 ℎ𝑛 ⟩, (1.22) ∀𝑞 ℎ𝑛 ∈ 𝑀 ℎ𝑛 , (𝑞 ℎ𝑛 , div 𝑢 ℎ𝑛 ) = 0. (1.23)
The purpose of this two-grid algorithm is to reduce the time of computation for both velocity and pressure without loosing precision. We will obtain the a priori error estimate

|𝑢 ℎ𝑛 -𝑢| 1,Ω ≤ 𝐶ℎ
where ℎ = ℎ 𝑛 and 𝐶 a constant independent of ℎ. This last error is similar to that of the non-linear Navier-Stokes problem solved directly on the mesh of step ℎ.

In what follows, all constants are positive and independent of ℎ 𝑖 (𝑖 = 0, . . . , 𝑛), and we refer them by a generic one denoted 𝐶.

Remark 1.2. In theory, the discrete nonlinear term of the first step (1.16)-(1.17) is written in an antisymmetric form (cf. for instance [START_REF] Temam | Theory and Numerical Analysis of the Navier-Stokes Equations[END_REF]):

(𝑢 𝐻 ⋅ ∇𝑢 𝐻 , 𝑣 𝐻 ) + 1 2 (div 𝑢 𝐻 , 𝑢 𝐻 ⋅ 𝑣 𝐻 ),
so that it vanishes when 𝑣 𝐻 = 𝑢 𝐻 . In fact, this is not necessary; for the reader's convenience, we refer to [START_REF] Girault | Lions Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra[END_REF] for the existence of the solutions for ℎ small enough and their strong convergence in 𝐻 1 0 (Ω) 2 × 𝐿 2 0 (Ω), without restrictions on the data 𝑓 and 𝜈.

The remainder of this paper is organized as follows: in section 2, we recall some conventions and notations that will be used throughout the article. In section 3, we establish an error estimation for the algorithm and, finally, in section 4, we confirm these results numerically.

Preliminaries.

Let (𝑘 1 , 𝑘 2 ) denote a pair of non-negative integers, set |𝑘| = 𝑘 1 + 𝑘 2 and define the partial derivative

operator ∂ 𝑘 by ∂ 𝑘 𝑣 = ∂ |𝑘| 𝑣 ∂𝑥 𝑘1 1 ∂𝑥 𝑘2 2
.For any non-negative integer 𝑚 and real number 𝑟 ≥ 1, we introduce the space

𝑊 𝑚,𝑟 (Ω) = {𝑣 ∈ 𝐿 𝑟 (Ω); ∂ 𝑘 𝑣 ∈ 𝐿 𝑟 (Ω), ∀|𝑘| ≤ 𝑚} equipped with the seminorm |𝑣| 𝑊 𝑚,𝑟 (Ω) = [ ∑ |𝑘|=𝑚 ∫ Ω |∂ 𝑘 𝑣| 𝑟 𝑑𝑥 ] 1/𝑟 ,
and the norm

∥ 𝑣 ∥ 𝑊 𝑚,𝑟 (Ω) = [ ∑ 0≤|𝑘|≤𝑚 |𝑣| 𝑟 𝑊 𝑘,𝑟 (Ω)
] 1/𝑟 , with the usual extension when 𝑟 = ∞. In the case where 𝑟 = 2, this space is the Hilbert space 𝐻 𝑚 (Ω).

In particular, the scalar product of 𝐿 2 (Ω) is denoted by ( . , . ). For functions that vanish on the boundary, we recall Poincaré's inequality: there exists a constant 𝒫 such that

∀𝑣 ∈ 𝐻 1 0 (Ω), ∥ 𝑣 ∥ 𝐿 2 (Ω) ≤ 𝒫|𝑣| 𝐻 1 (Ω) . (2.1)
More generally, recall the inequalities of Sobolev imbedding in two dimensions: for each 𝑟 ∈ [2, ∞[, there exits a constant 𝑆 𝑟 such that

∀𝑣 ∈ 𝐻 1 0 (Ω) , ∥ 𝑣 ∥ 𝐿 𝑟 (Ω) ≤ 𝑆 𝑟 |𝑣| 𝐻 1 (Ω) , (2.2) 
where

|𝑣| 𝐻 1 (Ω) =∥ ∇𝑣 ∥ 𝐿 2 (Ω) . (2.3)
When 𝑟 = 2, (2.2) reduces to Poincaré's inequality and 𝑆 2 is Poincaré's constant. The case 𝑟 = ∞ is excluded and is replaced by: for any 𝑟 > 2, there exists a constant 𝑀 𝑟 such that

∀𝑣 ∈ 𝑊 1,𝑟 0 (Ω) , ∥ 𝑣 ∥ 𝐿 ∞ (Ω) ≤ 𝑀 𝑟 |𝑣| 𝑊 1,𝑟 (Ω) . (2.4)
Owing to (2.1), we use the seminorm |.| 𝐻 1 (Ω) as a norm on 𝐻 1 0 (Ω) and we use it to define the norm of the dual space 𝐻 -1 (Ω) of 𝐻 1 0 (Ω):

∥ 𝑓 ∥ 𝐻 -1 (Ω) = sup 𝑣∈𝐻 1 0 (Ω) ⟨𝑓, 𝑣⟩ |𝑣| 𝐻 1 (Ω)
,

where ⟨⋅, ⋅⟩ denotes the duality pairing between 𝐻 -1 (Ω) and 𝐻 1 0 (Ω).

Error estimations for the solution of the algorithm

In this section, we establish the error estimates of the algorithm. We begin with the first step with the size mesh ℎ 0 = 𝐻. The error analysis of (1.16)-(1.17) cannot be done without additional assumptions. This can be easily seen by taking the difference between (1.4) and (1.16). Either we impose on the size of the data the same restriction that guarantees uniqueness (cf. [START_REF]Lions Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF], [START_REF] Temam | Theory and Numerical Analysis of the Navier-Stokes Equations[END_REF], or [START_REF] Girault | Raviart Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms[END_REF]), or we allow for multiple solutions and we assume that the particular solution we want to discretize is nonsingular, as in [START_REF] Girault | Raviart Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms[END_REF]. We shall adopt here the second option, because it is less restrictive. Thus, from now on, we assume that u is a nonsingular solution of (1.16)-(1.17). Then, according to [START_REF] Girault | Raviart Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms[END_REF], there exists 𝜂 0 > 0 such that for all 𝐻 ≤ 𝜂 0 , (1.16) has a nonsingular solution 𝑢 𝐻 that is unique in a neighborhood 𝒪 of 𝑢, and the radius of 𝒪 can be bounded by a constant independent of h. If the solution 𝑢 is sufficiently smooth, we refer to [START_REF] Girault | Lions Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra[END_REF] for the following result: there exists a constant 𝜂 1 with 0 < 𝜂 1 ≤ 𝜂 0 , such that for all 𝐻 ≤ 𝜂 1 we have

|𝑢 𝐻 | 1,Ω ≤ 𝐶 1 ||𝑓 || 0,Ω , |𝑢 -𝑢 𝐻 | 1,Ω ≤ 𝐶 2 𝐻, ||𝑢 -𝑢 𝐻 || 0,Ω ≤ 𝐶 3 𝐻 2 , (3.1)
where 𝐶 1 , 𝐶 2 and 𝐶 3 are constants independent of 𝐻.

At every step ℎ 𝑖 (𝑖 = 1, . . . , 𝑛 -1), we solve two linear problems (1.18)-(1. [START_REF] Temam | Theory and Numerical Analysis of the Navier-Stokes Equations[END_REF]) and (1.20)-(1.21). We suppose that 𝐻 ≤ 𝜂 1 and we proceed recursively beginning with 𝑖 = 1. Theorem 3.1. If there exists a positif constant 𝐶 4 such that 𝑢 ℎ𝑖-1 satisfies

|𝑢 -𝑢 ℎ𝑖-1 | 1,Ω ≤ 𝐶 4 ℎ 𝑖-1 , (3.2) 
and if ℎ 𝑖-1 is sufficiently small, then, the problem (1.18)-( 1. [START_REF] Temam | Theory and Numerical Analysis of the Navier-Stokes Equations[END_REF] has one and only one solution such that

|𝑢 1/2 ℎ𝑖 | 1,Ω ≤ 𝐶||𝑓 || 0,Ω . (3.3) 
Proof. We denote by 𝑎(𝑢 

𝑎(𝑣 ℎ𝑖 , 𝑣 ℎ𝑖 ) = 𝜈(∇𝑣 ℎ𝑖 , ∇𝑣 ℎ𝑖 ) + (𝑢 ℎ𝑖-1 ⋅ ∇𝑣 ℎ𝑖 , 𝑣 ℎ𝑖 ) = 𝜈|∇𝑣 ℎ𝑖 | 2 1,Ω + ((𝑢 ℎ𝑖-1 -𝑢) ⋅ ∇𝑣 ℎ𝑖 , 𝑣 ℎ𝑖 ) ≥ |𝑣 ℎ𝑖 | 2 1,Ω (𝜈 -𝑆 2 4 |𝑢 ℎ𝑖-1 -𝑢| 1,Ω ) ≥ |𝑣 ℎ𝑖 | 2 1,Ω (𝜈 -𝐶 4 𝑆 2 4 ℎ 𝑖-1 ). For ℎ 𝑖-1 < 𝜈 𝐶 4 𝑆 2 4
, the bilinear form 𝑎(., .) is coercive which guarantees the existence and the uniqueness of the solution of (1.18)-( 1 Using (1.12), the second term of the right hand side writes:

(𝑝 -𝑝 1/2 ℎ𝑖 , 𝑑𝑖𝑣 (𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 )) = (𝑝 -𝑟 ℎ𝑖 𝑝, 𝑑𝑖𝑣 (𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 )) ≤ 𝐶ℎ|𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω .
From the the incompressibility condition (1.2), the third term of the right hand side can be written as

(𝑢∇𝑢 -𝑢 ℎ𝑖-1 ∇𝑢 1/2 ℎ𝑖 , 𝑣 ℎ𝑖 ) = (𝑢∇(𝑢 -𝑢 1/2 ℎ𝑖 ), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 ℎ𝑖-1 )∇(𝑢 1/2 ℎ𝑖 -𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 ℎ𝑖-1 )∇𝑢, 𝑣 ℎ𝑖 ) = (𝑢∇(𝑢 -𝑃 ℎ𝑖 𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 ℎ𝑖-1 )∇(𝑢 1/2 ℎ𝑖 -𝑃 ℎ𝑖 𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 ℎ𝑖-1 )∇(𝑃 ℎ𝑖 𝑢 -𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 ℎ𝑖-1 )∇𝑢, 𝑣 ℎ𝑖 ). (3.8)
Using (2.2) and theorem 3.2, we get the bound

(𝑢∇𝑢 -𝑢 ℎ𝑖-1 ∇𝑢 1/2 ℎ𝑖 , 𝑣 ℎ𝑖 ) ≤ 𝐶 6 ( |𝑣 ℎ𝑖 | 1,Ω |𝑢| 1,Ω |𝑢 -𝑃 ℎ𝑖 𝑢| 1,Ω + |𝑢 -𝑢 ℎ𝑖-1 | 1,Ω |𝑣 ℎ𝑖 | 2 1,Ω +|𝑢 -𝑢 ℎ𝑖-1 | 1,Ω |𝑃 ℎ𝑖 𝑢 -𝑢| 1,Ω |𝑣 ℎ𝑖 | 1,Ω +||𝑢 -𝑢 ℎ𝑖-1 || 0,Ω ||∇𝑢|| 𝐿 ∞ (Ω) 2 ||𝑣 ℎ𝑖 || 0,Ω ) ≤ 𝐶 7 (ℎ 2 𝑖-1 + ℎ 𝑖 )|𝑣 ℎ𝑖 | 1,Ω + 𝐶 6 ℎ 𝑖-1 |𝑣 ℎ𝑖 | 2 1,Ω .
(3.9)

Then, (3.6) gives

𝜈|𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω ≤ 𝐶 8 (ℎ 2 𝑖-1 + ℎ 𝑖 ) + 𝐶 6 ℎ 𝑖-1 |𝑣 ℎ𝑖 | 1,Ω . For ℎ 𝑖-1 < 𝜈 𝐶 6
, we get 

|𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω ≤ 𝐶 9 (ℎ 2 𝑖-1 + ℎ 𝑖 ),
𝜈|𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 | 2 1,Ω = 𝜈(𝑃 ℎ𝑖 𝑢 -𝑢, 𝑣 ℎ𝑖 ) + (𝑝 -𝑝 ℎ𝑖 , 𝑑𝑖𝑣 𝑣 ℎ𝑖 ) -(𝑢∇𝑢 -𝑢 1/2 ℎ𝑖 ∇𝑢 ℎ𝑖 , 𝑣 ℎ𝑖 ). (3.13)
The property (1.13) leads to the following bound for the first term of the right hand side

|𝜈(𝑃 ℎ𝑖 𝑢 -𝑢, 𝑣 ℎ𝑖 )| ≤ 𝐶ℎ 𝑖 . (3.14)
Using (1.12), the second term of the right hand side writes:

(𝑝 -𝑝 ℎ𝑖 , 𝑑𝑖𝑣 (𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 )) = (𝑝 -𝑟 ℎ𝑖 𝑝, 𝑑𝑖𝑣 (𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 )) ≤ 𝐶ℎ|𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 | 1,Ω .
From the incompressibility condition (1.2), the third term of the right hand side can be written as

(𝑢∇𝑢 -𝑢 1/2 ℎ𝑖 ∇𝑢 ℎ𝑖 , 𝑣 ℎ𝑖 ) = (𝑢∇(𝑢 -𝑢 ℎ𝑖 ), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 1/2 ℎ𝑖 )∇(𝑢 ℎ𝑖 -𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 1/2 ℎ𝑖 )∇𝑢, 𝑣 ℎ𝑖 ) = (𝑢∇(𝑢 -𝑃 ℎ𝑖 𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 1/2 ℎ𝑖 )∇(𝑢 ℎ𝑖 -𝑃 ℎ𝑖 𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 1/2 ℎ𝑖 )∇(𝑃 ℎ𝑖 𝑢 -𝑢), 𝑣 ℎ𝑖 ) + ((𝑢 -𝑢 1/2 ℎ𝑖 )∇𝑢, 𝑣 ℎ𝑖 ). (3.15)
Using (2.2) and theorem 3.2, we get the bound

(𝑢∇𝑢 -𝑢 1/2 ℎ𝑖 ∇𝑢 ℎ𝑖 , 𝑣 ℎ𝑖 ) ≤ 𝐶 ( |𝑣 ℎ𝑖 | 1,Ω |𝑢| 1,Ω |𝑢 -𝑃 ℎ𝑖 𝑢| 1,Ω + |𝑣 ℎ𝑖 | 2 1,Ω |𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω ) +|𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω |𝑃 ℎ𝑖 𝑢 -𝑢| 1,Ω |𝑣 ℎ𝑖 | 1,Ω +|𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω |𝑢| 1,Ω |𝑣 ℎ𝑖 | 1,Ω ) ≤ 𝐶 1 (𝑢, 𝑝, Ω) ℎ 𝑖 |𝑣 ℎ𝑖 | 1,Ω + 𝐶 2 ℎ 𝑖 |𝑣 ℎ𝑖 | 2 1,Ω .
(

Then, (3.14) gives

𝜈|𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 | 1,Ω ≤ 𝐶(𝑢, 𝑝, Ω)ℎ 𝑖 + 𝐶 2 ℎ 𝑖 |𝑣 ℎ𝑖 | 1,Ω .
For ℎ 𝑖 < 𝜈 𝐶 2 , we get

|𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 | 1,Ω ≤ 𝐶 3 ℎ 𝑖 ,
which leads, with the triangular inequality |𝑢 -

𝑢 ℎ𝑖 | 1,Ω ≤ |𝑢 -𝑃 ℎ𝑖 𝑢| 1,Ω + |𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 | 1,Ω , to (3.11). 
In order to show the bound (3.12), we introduce the following problem of discrete Navier-Stokes equations

Find 𝑤 ℎ𝑖 ∈ 𝑋 ℎ𝑖 , 𝜉 ℎ𝑖 ∈ 𝑀 ℎ𝑖 such that ∀𝑣 ℎ𝑖 ∈ 𝑋 ℎ𝑖 , 𝜈(∇𝑤 ℎ𝑖 , ∇𝑣 ℎ𝑖 ) -(𝜉 ℎ𝑖 , div 𝑣 ℎ𝑖 ) = ⟨𝑓, 𝑣 ℎ𝑖 ⟩ -(𝑤 ℎ𝑖 ⋅ ∇𝑤 ℎ𝑖 , 𝑣 ℎ𝑖 ),
∀𝑞 ℎ𝑖 ∈ 𝑀 ℎ𝑖 , (𝑞 ℎ𝑖 , div 𝑤 ℎ𝑖 ) = 0.

(3.17)

The same argument used for the first step of the algorithm (step 𝐻) gives the following: there exists 𝜂 𝑖 > 0 such that, for all ℎ 𝑖 ≤ 𝜂 𝑖 we have

|𝑤 ℎ𝑖 | 1,Ω ≤ 𝐶 1 ||𝑓 || 0,Ω , |𝑢 -𝑤 ℎ𝑖 | 1,Ω ≤ 𝐶 2 ℎ 𝑖 , ||𝑢 -𝑤 ℎ𝑖 || 0,Ω ≤ 𝐶 3 ℎ 2 𝑖 .
(

We take the difference between (1.20) and the first equation of (3.17), choose 𝑣 ℎ𝑖 = 𝑢 ℎ𝑖 -𝑤 ℎ𝑖 , use the relations (𝜉 ℎ𝑖 -𝑝 ℎ𝑖 , div 𝑣 ℎ𝑖 ) = 0 and (𝑣∇𝑤, 𝑤) + 1 2 (div 𝑣 𝑤, 𝑤) = 0, 𝑤 ∈ 𝐻 1 0 (Ω) 2 , and the property (2.4) to obtain:

𝜈(∇(𝑢 ℎ𝑖 -𝑤 ℎ𝑖 ), ∇𝑣 ℎ𝑖 ) = (𝑤 ℎ𝑖 ⋅ ∇𝑤 ℎ𝑖 -𝑢 1/2 ℎ𝑖 ⋅ ∇𝑢 ℎ𝑖 , 𝑣 ℎ𝑖 ) = -(𝑢 1/2 ℎ𝑖 ⋅ ∇(𝑢 ℎ𝑖 -𝑤 ℎ𝑖 ), 𝑣 ℎ𝑖 ) -((𝑢 1/2 ℎ𝑖 -𝑤 ℎ𝑖 ) ⋅ ∇(𝑤 ℎ𝑖 -𝑢), 𝑣 ℎ𝑖 ) -((𝑢 1/2 ℎ𝑖 -𝑤 ℎ𝑖 ) ⋅ ∇𝑢, 𝑣 ℎ𝑖 ) = 1 2 (div (𝑢 1/2 ℎ𝑖 -𝑢)(𝑢 ℎ𝑖 -𝑤 ℎ𝑖 ), 𝑣 ℎ𝑖 ) -((𝑢 1/2 ℎ𝑖 -𝑤 ℎ𝑖 ) ⋅ ∇(𝑤 ℎ𝑖 -𝑢), 𝑣 ℎ𝑖 ) -((𝑢 1/2 ℎ𝑖 -𝑤 ℎ𝑖 ) ⋅ ∇𝑢, 𝑣 ℎ𝑖 ) ≤ 𝐶ℎ 2 𝑖 |𝑣 ℎ𝑖 | 1,Ω + |((𝑢 1/2 ℎ𝑖 -𝑢) ⋅ ∇𝑢, 𝑣 ℎ𝑖 )| + |((𝑢 -𝑤 ℎ𝑖 ) ⋅ ∇𝑢, 𝑣 ℎ𝑖 )| (3.19) Using (2.
2), we get the following

|((𝑢 -𝑤 ℎ𝑖 ) ⋅ ∇𝑢, 𝑣 ℎ𝑖 )| ≤ ||𝑢 -𝑤 ℎ𝑖 || 0,Ω ||∇𝑢|| 𝐿 ∞ (Ω) 2 ||𝑣 ℎ𝑖 || 0,Ω ≤ 𝐶ℎ 2 𝑖 |𝑣 ℎ𝑖 | 1,Ω . (3.20)
To bound the term |((𝑢 1/2 ℎ𝑖 -𝑢) ⋅ ∇𝑢, 𝑣 ℎ𝑖 )|, we use the integration by part formula. Thus, we obtain, for any any constant 𝐶 𝑇 on the triangle 𝑇 ((𝑢 Proof. If 𝐻 is sufficiently small, then ℎ 𝑖 = 𝐻 2 𝑖 is also sufficiently small. The result is obtained using theorems 3.1, 3.2, 3.3 and 3.4 recursively for 𝑖 = 1, . . . , 𝑛. □

1/2 ℎ𝑖 -𝑢) ⋅ ∇𝑢, 𝑣 ℎ𝑖 ) = ∑ 𝑇 ∈𝒯 ℎ 𝑖 ∫ 𝑇 (𝑢 1/2 ℎ𝑖 -𝑢) ⋅ ∇(𝑢 -𝐶 𝑇 ) 𝑣 ℎ𝑖 = - ∑ 𝑇 ∈𝒯 ℎ 𝑖 { ∫ 𝑇 𝑑𝑖𝑣(𝑢 1/2 ℎ𝑖 -𝑢) (𝑢 -𝐶 𝑇 ) 𝑣 ℎ𝑖 + ∫ 𝑇 (𝑢 1/2 ℎ𝑖 -𝑢) ⋅ ∇𝑣 ℎ𝑖 (𝑢 -𝐶 𝑇 ) - ∫ ∂𝑇 (𝑢 1/2 ℎ𝑖 -𝑢) ⋅ 𝑛 (𝑢 -𝐶 𝑇 ) 𝑣 ℎ𝑖 } ≤ 𝐶||∇𝑢|| 𝐿 ∞ (Ω) 2 ℎ 2 𝑖 . ( 3 

Remark:

The proposed algorithm (multi-grid method) allows us to solve the Navier-Stokes equations much faster than one-grid method without loosing precision. The order of the obtained error is similar to the one due to resolution of the Navier-Stokes problem directly on the finest mesh ℎ 𝑛 .

Numerical results

In this section, we numerically validate the algorithm discribe above. We perform several experiments using the FreeFem++ software (see [11]). On the square domain ]0, 1[×]0, 1[, the numerical velocity and the pressure are taken as (𝑢, 𝑝) = (curl 𝜓, 𝑝), where:

𝜓(𝑥, 𝑦) = 𝑦 2 (𝑦 -.5) 2 (𝑦 -.75) 2 (𝑦 -1) 2 sin(4𝜋𝑥) 2 and 𝑝(𝑥, 𝑦) = cos(2𝜋𝑥) sin(2𝜋𝑦).

For the numerical results, we take the three-grid method where 𝑛 = 2.

In figures 1 and 2, we show color comparison between the exact and the numerical solution for both the velocity and the pressure. We have taken ℎ 0 = 𝐻 = 1/3, ℎ 1 = 1/9 and ℎ 1 = 1/81. Comparison between the errors of the multi-grid algorithm and those of the one-grid method using the finest mesh: 𝐻 1 (Ω) 2 velocity error (left) and 𝐿 2 (Ω) pressure error (right).

𝐻 = 1/3, ℎ 1 = 1/4, ℎ 2 = 1/16 -0.330536 -2.17046 𝐻 = 1/3, ℎ 1 = 1/5, ℎ 2 = 1/25 -0.718651 -2.55617 𝐻 = 1/3, ℎ 1 = 1/6, ℎ 2 = 1/36 -1.0353 -2.88805 𝐻 = 1/3, ℎ 1 = 1/7, ℎ 2 = 1/49 -1.29178 -3.157 𝐻 = 1/3, ℎ 1 = 1/8, ℎ 2 = 1/64 -1.51285 -3.38946 𝐻 = 1/3, ℎ 1 = 1/9, ℎ 2 = 1/81 -1.70537 -3.59519 𝐻 = 1/4, ℎ 1 = 1/6, ℎ 2 = 1/36 -1.03265 -2.88559 𝐻 = 1/4, ℎ 1 = 1/7, ℎ 2 = 1/49 -1.29237 -3.15699 𝐻 = 1/4, ℎ 1 = 1/8, ℎ 2 = 1/
Figure 3 shows the curves of the errors obtained by multi-grid method taking 𝐻 = 3, ℎ 1 = 4, 5, 6, 7, 8, 9 and ℎ 2 = ℎ 2 1 = 16, 25, 36, 49, 64, 81, and the one grid method in the finest mesh. We notice that the slops of the curves are almost similar and confirm the theoretical results.

CPU comparison and advantage of the multi-grid method.

The goal of the multi-grid strategy is to gain in time of computation of the solution.

We denote by 𝑡 3𝐺 and 𝑡 1𝐺 respectively the computation time (in seconds) of the resolution of the problem by the tree-grid strategy and by the one grid. First we take ℎ 0 = 𝐻 = 1/3, ℎ 1 = 1/9 and ℎ 2 = 1/81, and second we take ℎ 0 = 𝐻 = 1/4, ℎ 1 = 1/16 and ℎ 2 = 1/144. Table 1. CPU comparison.

As shown in table 1, it is clear that the resolution of the Navier-Stokes problem by the multi-grid strategy is less expensive in time of computation than that obtained by the fine grid method.

Theorem 3 . 3 .Theorem 3 . 4 .

 3334 which leads, with the triangular inequality |𝑢-𝑢1/2 ℎ𝑖 | 1,Ω ≤ |𝑢-𝑃 ℎ𝑖 𝑢| 1,Ω +|𝑃 ℎ𝑖 𝑢-𝑢1/2 ℎ𝑖 | 1,Ω , to the result. □ Under the assumptions of theorem 3.2 and if ℎ 𝑖 is sufficiently small, the problem (1.20)-(1.21) has a unique solution which satisfies |𝑢 ℎ𝑖 | 1,Ω ≤ 𝐶||𝑓 || 0,Ω . (3.10) Proof. The proof is analogue to that of theorem 3.1. □ Under the assumptions of theorem 3.3, the solution of (1.20)-(1.21) satisfies |𝑢 -𝑢 ℎ𝑖 | 1,Ω ≤ 𝐶ℎ 𝑖 (3.11) and ||𝑢 -𝑢 ℎ𝑖 || 0,Ω ≤ 𝐶ℎ 2 𝑖 . (3.12) Proof. To establish the bound (3.11), we choose in equation (1.4) 𝑣 = 𝑣 ℎ𝑖 , take the difference with equation (1.20), insert ±𝑃 ℎ𝑖 𝑢 and take 𝑣 ℎ𝑖 = 𝑃 ℎ𝑖 𝑢 -𝑢 ℎ𝑖 to obtain:

Figure 3 .

 3 Figure 3. Comparison between the errors of the multi-grid algorithm and those of the one-grid method using the finest mesh: 𝐻 1 (Ω) 2 velocity error (left) and 𝐿 2 (Ω) pressure error (right).

ℎ 0 =

 0 𝐻 = 1/3, ℎ 1 = 1/9, ℎ 2 = 1/81 ℎ 0 = 𝐻 = 1/4, ℎ 1 = 1/12(∕ = ℎ 2 0 ), ℎ 2 = 144 𝑡 1𝐺 en secondes 208

  .19). The bound (3.3) is obtained by taking 𝑣 ℎ𝑖 = 𝑢 The property (1.13) leads to the following bound for the first term of the right hand side |𝜈(𝑃 ℎ𝑖 𝑢 -𝑢, 𝑣 ℎ𝑖 )| ≤ 𝐶ℎ 𝑖 .

			(3.7)
		1/2 ℎ𝑖 in equation (1.18). □
	Theorem 3.2. Under the assumptions of theorem 3.1, if there exists a positif constant 𝐶 5 such that
	||𝑢 -𝑢 ℎ𝑖-1 || 0,Ω ≤ 𝐶 5 ℎ 2 𝑖-1 ,	(3.4)
			, the
	numerical solution of (1.18)-(1.19) verifies		
	|𝑢 -𝑢	1/2 ℎ𝑖 | 1,Ω ≤ 𝐶ℎ 𝑖 .	(3.5)
	Proof. We choose in equation (1.4) 𝑣 = 𝑣 1/2 ℎ𝑖 , 𝑣 ℎ𝑖 ).	(3.6)

and if the solution (𝑢, 𝑝) of (1.4)-

(1.5) 

satisfies 𝑢 ∈ 𝐻 2 (Ω) 2 , ∇𝑢 ∈ 𝐿 ∞ (Ω)

2 

and 𝑝 ∈ 𝐻 1 (Ω), thenℎ𝑖 , take the difference with equation (1.18), insert ±𝑃 ℎ𝑖 𝑢 and then take 𝑣 ℎ𝑖 = 𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 to obtain:

𝜈|𝑃 ℎ𝑖 𝑢 -𝑢 1/2 ℎ𝑖 | 1,Ω = 𝜈(𝑃 ℎ𝑖 𝑢 -𝑢, 𝑣 ℎ𝑖 ) + (𝑝 -𝑝 1/2 ℎ𝑖 , 𝑑𝑖𝑣 𝑣 ℎ𝑖 ) -(𝑢∇𝑢 -𝑢 ℎ𝑖-1 ∇𝑢

  .[START_REF] Wheeler | A priori 𝐿 2 Error Estimates for Galerkin Approximations to parabolic partial differential equations[END_REF]) Finally, we use the last two bounds in(3.19) and the triangular inequality||𝑢 -𝑢 ℎ𝑖 || 0,Ω ≤ ||𝑢 -𝑤 ℎ𝑖 || 0,Ω + ||𝑤 ℎ𝑖 -𝑢 ℎ𝑖 || 0,Ω to obtain(3.12). Under the assumptions of theorem 3.4 and for 𝐻 sufficiently small, we have|𝑢 -𝑢 ℎ𝑖 | 1,Ω ≤ 𝐶ℎ 𝑖 ,for all 𝑖 = 0, . . . , 𝑛.

	□
	Corollary 3.5.

  Velocity solution : exact (left) and numerical (right).The values of the error estimations, in the logarithmic scale, are displayed in the following table:meshes 𝐻 1 velocity error 𝐿 2 pressure error

	Vec Value 0 0.00048199 0.000963979 0.00144597 0.00192796 0.00240995 0.00289194 0.00337393 0.00385592 0.00433791 0.0048199 0.00530189 0.00578388 0.00626586 0.00674785 0.00722984 0.00771183 0.00819382 0.00867581 0.0091578	Vec Value 0 0.000481348 0.000962696 0.00144404 0.00192539 0.00240674 0.00288809 0.00336944 0.00385078 0.00433213 0.00481348 0.00529483 0.00577618 0.00625752 0.00673887 0.00722022 0.00770157 0.00818292 0.00866427 0.00914561
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	Figure 2. Pressure solution : exact (left) and numerical (right).	

  𝐻 = 1/4, ℎ 1 = 1/10, ℎ 2 = 1/100 -1.87084 -3.77885 𝐻 = 1/4, ℎ 1 = 1/11, ℎ 2 = 1/121 -2.01468 -3.94475 𝐻 = 1/4, ℎ 1 = 1/12, ℎ 2 = 1/144 -2.13968 -4.09586For 𝐻 = 3, the 𝐻 1 (Ω) 2 velocity error slope is of order 1.95 and the 𝐿 2 (Ω) pressure error one is of order 2.02. For 𝐻 = 4, the previous slops are respectively 1.83 and 2.009.
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