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Abstract. This paper introduces a mathematical model for bound consistency of the con-
straint AllDifferent. It allows us to compute the probability that the filtering algorithm
effectively removes at least one value in the variable domains. A complete study of the bound
consistency properties is then proposed. It identifies several behaviors depending on some
macroscopic quantities related to the variables and the domains. Finally, it is shown that
the probability for an AllDifferent constraint to be bound consistent can be asymptotically
estimated in constant time. The experiments illustrate that the precision is good enough for
a practical use in constraint programming.

1 Introduction

Constraint Programming (CP) aims at solving hard combinatorial problems expressed as Con-
straint Satisfaction Problems (CSP): variables are the unknown of the problem, each variable has
a domain of possible values and the constraints are logical predicates that link the variables. The
CP operational nature is based on the propagation-search paradigm. The search part consists in
an exploration of the possible assignments of domains values to the variables, while the filter-
ing/propagation mechanism detects and suppresses inconsistent parts of the domains (i.e. values
that cannot appear in a solution of the constraints).

In particular, filtering algorithms for global constraints [2], which define logical relations on a
subset of the variables, have been intensively studied. They are usually more efficient than the
propagation of equivalent expressions as several binary or small arity constraints. One of the major
issues in studying propagation is the pursuit of a fair balance between efficiency (time complexity)
and effective performance, which can be expressed for instance as the number of inconsistent values
detected by the filtering algorithms. It may happen that propagation algorithms are useless (no
inconsistent values detected), and, even if they are often efficient, they are called each time a value
is assigned to a variable. In the worst case, this makes a number of calls exponential in the number
of variables.



This paper introduces a probabilistic model for bound consistency (BC) of the alldifferent

constraint, relying on the inner combinatorics of this constraint. In this model, it defines the prob-
ability that the BC algorithm removes at least one value in the variable domains. Then, a complete
study of this model is developed for two different probability distributions for the domains. The
interest of this study is twofold: first, the probability computation leads to the identification of
several distinct behaviors, depending on some macroscopic quantities of the problem. Secondly,
we show that the probability that a BC algorithm is effective can be estimated in constant time.
Experiments confirm that this asymptotical approximation is precise enough for a practical use.

This work strongly relies on the combinatorics embedded in many global constraints (e.g. at
least all the cardinality constraints). This link has also been exploited by [8] to count the number
of solutions of a constraint, in order to predict promising areas of the search space and guide
search heuristics. Although their goal is different from ours, they also exploit the mathematics and
combinatorics inside these constraints. In another way, triggering the filtering algorithm of a global
constraint has also been proposed in [4] for the global cardinality constraint. The author determines
a threshold, based on the possible variable-values assignments, to determine if the filtering algorithm
must be executed. Such an approach leads to a good tradeoff between calculation time and effective
filtering.

In the following, Section 2 introduces a probabilistic model of the bound consistency AllDifferent

constraint. Section 3 presents the mathematical results of the paper, for two distributions of the
variables domains. Section 4 criticizes these results, and provides a practical validation. Section 5
concludes this paper and discusses some further works.

2 Probabilistic Approach of Bound Consistency

After some preliminaries definitions and propositions on BC for alldifferent and on probabilities,
we introduce a probabilistic model for BC of alldifferent. Then we define the probability that
an alldifferent constraint remains BC after an instantiation and give a general formula for it.

Consider an alldifferent constraint on n variables V1...Vn, with domains D1...Dn. The size
of domain Di is di = |Di|. Let E be the union of all the domains: E = ∪1≤i≤nDi, and m its size.
For an integer interval E and a set I, we write I ⋐ E as a shortcut for : I ⊂ E and I is an integer
interval.

2.1 Bound consistency for alldifferent

The alldifferent constraint is a well known global constraint for which many consistency algo-
rithms have been proposed. The reader can be refered to Van Hoeve’s survey [7] for a state of the
art. We focus here on bound consistency, as proposed by [5], and thus assume that all the domains
Di are integer intervals. E can be assumed to be an integer interval without loss of generality (if E
is not an interval, it can be cut into different pieces, with independent alldifferent constraints
for each of them).

Definition 1. Let I ⋐ E. Let KI be the set of variables for which the domains are subintervals of
I, KI = {i,Di ⋐ I}. I is a Hall interval if and only if |KI | = |I|.

Hall intervals are the subintervals of E that contain just enough values to ensure that every
variable of KI can be assigned a value. Consequently, the other variables (those not in KI) cannot
take their values in I.



Proposition 1. A alldifferent constraint on a set of variables V1...Vn, a set of domains D1...Dn

is bound-consistent if and only if the two following conditions are true:

1. for I ⋐ E, |KI | ≤ |I|,
2. and for I ⋐ E, |KI | = |I| implies ∀i /∈ KI , I ∩Di = ∅.

In the following, we are interested in what happens during an instantiation. It can be assumed
without loss of generality that the instantiation is done for the variable Vn (rename the variables if
necessary). Vn is assigned a value x ∈ Dn. We also assume that the binary constraints 6= have been
filtered (that is, only the x value has been removed from the other domains, which is equivalent to
a Forward Checking on the 6= clique).

The number of variables n is computed dynamically, that is, n is the number of free variables
before the instantiation. Let E◦ be the state of E before the instantiation (E◦ = D1 ∪ ... ∪ Dn),
and E⊗ be the state of E after the instantiation (E⊗ = D1 ∪ ... ∪Dn−1). In the same way, for an
interval I ⋐ E, I◦ = I⊗ ∪ {x} if I⊗ 6= I◦ and I⊗ otherwise.

The following Proposition details in which case the constraint, being BC on V1...Vn, remains
BC after the instantiation of Vn.

Proposition 2. Consider a alldifferent constraint on variables V1...Vn, with domains D1...Dn,
such that the constraint is BC. Assume that the variable Vn is set to a value x ∈ Dn, and let v be
the position of x within E◦ (v = x − min(E◦)). The constraint remains BC if and only if there
exists I⊗ ⋐ E⊗ such that I⊗ 6= I◦ and the two following conditions hold:

(1) Dn  I◦,
(2) there are exactly |I◦| − 1 domains included in I◦ and at least one other domain is neither

included in, nor outside I◦.

Proof. The proof is based on the fact that an instantiation cannot create new intersections on the
domains. Suppose that the problem is BC, then ∀I◦ ⋐ E◦, |KI◦ | ≤ |I◦|. Let I⊗ ⋐ E⊗, and l = |I⊗|
and α = min(I⊗) −min(E⊗).
If α + l < v, that is, I⊗ = I◦, we have |KI⊗ | = |KI◦ | ≤ |I◦|. Indeed, even a domain which
had x for right bound before the instantiation, has its right bound out of I⊗ after. Then, item 2.
of Proposition 1 holds by the first remark. In that case, no inconsistency is created. If α > v, the
argumentation is the same, interchanging left by right. If α+ l ≥ v and α ≤ v, that is I⊗ 6= I◦, there
are 2 possibilities. If Dn ⋐ I◦, we have |I⊗| = |I◦| − 1 and |KI⊗ | = |KI◦ | − 1. If |KI◦ | = |I◦|, then
|KI⊗ | = |I⊗|, but by the BC of the problem before the instantiation, 2. (prop. 1) holds. Otherwise,
|KI◦ | < |I◦|, then |KI⊗ | < |I⊗| and 1. (prop. 1) holds. If Dn  I◦, we have |I⊗| = |I◦| − 1 and
|KI⊗ | = |KI◦ |, and by BC, |KI◦ | < |I◦|. If |KI◦ | < |I◦| − 1, then |KI⊗ | < |I⊗| and 1. (prop. 1)
holds. Otherwise, |KI◦ | = |I◦| − 1, then |KI⊗ | = |I⊗|, and an inconsistency can only come from an
intersection between I⊗ and at least one domain which is not included in I⊗. ⊓⊔

2.2 Some Probability Notions

Only the notions of discrete probability theory that are needed afterwards are presented here. For
a good and complete introduction to probability theory, the reader can refer to [3].

Definition 2. A sample space Ω is a non-empty set. An event on Ω is a subset of Ω. The set of
all possible events is the set of parts of Ω, denoted P(Ω). Two events are said mutually exclusive
if and only if they have an empty intersection.



Fig. 1. When a variable (here Vn, on the left) is assigned to a value x (here x = 2, on the right), new Hall
intervals may appear (here, the interval {0, 1, 3} on the right). In this case, an alldifferent that was BC
before the instantiation becomes inconsistent (here, domain D1 should be reduced to {4..7}). Such pre-Hall
intervals (here, on the left, interval {0, 1, 2, 3}) are described in Proposition 2.

For a given probabilistic phenomenon, the sample space is the set of all possible outcomes. For
instance, consider the process of flipping a coin, the sample space would be the possible results of
the coin flip, that is, the set {tails, heads}. In probability theory, events are what is observed and
measured. In the example, an event could be {tails}, meaning that we want to observe the fact that
the coin ended on tails. The events are defined as sets, but it is equivalent, and often more intuitive,
to see them as predicates: “the result is tails”. This event is for instance mutually exclusive with
the event “the result is heads”.

Definition 3. A probability distribution is a function P from P(Ω) to [0, 1], such that P[Ω] = 1,
and for any two mutually exclusive events A,B ⊂ Ω, P[A∪B] = P[A]+P[B]. The triplet (Ω,P(Ω),P)
is called a probability space.

A probability distribution is a tool to measure events. In the previous example, we can define
a probability distribution by: P[{heads}] = p, P[{tails}] = 1 − p for a p ∈ [0, 1]. If p = 0.5, we
have modeled the random process of flipping a perfectly fair coin. Other values of p model the same
process with a biased coin.

Definition 4. Two events A and B on a probability space (Ω,P(Ω),P) are said independent if
and only if P[A ∩B] = P[A]P[B]. Otherwise, the events are said correlated.

Intuitively, two events A and B are independent if A does not influence B, neither does B
influence A.

Definition 5. Let A and B be two events on a probability space (Ω,P(Ω),P). The conditional
probability of B, knowing A, is P[B|A] = P[A ∩B]/P[A].

The question here is to quantify the probability of B, under the condition that A has happened,
that is, in the subspace of Ω where A happened. This subspace is simply A itself, measured by
P[A]. The probability of B within this subspace is P[A ∩B].

Definition 6. Let S be a countable set and (Ω,P(Ω),P) a probability space. A discrete random
variable X is a function X : Ω → S. The distribution of X is PX : S → [0, 1] such that PX [s] =
P[X−1(s)] for s ⊂ S.



Proposition 3. The distribution of a discrete random variable is a probability distribution.

We do not detail the proof for Proposition 3 which can be found for instance in [3]. A discrete
random variable is an event with a discrete or finite set of outcomes.

2.3 A probabilistic model for bound consistency

The constraint programmer’s vocabulary includes expressions such as “this constraint alldifferent
has little chance to filter here”. The goal of this subsection is to propose a rigorous probabilis-
tic model in which such expressions are well-defined. The key ingredients for consistency of an
alldifferent constraint are the domains. Depending on their size and their relative position, the
constraint may be consistent or not. However, sometimes it is not necessary to precisely know the
domains in order to state if the constraint is consistent or not. For instance, an alldifferent

constraint on three variables with domains of size 3 is always BC, whatever the exact positions of
the domains. If the domains are of size 2, then the constraint may be BC or not, depending on the
domains relative positions. But if E is also of size 2, the constraint is always inconsistent.

These basic remarks show that a partial knowledge on the domains and on E is sometimes
sufficient to determine consistency properties. This is the basis of our probabilistic model: the
domains become discrete random variables, with a given distribution (see in section 3). They are
not fully determined: their exact sizes and positions are unknown. Only some macroscopic quantities
are known.

Assume from now on that the domains D1...Dn are replaced by random variables with a known
probability distribution. The sample space is naturally the set of subintervals of E = ∪iDi. In the
following we make the assumption that theDi variables are independent and that their distributions
are identical. Let D be this distribution, with D(J) = P[Di = J ] for J ⋐ E and 1 ≤ i ≤ n. This
hypothesis, as well as all the hypotheses that are made later, are summed up and discussed in
section 4.1.

We are interested in studying how this probability evolves during the search process. At each
node explored during the solving process, one could consider that a new problem is stated. This
new problem would be the initial CSP where all the instantiated variables become constants, and
the constraints are dealt with accordingly. From a probabilistic point of view, this is a loss of in-
formation, because the successive CSPs are very unlikely to be independent. In order to analyze
precisely the probability of being BC, we propose to study the probability that an alldifferent

constraint, already BC, remains BC after an instantiation. Such a reasoning could be called condi-
tional probability but for simplicity reasons we just call about “probability”. This probability can
be computed from Proposition 2.

Proposition 4. For an alldifferent constraint on variables V1...Vn, where the domains are ran-
dom variables with probability distribution D on an interval E of size m, the probability Pm,n,v of
remaining BC after instantiating the variable Vn to a value x at position v is Pm,n,v =

n−2
Y

l=1

min(v,

m − l − 1)
Y

α = max(0,

v − l)

 

1 − (1 − rm,l+1,α,v)

 

n − 1

l

!

pl
m,l+1

“

(1 − pm,l+1)
n−l−1 − qn−l−1

m,l+1,α

”

!

where, for an interval I ⋐ E, of size l, at position α = min(I) −min(E),

pm,l = P[Di ⊂ I],



qm,l,α = P[Di ∩ I = ∅],
rm,v,l,α = P[Di ⊂ I|x ∈ Di].

and these I ⋐ E are assumed to be independent.

Proof. The constraint remains BC iff ∀I⊗ ⋐ E⊗ such that I⊗ 6= I◦, at least one of the conditions
(1), (2) of Proposition 2 is false. Because the I⊗ are assumed to be independent, “remaining BC”
happens with probability:

∏

I⊗ ⋐ E⊗
I⊗ 6= I◦

(1 − P[(1)]P[(2)])

The subintervals of E are represented by their size l and position α. For a given size l, the
condition I⊗ 6= I◦ restricts the range for α to {max(0, v − l)...min(v,m − l − 1)}. By definition,
P[(1)] = 1 − rm,l+1,α,v. Consider now the probability for (2). For l given domains, the probability
that they are included in I◦ is pl

m,l+1, and there are
(

n−1
l

)

possibilities for choosing these domains
among the n − 1 domains. Consider now the n − l − 1 other domains: they must not be totally
included in I⊗, which happens with probability (1− pm,l+1)

n−l−1. In addition, one must forbid the
case where they would all be totally outside I⊗, which happens with probability qn−l−1

m,l+1,α. Hence
the formula. ⊓⊔

The “atomic probabilities” pm,l, qm,l,α and rm,v,l,α depend on the distribution D chosen for the
domains (and their parameters of course). If they can be computed for a given distribution, then
the formula gives the desired probability. Note that the formula relies on two products, each with
n terms. Without further knowledge on the expressions of pm,l, qm,l,α and rm,v,l,α, the complexity
of computing Pm,n,v has an order of magnitude of O(n2).

3 Computing the probabilities

In this section, we study two cases for the domains distribution D. For each of them, the atomic
probabilities can be computed and inserted in Proposition 4. We still have to deal with the complex-
ity of the formula, which has an order of magnitude at least n2. It is thus interesting to consider the
asymptotic expansion of the probability when m tends towards infinity. The asymptotic expansion
gives useful (and computationally cheap) numerical values for the probability of remaining BC.

3.1 Uniform domain distribution

In order to model the general case, that is, when the domains distribution is not biased toward
specific domains (of a given lower bound, upper bound, etc), we define a uniform distribution for
Di.

Definition 7. Given an interval E of size m, a random variable Di on {J, J ⋐ E}, Di has a
uniform distribution if and only if the probability P[Di = J ] does not depend on J .

Remark 1. This implies:

– ∀J ⋐ E,P[Di = J ] = 1
|{J′,J ′⋐E}| = 2

m(m−1) ,

– P[|Di| = d] = 2(m−d+1)
m(m−1) , thus the distribution of the domains sizes is biased toward small sizes.



With this distribution, the atomic probabilities pm,l, qm,l,α and rm,v,l,α of the formula in Propo-
sition 4 can be computed.

Lemma 1. With the notations of Proposition 4, assume that D is a uniform distribution on E.
Then for an interval I ⋐ E, of size l, at position α:

pm,l = l(l−1)
m(m−1) ;

qm,l,α = α(α−1)+(m−l−α)(m−l−α−1)
m(m−1) ;

rm,v,l,α = (l−1)+(l−1+α−v)(v−α)
(m−1)+(m−1−v)v .

Proof. From Proposition 4, we have pm,l = P[Di ⋐ I]. Considering the domains Di according to
their size leads to:

P[Di ⋐ I] =
m
∑

d=2

P[(Di ⋐ I) ∧ (|Di| = d)]

=
m
∑

d=2

P[(Di ⋐ I)|(|Di| = d)]P[|Di| = d]

=
m
∑

d=2

P[(Di ⋐ I)|(|Di| = d)] 2(m−d+1)
m(m−1) from Remark 1

=
m
∑

d=2

l−d+1
m−d+1

2(m−d+1)
m(m−1)

= l(l−1)
m(m−1) .

For qm,l,α = P[Di ∩ I = ∅], the property is equivalent to: Di ⊂ E\I. The formula is thus similar
to the computation for pm,l, by considering two subintervals of E, one strictly on the left of I and
one strictly on the right.

Finally, we have rm,v,l,α = P[Di ⋐ I|x ∈ Di] = P[Di⋐I∧x∈Di]
P[x∈Di]

. Thus,

rm,v,l,α =

m
P

d=2

P[(Di⋐I∧x∈Di)|(|Di|=d)]P[|Di|=d]

m
P

d=2

P[x∈Di|(|Di|=d)]P[|Di|=d]
. The events {x ∈ Di|{|Di| = d}} and {{Di ⋐ I ∧ x ∈

Di}|{|Di| = d}} are respectively equivalent to {Di ⋐ E ∩ [x − d + 1, x + d − 1]} and {Di ⋐

I ∩ [x− d+ 1, x+ d− 1]}. From there, the computation is similar to the one of pm,l. ⊓⊔
Assuming we know the quantities pm,l, qm,l,α and rm,v,l,α, Proposition 4 gives the probability

of remaining BC. The following theorem gives an asymptotic expansion of this formula, when m
tends toward infinity while the ratios n/m and v/(m−1) remain constant. Depending on the values
of these ratios, different behaviors appear.

Theorem 1. Consider an alldifferent constraint on variables V1...Vn, with domains D1...Dn,
such that the constraint is BC. Assume that the variable Vn is set to a value x ∈ Dn, and let v be
the position of x within E (v = x −min(E)). Let ρ = n/m and ν = v/(m − 1). Assume that the
domains Di are uniformly distributed on E. Let Pm,n,v be the probability that the alldifferent

constraint remains BC after the instantiation. Then, when m→ ∞ with fixed ρ and ν:

Pm,ρm,ν(m−1) =























1 − 4ρ
m +O

(

1
m2

)

if 0 < ρ < 1 and 0 < ν < 1

1 − 2ρ(1−e−4ρ)
m +O

(

1
m2

)

if 0 < ρ < 1 and ν = 0 or 1

1 − 2(1−e−4)+S
m +O

(

1
m2

)

if ρ = 1 and ν = 0 or 1

1 − 4+ S′
2ν(1−ν)

m +O
(

1
m2

)

if ρ = 1 and 0 < ν < 1



where S and S′ are two constants that can be numerically computed:

S =
∞
∑

k=1

2ke−2kkk

(k−1)! ≈ 1.94264 and S′ =
∞
∑

k=1

2ke−2kkk(k+1)
(k−1)! ≈ 11.9359.

The proof is detailed in Appendix A. It comes from using Lemma 1 in Proposition 4, and carefully
bounding each term of the sum. Note that all these asymptotic expansions depend on the values of ρ
and ν. However, they are always very close to 1. The first order term is known, with a second-order
error term.

Corollary 1. The probability that an alldifferent constraint, in the uniform model, remains BC
after an instantiation

– can be approximated, at the order O( 1
m2 ), in time O(1),

– depends on ρ = n/m, and ν = v/(m − 1), that is, the number of available values for all the
variables and the position of the instantiated value.

This corollary can be used in two ways. Firstly, it gives an approximation, in the limit m→ ∞,
with fixed ρ and ν, of the probability of remaining BC. This approximation can be computed
in constant time, thus being competitive with any consistency algorithm. The precision of this
approximation, of order 1

m2 , is experimentally studied in Section 4.3. Secondly, it exhibits several
different behaviors depending on the values of ρ and ν. Obviously, these quantities are meaningful
in determining the behavior of an alldifferent constraint. This will be discussed in Section4.2.

3.2 Fixed-size domain distribution

It can also happen that the domains of a CSP are biased. Most of the time, they are biased toward
a given size: for instance, many puzzle problems are stated on n variables with domains {1...n}
(magic squares, sudoku, latin squares, etc). In order to model this case, we define a so-called fixed-
size uniform distribution:

Definition 8. Given an interval E of size m, a fixed-size distribution of parameter d is an uniform
distribution on {J ′

⋐ E, |J ′| = d}.

Remark 2. This implies:

– P[Di = J ] =
δ|J|,d

m−d+1 , δ is the Kronecker delta: for a, b integers, δa,b = 1 if a = b, 0 otherwise.
– P[|Di| = d′] = δd,d′ , thus only domains of size d are kept.

For this distribution, we add, in the notations, d as a parameter of the atomic probabilities:
pm,l(d), qm,l,α(d) and rm,v,l,α(d). The atomic probabilities are given by the following lemma :

Lemma 2. With the notations of Proposition 4, assume that D is a fixed-size distribution of pa-
rameter d on E. Then for an interval I ⋐ E, of size l, at position α:

pm,l = max
(

0, l−d+1
m−d+1

)

;

qm,l,α = max
(

0, α−d+1
m−d+1

)

+max
(

0, m−l−α−d+1
m−d+1

)

;

rm,v,l,α = H(l−d)min(v,α+l−d)−max(α,v−d+1)+1
min(v,m−d)−max(0,v−d+1)+1 . H is the Heaviside function: H(x) = 1 if x ≥ 0

and 0 otherwise.



Proof. The proof is exactly the same as for the uniform distribution, replacing P[|Di| = k] by δk,d.
⊓⊔

Assuming we know the atomic probabilities, we can compute the probability of remaining BC
from Proposition 4. The following theorem gives an asymptotic expansion of this formula, when m
tends toward infinity while the ratios ρ = n/m, ν = v/(m− 1) and µ = d/m remain constant.

Theorem 2. Consider an alldifferent constraint on variables V1...Vn, with domains D1...Dn,
such that the constraint is BC. Assume that the variable Vn is set to a value x ∈ Dn, and let v be
the position of x within E (v = x −min(E)). Let ρ = n/m and ν = v/(m − 1). Assume that the
domains Di have a fixed-size distribution of parameter d on E, and let µ = d/m. Let Pm,n,v(d) be
the probability that the alldifferent constraint remains BC after the instantiation. Then, when
m→ ∞, and for fixed ρ, ν and µ:

Pm,ρm,ν(m−1)(µm) =







1 if ν = 0 or ν = 1 or µ ≥ ρ
1 − o

(

1
m2

)

if ρ < 1 and 0 < ν < 1

1 − Tνµ

mΦνµ
+O

(

1
m2

)

if ρ = 1 and 0 < ν < 1

where Φνµ = min(ν, 1 − µ) −max(0, ν − µ) and

Tνµ =



























f(µ) if ν < µ and ν > 1 − µ
f(µ)

2 + δν,µ

(

f(µ)
2 − (1 − µ)g(µ)

)

if ν ≥ µ and ν > 1 − µ
(

f(µ)
2 − (1 − µ)g(µ)

)

(δν,µ + δν,1−µ) if ν ≥ µ and ν ≤ 1 − µ

f(µ)
2 + δν,1−µ

(

f(µ)
2 − (1 − µ)g(µ)

)

if ν < µ and ν ≤ 1 − µ

with g(µ) =
∞
∑

k=1

(

k
1−µ

)k
e
− k

1−µ

(k−1)! and f(µ) =
∞
∑

k=1

(k + 1)
(

k
1−µ

)k
e
− k

1−µ

(k−1)! .

Again, the proof is detailed in Appendix B. It is very similar to the that of Theorem1. In this model,
the asymptotic expansion depends on ρ and ν and also on the parameter µ. We can remark that
the asymptotic expansions are closer to 1 than in the uniform model in some cases.

Corollary 2. The probability that an alldifferent constraint, in the fixed-size model, remains
BC after an instantiation

– can be approximated, at the order O( 1
m2 ), in time O(1),

– depends on ρ = n/m, ν = v/(m − 1) and µ = d/m, that is, the number of available values for
all the variables, the position of the instantiated value, and the common size of the domains.

The same remarks as for Corollary 1 apply, and again this result will be discussed in Section4.

4 Analysis and Experiments

This section discusses the contributions of this paper, from several point of views: validity of the
model, analysis of the two theorems, and experimental evaluation.



4.1 Validity of the Hypothesis

We propose a probabilistic model for BC of an alldifferent constraint. Like all models, it relies on
a simplistic view of the reality, and this simplification is expressed by the mathematical hypotheses
that have been used.

The first hypothesis is on the domains, considered as random variables that are independent and
identically distributed. As long as we do not consider other constraints, the independence assump-
tion is reasonable, because the variables of the constraint do not interact outside the constraint
under study. Going one step further, one could also consider the interactions between the con-
straints, for instance several alldifferent constraints as studied in [1]. This is part of our further
work. For the identical distribution, this is clearly a loss of information on the domains. Actually,
loosing information on the domains is precisely the key point of the probabilistic model.

Another hypothesis holds on the subintervals of E used in Proposition 4. The I ⋐ E are
assumed to be independent; more precisely, conditions (1) and (2) of Proposition 2 are assumed to
be independent when I varies. These conditions express the “Hall status” of these intervals. The
main argument to justify their independence is that this Hall property is local, that is, it cannot be
transferred from an interval I to another. Given an interval I ⋐ E that is Hall for instance, there
is no particular reason why other intervals I ′ ⋐ E should be Hall. The independence hypothesis
seems thus reasonable.

The important results within the probabilistic model are the two theorems of Section 3, and they
are valid in the limit m → ∞. This asymptotical result, which is rigorous, yields an approximated
computation for Pm,n,v, known until the second order error term. In practice, these theorems are
valid for large values of m (at the beginning of the search process).

The last point is not a hypothesis, but also a limitation of the model: only two distributions for
the domains have been considered. These distributions correspond to extreme scenarios: the uniform
distribution implies that all the possible subintervals of E are equally weighted, that is, there is
no particular bias in the domains distribution. On the contrary, the fixed-size uniform distribution
restricts the domains to be of a fixed size, as it happens quite often, in problems coming from
Artificial Intelligence for instance. To our knowledge, this should be sufficient to model quite a lot
of real-life scenarios.

4.2 Technical Analysis

We propose the following terminology to discuss the Theorems 1 and 2. The number of variables
over the total number of available values for them, ρ = n/m, determines if the problem is sharp
(ρ = 1, exactly as many variables as values) or not (ρ < 1, some values will not be used in the end).
The position of the instantiation ν = v/m is another important parameter. For ν = 0 or ν = 1, the
instantiation is performed at a bound of E, which is possible, with a variable-value heuristics that
chooses first a variable with a domain at a bound of E, say the minimum, then the minimum value
of this domain. Note that there is a symmetry when ν is replaced by 1− ν. Finally, if the domains
size are fixed at d, then µ = d/m is the ratio of the domains size over the number of available
values. A small value for µ mean that the domains are tight. If µ = 1, then the problem is not tight,
and all the domains equal E.

Figure 2 shows the plots of the several limits given by Theorem 1. Problems that are not sharp
(ρ < 1) have few chances to actually filter. As soon as m ≥ 50, the probability is higher than 0.9,
meaning that there are at most 10% chances to remove a value (or more) from the domains. Notice
that the curves are decreasing in ρ: sharper problems have better chances to filter. Instantiating
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Fig. 2. The asymptotic expansions of theorem 1, depending on the values of ρ and ν. The plain curves are
for m = 50, the large dashed curves for m = 100 and the small dashed curves for m = 500. The plot range
is [0, 1] for the first line, and is restricted to [0.9, 1] for the second line (otherwise the curves are too close
to be identified).

at a bound (bottom left) yields a smaller probability to actually filter. For sharp problems, the
behavior strongly depends on the value of ν.

The fixed-size model of Theorem 2 is quite different, as seen on Figure 3. For problems that
are not sharp, the asymptotic expansion is 1 (not plotted): the domains being very specific, Hall
intervals appear less frequently. For instance, the smallest possible Hall interval is of size d (2 in
the uniform model). For sharp problems, the asymptotic expansion is of order 1/m, and depends
on the tightness. First, note that the sizes of the problem, m, used to the left and right figures
are different. Indeed, both functions f(µ) and g(µ) do not converge when µ → 0 and the validity
of the approximation is not reached at the same union size m. On both figures, there are clearly
3 different phases, as stated by Theorem 2 for sharp problems. The probability goes through the
3 conditions, depending on the relative positions of ν, µ and 1 − µ. In addition, the behaviors
are different depending on the domains size. In general, in order to filter more, it is preferable to
instantiate at a bound.

4.3 Practical Evaluation

We have tested the validity of the asymptotic expansions of Theorems 1 and 2, with the BC al-
gorithm for alldifferent provided by Choco [6]. For the experiments on Theorem 1 (resp. 2),
given the parameters n and m (resp. n, m and d), we randomly generate n domains on the interval
{1...m} according to the uniform distribution (resp. fixed-size uniform distribution of parameter
d). If the generated domains do not cover E (which may happen for small values of n), then the
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Fig. 3. The asymptotic expansions of theorem 2, for ρ = 1. On the left, µ = 0.4, and on the right, µ = 0.6.
The plain curves are for m = 50 (resp 500), the large dashed curves for m = 100 (resp 1000) and the small
dashed curves for m = 500 (resp 5000).

experiment for these domains is removed.

An alldifferent constraint is then declared on n variables, with the randomly generated
domains. The BC algorithm is called a first time, then an instantiation at position v is performed,
v being a parameter of the test. Forward checking is applied on the binary difference constraints.
This removes the obvious inconsistent values. We apply again the BC algorithm and check if the
new filtering has removed at least one value (negative test), or no value at all (positive). Each test
is repeated 3000 times for each parameter values. The proportion of positive and negative tests on
these 3000 tests is represented as a dot on the plots (Figure 4). The theoretical curves are drawn
with plain line.

We see on the plots that the dotted graphics are very close to the theoretical curves (Fig-
ures 4(a) and 4(b)). Very quickly (for m > 20), the error is around 1% (Figure 4(c)). These results
experimentally validate the hypotheses of Section 4.1, and confirm the theoretical ones.

5 Conclusion

We have presented in this paper an accurate probabilistic indicator for the bound consistency
of an alldifferent constraint. Moreover, this indicator can be computed in constant time. Not
surprisingly, we still have to pay price; the intricate computations required to derived the easy-
to-use expressions of Theorems 1 and 2. In a few words, this paper shows that, considering an
alldifferent constraint alone, bound consistency has a limited efficiency. On real-life problems,
this leads us to think that its efficiency lies in its interactions with the other constraints.

However, our indicator allows us to tackle some challenges related to the practical uses of
global constraints, e.g., triggering the filtering algorithms and guiding the heuristics. The filtering
algorithms for global constraints are not effective all the time, and they may have a high complexity
in some cases. We can prevent this phenomenon by limiting the practical complexity of the filtering
by using the probabilistic indicator, one could inhibit most of the useless filtering. At another level,
the consistency behavior differs, depending on some heuristic choices (variable value selection).
The probabilistic model can thus help in designing heuristics on high level criteria (e.g., the ν
parameter).
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(a) Uniform model with m = 100. On the left, ρ varies, and ν = 0.4. On the right, ν
varies, and ρ = 0.8.
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(b) Fixed size uniform model. On the left, m = 100, ρ varies, ν = 0.4, and µ = 0.5. On
the right, m = 500, ν varies, ρ = 1 and µ = 0.6.
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(c) ∆P/P represents the relative difference between theoretical and measured probabili-
ties. On the left, uniform model with ρ = 0.7 and ν = 0.3. On the right, fixed-size model
with ρ = 1, ν = 0.4 and µ = 0.6.

Fig. 4. Theoretical (plain curves) and measured (dotted plots) probabilities

Finally, which global constraints are good candidates for such a probabilistic approach? The
global cardinality constraint and the NValue constraint have a combinatorial structure close to that
of alldifferent. We hope to present a similar study of these constraints in further works.
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A Proof of theorem 1

The probability Pm,n,v, that an alldifferent constraint on n variables(with union of size m) stays consistent
after the instanciation of a variable at the value x (at position v) is given by proposition 4. We set Lm,n,v,l,α =

(1 − rm,v,l+1,α)
(

n−1
l

)

pl
m,l+1

(

(1 − pm,l+1)
n−l−1 − qn−l−1

m,l,α

)

. Thus,

Pm,n,v =

n−2
∏

l=1

min(v,m−l−1)
∏

α=max(0,v−l)

(1 − Lm,n,v,l,α)

= exp





n−2
∑

l=1

min(v,m−l−1)
∑

α=max(0,v−l)

log (1 − Lm,n,v,l,α)





We also define Xm,n,v,l =
min(v,m−l−1)

∑

α=max(0,v−l)

log (1 − Lm,n,v,l,α), such that Pm,n,v = exp

(

n−2
∑

l=1

Xm,n,v,l

)

.

Let’s set ρ = n/m and ν = v/(m− 1). We have 0 < ρ ≤ 1 and 0 ≤ ν ≤ 1. We distinguish the 4 following cases :
ρ < 1 and 0 < ν < 1; ρ < 1 and ν = 0 or 1; ρ = 1 and 0 < ν < 1; ρ = 1 and ν = 0 ou 1. In each case, we show that
most of the terms are negligibles.

A.1 Case ρ < 1 and 0 < ν < 1

Let 0 < ǫ < 1/2, we cut the sum on l as follows : l = 1, 2, 3; 3 < l < (n− 1)ǫ; (n− 1)ǫ ≤ l ≤ n− 2.

– l = 1, 2, 3. We have

Xm,n,v,1 =

min(v,m−2)
∑

α=max(0,v−1)

log (1 − Lm,n,v,1,α)

=
v
∑

α=v−1

log (1 − Lm,n,v,1,α)

= log (1 − Lm,n,v,1,v−1) + log (1 − Lm,n,v,1,v) .

The asymptotics are given by Lm,ρm,ν(m−1),1,ν(m−1)−1 = 2ρ
m +O

(

1
m2

)

and Lm,ρm,ν(m−1),1,ν(m−1) = 2ρ
m +O

(

1
m2

)

.
Thus

Xm,ρm,ν(m−1),1 = −4ρ

m
+O

(

1

m2

)

. (1)

In the same way, we can see that

Xm,ρm,ν(m−1),2 = O

(

1

m2

)

and Xm,ρm,ν(m−1),3 = O

(

1

m3

)

. (2)



– 3 < l < (n − 1)ǫ. As rm,v,l+1,α ≤ 1 and qm,l+1,α ≤ 1 − pm,l+1 ≤ 1, we have Lm,n,v,l,α ≤ Um,n,l :=
(

n−1
l

)

(

l(l+1)
m(m−1)

)l

.

Um,n,l+1

Um,n,l
=

(n− l − 1)(l + 2)

m(m− 1)

(

l + 2

l

)l

≤ (n− 1 − (n− 1)ǫ)((n− 1)ǫ + 2)

m(m− 1)
e2 because 0 < ǫ < 1/2

≤ n− 1

m− 1

(n− 1)ǫ

m

(

1 +
2

(n− 1)ǫ

)

e2

≤ ρ1+ǫ

m1−ǫ

(

1 + 21−ǫ
)

e2 because n ≥ 3

≤ 3e2
ρ1+ǫ

m1−ǫ

It shows that at least ∀m ≥ m0 = (3e2ρ1+ǫ)1/(1−ǫ), U decreases in the ”l” direction. Thus for l ≥ 4, Lm,n,v,l,α ≤
Um,n,4 =

(

n−1
4

)

4454

m4(m−1)4 . As Um,n,4 → 0 when m → ∞, ∃m1 such that ∀m ≥ m1, Lm,n,v,l,α ≤ 1/2, and so

log(1 − Lm,n,v,l,α) ≥ −2Lm,n,v,l,α. Then, ∀m ≥ m1,

∣

∣

∣

∣

∣

∣

(n−1)ǫ−1
∑

l=4

Xm,n,v,l

∣

∣

∣

∣

∣

∣

≤ 2

(n−1)ǫ−1
∑

l=4

min(v,m−l−1)
∑

α=max(0,v−l)

Um,n,4

≤ 4454

12

ρ4+ǫ

m3−ǫ

which means that

(n−1)ǫ−1
∑

l=4

Xm,n,l = O

(

1

m3−ǫ

)

= o

(

1

m2

)

. (3)

– (n−1)ǫ ≤ l ≤ n−2. As rm,v,l+1,α ≤ 1 and qm,l+1,α ≤ 1−pm,l+1, we have Lm,n,v,l,α ≤ Vm,n,l :=
(

n−1
l

)

pl
m,l+1(1−

pm,l+1)
n−l−1.

Vm,n+1,l

Vm,n,l
=

n

n− l

(

1 − l(l + 1)

m(m− 1)

)

≥ n

n− l

(

1 − l(l + 1)

n(n− 1)

)

= 1 +
l(n2 − n(l + 2))

n(n− 1)(n− l)

≥ 1 because l ≤ n− 2



It shows that V increases in the ”n” direction, thus Vm,n,l ≤ Vm,m,l. Using
√

2πkkke−k ≤ k! ≤
√

2πkkke−ke
1

12k

and m ≥ 3, we have :

(

m− 1

l

)

≤ 1√
2π

√

m− 1

l(m− l − 1)

(m− 1)m−1

ll(m− l − 1)m−l−1
e

1
24

=
e

1
24√
2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

1
(

l
m−1

)l (

1 − l
m−1

)m−l−1
(4)

Besides, we have
(

l(l + 1)

m(m− 1)

)l

=

(

l

(m− 1)

)2l (

1 +
1

l

)l (

1 − 1

m

)l

≤ e

(

l

(m− 1)

)2l

and

(

1 − l(l + 1)

m(m− 1)

)m−l−1

=

(

1 −
(

l

m− 1

)2
)m−l−1

(

1 +
1

m+ l − 1

)m−l−1(

1 − 1

m

)m−l−1

≤
(

1 −
(

l

m− 1

)2
)m−l−1

e(m−l−1) log (1+ 1
m+l−1 )

≤
(

1 −
(

l

m− 1

)2
)m−l−1

e
m−l−1
m+l−1

≤ e

(

1 −
(

l

m− 1

)2
)m−l−1

.

Then

Vm,m,l ≤
e2e

1
24√

2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

(

(

l

m− 1

)
l

m−1
(

1 +
l

m− 1

)1− l
m−1

)m−1

We can see that
(

l
m−1

(

1 − l
m−1

))− 1
2

is maximal when l = (n− 1)ǫ (at least for n sufficiently large), that is

1
√

l
m−1

(

1 − l
m−1

)

≤ 1
√

(n−1)ǫ

m−1

(

1 − (n−1)ǫ

m−1

)

≤ 1
√

(n−1)ǫ

n−1
n−1

n
n
m

m
m−1

1
√

1 − 1
(m−1)1−ǫ

≤ (n− 1)
1
2− ǫ

2
1

√

2
3ρ

1
√

1 − 1√
2

≤
√

6ρ−
ǫ
2 (m− 1)

1
2− ǫ

2 (5)



Moreover, ∃x0 ∈]0, 1[ such that the function x 7→ xx(1 + x)1−x, decreases on [0, x0] and increases on ]x0, 1].

Thus,
(

l
m−1

)
l

m−1
(

1 + l
m−1

)1− l
m−1

is maximal when l = (n− 1)ǫ or when l = (n− 2). We have :





(

(n− 1)ǫ

m− 1

)

(n−1)ǫ

m−1
(

1 +
(n− 1)ǫ

m− 1

)1− (n−1)ǫ

m−1





m−1

=

(

(n− 1)ǫ

m− 1

)(n−1)ǫ
(

1 +
(n− 1)ǫ

m− 1

)(m−1)−(n−1)ǫ

≤
(

1

(m− 1)1−ǫ

)ρǫ(m−1)ǫ
(

1 +
1

(m− 1)1−ǫ

)m−1

≤ e−(m−1)ǫ((1−ǫ)ρǫ log(m−1)−1) (6)

and





(

(n− 2)

m− 1

)

(n−2)
m−1

(

1 +
(n− 2)

m− 1

)1− (n−2)
m−1





m−1

=

(

(n− 2)

m− 1

)(n−2)(

1 +
(n− 2)

m− 1

)(m−1)−(n−2)

≤ 1

ρ2
ρn(1 + ρ)(1 + ρ)m−n

≤ 1 + ρ

ρ2

(

ρρ(1 + ρ)1−ρ
)m

≤ 1 + ρ

ρ2
em(ρ log ρ+(1−ρ) log(1+ρ)) (7)

Then for m sufficiently large, the case l = (n− 1)ǫ dominates. Equations 5, 6 and 7 lead to

Vm,m,l ≤
√

6e2e
1
24√

2π
(ρ(m− 1))−

ǫ
2 e−(m−1)ǫ(ǫρǫ log(m−1)−1)

Thus,

∣

∣

∣

∣

∣

∣

n−2
∑

l=(n−1)ǫ

Xm,n,v,l

∣

∣

∣

∣

∣

∣

≤ 2((n− 2) − (n− 1)ǫ + 1)(m− 1)

√
6e2e

1
24√

2π
(ρ(m− 1))−

ǫ
2 e−(m−1)ǫ(ǫρǫ log(m−1)−1)

≤ 2

√
6e2e

1
24√

π
ρ1− ǫ

2 (m− 1)2−
ǫ
2 e−(m−1)ǫ(ǫρǫ log(m−1)−1)

and finally
∣

∣

∣

∣

∣

∣

(n−2)
∑

l=(n−1)ǫ+1

Xm,n,v,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

(8)

Pooling together equations 1, 2, 3 and 8 gives the following result : ∀ρ < 1 and ∀0 < ν < 1, when m→ ∞,

Pm,ρm,ν(m−1) = 1 − 4ρ

m
+O

(

1

m2

)

. (9)



A.2 Case ρ < 1 and ν = 0 or 1

Firstly, we can potice that Pm,n,v = Pm,n,m−1−v, or equivalently Pm,ρm,ν(m−1) = Pm,ρm,(1−ν)(m−1), by symmetry
of the problem. Thus we only need to proove the theorem for ν = 0. Taking ν = 0 leads to

Pm,n,0 =

n−2
∏

l=1

(

1 − (1 − rm,0,l+1,0)

(

n− 1

l

)

pl
m,l+1

(

(1 − pm,l+1)
n−l−1 − qn−l−1

m,l+1,α

)

)

.

The sum over α is reduced to α = 0, and we have Xm,n,0,l = log(1 − Lm,n,0,l,0). We cut the sum over l the same
way as in the previous case.

– l = 1, 2, 3. We have

Lm,ρm,0,1,0 =
2ρ(1 − e−4ρ)

m
+O

(

1

m2

)

that is

Xm,ρm,0,1 = −2ρ(1 − e−4ρ)

m
+O

(

1

m2

)

. (10)

Besides,

Xm,ρm,0,2 = O

(

1

m2

)

Xm,ρm,0,3 = O

(

1

m3

)

(11)

– 3 < l < (n− 1)ǫ. Reducing the sum over α to α = 0, we can apply the result of previous section, that is :
∣

∣

∣

∣

∣

∣

(n−1)ǫ−1
∑

l=4

Xm,n,0,l

∣

∣

∣

∣

∣

∣

≤ 4454

12

ρ4+ǫ

m4−ǫ

and
∣

∣

∣

∣

∣

∣

(n−1)ǫ−1
∑

l=4

Xm,n,0,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

(12)

– (n− 1)ǫ ≤ l ≤ n− 2. The result of previous section can be used again here. Thus
∣

∣

∣

∣

∣

∣

(n−2)
∑

l=(n−1)ǫ

Xm,n,0,l

∣

∣

∣

∣

∣

∣

≤ 3e2e
1
24√

2π
(ρ(m− 1))1−

ǫ
2 e−(m−1)ǫ(ǫρǫ log(m−1)−1)

and
∣

∣

∣

∣

∣

∣

(n−2)
∑

l=(n−1)ǫ

Xm,n,0,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

(13)

Pooling together equations 10, 11, 12 and 13 gives the following result : ∀ρ < 1, when m→ ∞,

Pm,ρm,0 = Pm,ρm,1 = 1 − 2ρ(1 − e−4ρ)

m
+O

(

1

m2

)

. (14)



A.3 Case ρ = 1 and ν = 0 or 1

Here, we only need to poove the theorem for ν = 0 too. But this time, we have to cut the sum over l this way :
l = 1, 2, 3; 3 < l < (m− 1)ǫ; (m− 1)ǫ ≤ l ≤ (m− 1) − (m− 1)ǫ, (m− 1) − (m− 1)ǫ < l ≤ m− 2.

– l = 1, 2, 3. We have

Lm,m,0,1,0 =
2(1 − e−4)

m
+O

(

1

m2

)

.

Then

Xm,m,0,1 = −2(1 − e−4)

m
+O

(

1

m2

)

. (15)

Besides,

Xm,m,0,2 = O

(

1

m2

)

Xm,m,0,3 = O

(

1

m3

)

(16)

– 3 < l < (m− 1)ǫ. Here, we can use the result of previous section, replacing ρ by 1, that is
∣

∣

∣

∣

∣

∣

(m−1)ǫ−1
∑

l=4

Xm,m,0,l

∣

∣

∣

∣

∣

∣

≤ 4454

12

1

m4−ǫ
.

Thus
∣

∣

∣

∣

∣

∣

(m−1)ǫ−1
∑

l=4

Xm,m,0,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

. (17)

– (m− 1)ǫ ≤ l ≤ (m− 1) − (m− 1)ǫ. We begin with the following equation (see section A.1) :

Lm,m,0,l,0 ≤ e2e
1
24√

2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

(

(

l

m− 1

)
l

m−1
(

1 +
l

m− 1

)1− l
m−1

)m−1

(

l
m−1

(

1 − l
m−1

))−1/2

is maximal when l = (m− 1)ǫ and when l = (m− 1) − (m− 1)ǫ (by symmetry). Thus,

1
√

l
m−1

(

1 − l
m−1

)

≤ 1
√

1
(m−1)1−ǫ

(

1 − 1
(m−1)1−ǫ

)

≤ 2(m− 1)
1
2− ǫ

2

Moreover, we have





(

(m− 1)ǫ

m− 1

)

(m−1)ǫ

m−1
(

1 +
(m− 1)ǫ

m− 1

)1− (m−1)ǫ

m−1





m−1

=

(

1

(m− 1)1−ǫ

)(m−1)ǫ
(

1 +
1

(m− 1)1−ǫ

)(m−1)−(m−1)ǫ

≤ e−(m−1)ǫ((1−ǫ) log(m−1)−1)



and





(

(m− 1) − (m− 1)ǫ

m− 1

)

(m−1)−(m−1)ǫ

m−1
(

1 +
(m− 1) − (m− 1)ǫ

m− 1

)1− (m−1)−(m−1)ǫ

m−1





m−1

=
(

1 − 1
(m−1)1−ǫ

)(m−1)−(m−1)ǫ
(

2 − 1
(m−1)1−ǫ

)(m−1)ǫ

= e
((m−1)−(m−1)ǫ) log

“

1− 1

(m−1)1−ǫ

”

+(m−1)ǫ log
“

2− 1

(m−1)1−ǫ

”

≤ e
−(m−1)ǫ(1−log 2)+ 1

2(m−1)1−2ǫ

≤ e
1
2 e−(m−1)ǫ(1−log 2).

Thus, at least for m sufficiently large,

Lm,m,0,l,0 ≤ 2e2e
1
2+ 1

24√
2π

(m− 1)−
ǫ
2 e−(m−1)ǫ(1−log 2)

and
∣

∣

∣

∣

∣

∣

(m−1)−(m−1)ǫ−1
∑

l=(m−1)ǫ

log(1 − Lm,m,0,l,0)

∣

∣

∣

∣

∣

∣

≤ 4e2e
1
2+ 1

24√
2π

(m− 1)1−
ǫ
2 e−(m−1)ǫ(1−log 2)

and finally
∣

∣

∣

∣

∣

∣

(m−1)−(m−1)ǫ−1
∑

l=(m−1)ǫ

Xm,m,0,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

. (18)

– (m− 1) − (m− 1)ǫ < l ≤ m− 2. The substitution k = m− 1 − l yields :

m−2
∑

l=(m−1)−(m−1)ǫ

Xm,m,0,l =

(m−1)ǫ

∑

k=1

Xm,m,0,l

Thus, we have k = o(
√
m), and then

Lm,m,0,m−1−k,0 =
2ke−2kkk

(k − 1)!

(

1

m
+O

(

1

m2

))

Let’s set SN =
N
∑

k=1

2ke−2kkk

(k−1)! and RN =
∞
∑

k=N+1

2ke−2kkk

(k−1)! . We have

2ke−2kkk

(k − 1)!
≤ 1√

2π

√
k

(

2

e

)k



Thus SN converges, and we set S =
∞
∑

k=1

2ke−2kkk

(k−1)! ≈ 1.94264. Moreover,

RN ≤
∞
∑

k=N+1

1√
2π

√
k

(

2

e

)k

≤ 1√
2π

∞
∑

k=N+1

k

(

2

e

)k

=
1√
2π

(

2
e

)N+1 (
N
(

1 − 2
e

)

+ 1
)

(

1 − 2
e

)2

Therefore R(m−1)ǫ = o
(

1
m

)

. Finally,

(m−1)ǫ

∑

k=1

log(1 − Lm,m,0,m−1−k,0) = − S

m
+O

(

1

m2

)

(19)

Pooling together equations 15, 16, 17, 18 and 19 gives the following result : ∀0 < ν < 1, when m→ ∞,

Pm,m,0 = Pm,m,m−1 = 1 − 2(1 − e−4) + S

m
+O

(

1

m2

)

(20)

A.4 Case ρ = 1 and 0 < ν < 1

The argumentation is the same as the previous one.

– l = 1, 2, 3. As in section A.1, replacing n by m, we have

Xm,m,v,1 = log(1 − Lm,m,v,1,v−1) + log(1 − Lm,m,v,1,v)

with

Lm,m,ν(m−1),1,ν(m−1)−1 =
2

m
+O

(

1

m2

)

and Lm,m,ν(m−1),1,ν(m−1) =
2

m
+O

(

1

m2

)

Thus,

Xm,m,ν(m−1),1 = − 4

m
+O

(

1

m2

)

(21)

Besides, we have

Xm,m,ν(m−1),2 = O

(

1

m2

)

and Xm,m,ν(m−1),2 = O

(

1

m2

)

(22)

– 3 < l < (m− 1)ǫ. We can use the results of previous section, with ρ = 1, that is
∣

∣

∣

∣

∣

∣

(m−1)ǫ−1
∑

l=4

Xm,m,v,l

∣

∣

∣

∣

∣

∣

≤ 4454

12

1

m3−ǫ

Thus,
∣

∣

∣

∣

∣

∣

(m−1)ǫ−1
∑

l=4

Xm,m,v,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

. (23)



– (m− 1)ǫ ≤ l ≤ (m− 1) − (m− 1)ǫ. We can use the results of previous section, with ρ = 1, that is
∣

∣

∣

∣

∣

∣

(m−1)−(m−1)ǫ−1
∑

l=(m−1)ǫ

Xm,m,v,l

∣

∣

∣

∣

∣

∣

≤ 4e2e
1
2+ 1

24√
2π

(m− 1)2−
ǫ
2 e−(m−1)ǫ(1−log 2)

thus
∣

∣

∣

∣

∣

∣

(m−1)−(m−1)ǫ−1
∑

l=(m−1)ǫ

Xm,m,v,l

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

(24)

– (m− 1) − (m− 1)ǫ < l ≤ m− 2. The substitution k = m− l − 1 yields

m−2
∑

l=(m−1)−(m−1)ǫ

min(v,m−l−1)
∑

α=max(0,v−l)

log(1 − Lm,m,v,l,α) =

(m−1)ǫ

∑

k=1

min(v,k)
∑

α=max(0,v−m+k+1)

log(1 − Lm,m,v,m−1−k,α)

As k ≤ (m− 1)ǫ, we have v ≥ k ∀m ≥ 1 + ν−
1

1−ǫ , and v −m+ k + 1 ≤ 0 ∀m ≥ 1 + (1 − ν)−
1

1−ǫ . Then

m−2
∑

l=(m−1)−(m−1)ǫ

min(v,m−l−1)
∑

α=max(0,v−l)

log(1 − Lm,m,v,l,α) =

(m−1)ǫ

∑

k=1

k
∑

α=0

log(1 − Lm,m,v,m−1−k,α)

Thus we have k = o(
√
m) and α = o(

√
m). Therefore

Lm,m,ν(m−1),m−1−k,α =
2ke−2kkk(α+ kν − 2αν)

mν(1 − ν)k!
+O

(

1

m2

)

and

log(Lm,m,ν(m−1),m−1−k,α) = −2ke−2kkk(α+ kν − 2αν)

mν(1 − ν)k!
+O

(

1

m2

)

Performing the sum over α gives

k
∑

α=0

2ke−2kkk(α+ kν − 2αν)

mν(1 − ν)k!
=

2ke−2kkk

mν(1 − ν)k!

k(k + 1)

2

Let’s set S′
N =

N
∑

k=1

2ke−2kkk(k+1)
(k−1)! and R′

N =
∞
∑

k=N+1

2ke−2kkk(k+1)
(k−1)! . We have

2ke−2kkk(k + 1)

(k − 1)!
≤ 1√

2π

√
k(k + 1)

(

2

e

)k

Thus S′
N converges, and we set S′ =

∞
∑

k=1

2ke−2kkk(k+1)
(k−1)! ≈ 11.9359. Moreover,

R′
N ≤

∞
∑

k=N+1

1√
2π

√
k(k + 1)

(

2

e

)k

≤ 1√
2π

∞
∑

k=N+1

k(k + 1)

(

2

e

)k

=
1√
2π

(

2
e

)N+1
Q(N)

(

1 − 2
e

)3



where Q(N) is a polynom of degree 2 in N . Then R′
(m−1)ǫ = o

(

1
m

)

. To conclude,

m−2
∑

l=(m−1)−(m−1)ǫ

Xm,m,ν(m−1),l = − S′

2ν(1 − ν)m
+O

(

1

m2

)

(25)

Finally, pooling together equations 21, 22, 23, 24 and 25 gives the following result : ∀0 < ν < 1, when m→ ∞,

Pm,m,ν(m−1) = 1 −
4 + S′

2ν(1−ν)

m
+O

(

1

m2

)

(26)

B Proof of theorem 2

We set Dm,n,v,l,α(d) = (1 − rm,v,l+1,α(d))
(

n−1
l

)

pl
m,l+1(d)

(

(1 − pm,l+1(d))
n−l−1 − qn−l−1

m,l,α (d)
)

. Notice that for l <

d− 1, pm,l+1(d) = 0. Thus,

Pm,n,v(d) =

n−2
∏

l=d−1

min(v,m−l−1)
∏

α=max(0,v−l)

(1 −Dm,n,v,l,α(d))

= exp





n−2
∑

l=d−1

min(v,m−l−1)
∑

α=max(0,v−l)

log (1 −Dm,n,v,l,α(d))





We also define Xm,n,v,l(d) =
min(v,m−l−1)

∑

α=max(0,v−l)

log (1 −Dm,n,v,l,α(d)), such that Pm,n,v(d) = exp

(

n−2
∑

l=d−1

Xm,n,v,l(d)

)

.

Let’s set ρ = n/m, ν = v/(m − 1) and µ = d/m. We have 0 < ρ ≤ 1, 0 ≤ ν ≤ 1 and 0 < µ ≤ 1. We distinguish
the 3 cases : ν = 0 or ν = 1 or µ ≥ ρ ; 0 < ρ < 1 and 0 < ν < 1 ; ρ = 1 and 0 < ν < 1. We may use some results
obtained in the proof of theorem 2.

B.1 ν = 0 or ν = 1 or µ ≥ ρ

As Pm,n,v(d) = Pm,n,m−1−v(d), we only need to proove the result for v = 0, that is ν = 0. We have

Pm,n,0(d) =

n−2
∏

l=d−1

(

1 − (1 − rm,0,l+1,0(d))

(

n− 1

l

)

pl
m,l+1(d)

(

(1 − pm,l+1)
n−l−1 − qn−l−1

m,l+1,0

)

)

with rm,0,l+1,0(d) = min(0,l+1−d)−max(0,−d+1)+1
min(0,m−d)−max(0,−d+1)+1 . We have d ≥ 1, m ≥ d and l + 1 > d, thus all the min and max

equal 0, that is rm,0,l+1,0(d) = 1. Therefore, ∀0 < ρ ≤ 1 et ∀0 < µ ≤ 1,

Pm,ρm,0(µm) = Pm,ρm,m−1(µm) = 1 (27)

The case µ ≥ ρ is trivial : the product over l goes from d− 1 to n− 2. Then, if d ≥ n, the product is reduced to 1.
Thus, ∀µ ≥ ρ,

Pm,ρm,ν(m−1)(µm) = 1 (28)



B.2 0 < ρ < 1 and 0 < ν < 1

As rm,v,l+1,α ≤ 1 and qm,l+1,α ≤ 1 − pl+1,m, we have

Dm,n,v,l,α(d) ≤Wm,n,l(d) :=

(

n− 1

l

)

pl
m,l+1(d) (1 − pm,l+1(d))

n−l−1
.

We have

Wm,n+1,l(d)

Wm,n,l(d)
=

n

n− l

(

1 − l − d+ 2

m− d+ 1

)

=
n

n− l

(

m− l − 1

m− d+ 1

)

We can see that
Wm,n+1,l(d)
Wm,n,l(d) decreases with l. Therefore,

Wm,n+1,l(d)

Wm,n,l(d)
≥ Wm,n+1,d−1(d)

Wm,n,d−1(d)
=

n

n− d+ 1

m− d

m− d+ 1

= 1 +
(d− 1)(m− d+ 1) − (n− d+ 1)

(n− d+ 1)(m− d+ 1)

≥ 1 +
m− n

(n− d+ 1)(m− d+ 1)
because d− 1 ≥ 1

≥ 1

Thus, W increases with n, and is bounded by Wm,m,l(d). Then we have

Dm,n,v,l,α(d) ≤Wm,n,l(d) =

(

m− 1

l

)

pl
m,l+1(d) (1 − pm,l+1(d))

m−l−1

One the one hand, we have

(

m− 1

l

)

≤ e
1
24√
2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

1
(

l
m−1

)l (

1 − l
m−1

)m−l−1

On the other hand,

(

l − d+ 2

m− d+ 1

)l

=

(

(m− 1) l
m−1 −md−2

m

m−md−1
m

)l

≤
(

l
m−1 − d−2

m

1 − d
m

)l



and

(

1 − l − d+ 2

m− d+ 1

)m−l−1

=

(

m− l − 1

m− d+ 1

)m−l−1

=

(

(m− 1) − (m− 1) l
m−1

m−md−1
m

)m−l−1

≤
(

m−m l
m−1

m−m d
m

)m−l−1

≤
(

1 − l
m−1

1 − d
m

)m−l−1

Thus,

Dm,n,v,l,α(d) ≤ e
1
24√
2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

(

l
m−1−

d−2
m

1− d
m

)l (
1− l

m−1

1− d
m

)m−l−1

(

l
m−1

)l (

1 − l
m−1

)m−l−1

≤ e
1
24√
2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

(

1 −
d−2
m
l

m−1

)l
(

1

1 − µ

)m−1

We can see that

(

1 −
d−2
m
l

m−1

)l

increases with l. Thus,

(

1 −
d−2
m
l

m−1

)l

≤
(

1 −
d−2
m

n−2
m−1

)n−2

=

(

m(n− d) + (d− 2)

m(n− 2)

)n−2

≤
(

1 − µ

ρ

)n−2(

1 +
2

n− 2

)n−2(

1 +
d− 2

m(n− d)

)n−2

≤
(

1 − µ

ρ

)n−2

e2e
ρµ

ρ−µ

≤
(

ρ

ρ− µ

)2(

1 − µ

ρ

)ρ(m−1)

e2e
ρµ

ρ−µ



Moreover,
(

l
m−1

(

1 − l
m−1

))−1/2

is maximal when l = d− 1 or l = n− 2, with

1
√

d−1
m−1

(

1 − d−1
m−1

)

≤
√

2
√

µ(1 − µ)

1
√

n−2
m−1

(

1 − n−2
m−1

)

≤
√

3
√

ρ(1 − ρ)

Let’s set Cµ,ρ = max

( √
2√

µ(1−µ)
,

√
3√

ρ(1−ρ)

)

. then,

Dm,n,v,l,α(d) ≤ e2+
1
24√

2π

(

ρ

ρ− µ

)2

e
ρµ

ρ−µCµ,ρ
1√
m− 1

e−(m−1)(ρ log( ρ
ρ−µ )+log(1−µ))

Thus,

∣

∣

∣

∣

∣

n−2
∑

l=d−1

Xm,n,v,l

∣

∣

∣

∣

∣

≤ 2

n−2
∑

l=d−1

min(v,m−l−1)
∑

α=max(0,v−l)

Dm,n,v,l,α(d)

≤ 2
e2+

1
24√

2π

ρ2

ρ− µ
e

ρµ
ρ−µCµ,ρ(m− 1)

3
2 e−(m−1)(ρ log( ρ

ρ−µ )+log(1−µ))

and finally, ∀0 < µ < ρ < 1,

Pm,ρm,ν(m−1)(µm) ≥ 1 − 2
e2+

1
24√

2π

ρ2

ρ− µ
e

ρµ
ρ−µCµ,ρ(m− 1)

3
2 e−(m−1)(ρ log( ρ

ρ−µ )+log(1−µ)) (29)

in particular

Pm,ρm,ν(m−1)(µm) = o

(

1

m2

)

(30)

B.3 ρ = 1 and 0 < ν < 1

Let 0 < ǫ < 1/2. We cut the sum over l as follows : d−1 ≤ l < (m−1)−(m−1)ǫ and (m−1)−(m−1)ǫ ≤ l ≤ m−2.

– d− 1 ≤ l < (m− 1) − (m− 1)ǫ. From the previous section, we have

Dm,m,v,l,α(d) ≤ e
1
24√
2π

1√
m− 1

1
√

l
m−1

(

1 − l
m−1

)

(

1 −
d−2
m
l

m−1

)l
(

1

1 − µ

)m−1



(

1 −
d−2
m
l

m−1

)l

increases with l. Thus, l < (m− 1) − (m− 1)ǫ) implies

(

1 −
d−2
m
l

m−1

)l

≤
(

1 −
d−2
m

(m−1)−(m−1)ǫ

m−1

)(m−1)−(m−1)ǫ

= e((m−1)−(m−1)ǫ) log(1− (m−1)(d−2)
m((m−1)−(m−1)ǫ) )

= e((m−1)−(m−1)ǫ) log(1−µ(1− 2
µm ) (m−1)

m((m−1)−(m−1)ǫ) )

= e
((m−1)−(m−1)ǫ) log

“

(1−µ)
“

1− 1
1−µ

“

(m−1)ǫ

(m−1)−(m−1)ǫ − 2
µm

“

1− (m−1)ǫ

(m−1)−(m−1)ǫ

””””

≤ e
((m−1)−(m−1)ǫ) log(1−µ))− (m−1)ǫ

1−µ
+ 2

µ

“

1+ 1

(m−1)1−ǫ

”

≤ e
2+

√
2

µ e((m−1)−(m−1)ǫ) log(1−µ))− (m−1)ǫ

1−µ

Moreover, we have

1
√

l
m−1

(

1 − l
m−1

)

≤ 1
√

(m−1)−(m−1)ǫ

m−1

(

1 − (m−1)−(m−1)ǫ

m−1

)

=
1

√

(

1 − 1
(m−1)1−ǫ

)

1
(m−1)1−ǫ

≤
√

2 +
√

2(m− 1)
1
2− ǫ

2

Thus,

Dm,m,v,l,α(d) ≤
√

2 +
√

2e
1
24√

2π
e

2+
√

2
µ (m− 1)−

ǫ
2 e−(m−1)ǫ(log(1−µ)+ 1

1−µ ).

Therefore
∣

∣

∣

∣

∣

∣

(m−1)−(m−1)ǫ

∑

l=d−1

Xm,m,v,l(d)

∣

∣

∣

∣

∣

∣

≤ 2
√

2 +
√

2e
1
24√

2π
e

2+
√

2
µ (m− 1)2−

ǫ
2 e−(m−1)ǫ(log(1−µ)+ 1

1−µ )

and finally
∣

∣

∣

∣

∣

∣

(m−1)−(m−1)ǫ

∑

l=d−1

Xm,m,v,l(d)

∣

∣

∣

∣

∣

∣

= o

(

1

m2

)

(31)

– (m− 1) − (m− 1)ǫ ≤ l ≤ m− 2. The substitution k = m− 1 − l yields, for m sufficiently large,

m−2
∑

l=(m−1)−(m−1)ǫ

min(v,m−l−1)
∑

α=max(0,v−l)

log(1 −Dm,m,v,l,α(d)) =

(m−1)ǫ

∑

k=1

k
∑

α=0

log(1 −Dm,m,v,m−1−k,α(d))

We have

qm,m−k,α(d) = max

(

0,
α− d+ 1

m− d+ 1

)

+max

(

0,
k − α− d− 1

m− d+ 1

)



As α ≤ k ≤ (m − 1)ǫ and k − α ≤ k ≤ (m − 1)ǫ, there exists mǫ such that ∀m ≥ mǫ, qm,m−k,α(µm) = 0. In
addition, we have

rm,v,m−k,α(d) =
min(v,m+ α− k − d) −max(α, v − d+ 1) + 1

min(v,m− d) −max(0, v − d+ 1) + 1

The denominator is written in terms of ν and µ as min(ν(m− 1),m− µm) −max(0, ν(m− 1) − µm+ 1) + 1.
We can see that for m sufficiently large,

min(ν(m− 1),m− µm) −max(0, ν(m− 1) − µm+ 1) + 1 = mΦνµ + χνµ

where Φνµ = min(ν, 1 − µ) −max(0, ν − µ), and

χνµ =















1 if ν < µ and ν > 1 − µ
ν if ν ≥ µ and ν > 1 − µ
0 if ν ≥ µ and ν ≤ 1 − µ
1 − ν if ν < µ and ν ≤ 1 − µ

In the same way, as α ≤ k ≤ (m− 1)ǫ and k − α ≤ k ≤ (m− 1)ǫ, there exists m sufficiently large suche that

min(ν(m− 1),m+ α− k − µm) −max(α, ν(m− 1) − µm+ 1) + 1

= mΦνµ + χνµ − ξ(ν, µ, α, k) − δν,1−µψ(ν, k − α) − δν,µψ(1 − ν, α)

where

ξ(ν, µ, α, k) =















k if ν < µ and ν > 1 − µ
k − α if ν ≥ µ and ν > 1 − µ
0 if ν ≥ µ and ν ≤ 1 − µ
α if ν < µ and ν ≤ 1 − µ

and ψ(x, y) = max(0, y−x), that is ψ(ν, k−α) = max(0, k−α− ν) and ψ(1− ν, α) = max(0, α+ ν− 1). Thus,

rm,ν(m−1),m−k,α(µm) =
mΦνµ + χνµ − ξ(ν, µ, α, k) − δν,1−µψ(ν, k − α) − δν,µψ(1 − ν, α)

mΦνµ + χνµ

then

1 − rm,ν(m−1),m−k,α(µm) =
ξ(ν, µ, α, k) + δν,1−µψ(ν, k − α) + δν,µψ(1 − ν, α)

mΦνµ

(

1 +O

(

1

m

))

.

In addition, we have
(

m− 1

k

)(

m− k − d+ 1

m− d+ 1

)m−k−1(

1 − m− k − d+ 1

m− d+ 1

)k

=

(

k

1 − µ

)k
e−

k
1−µ

k!

(

1 +O

(

1

m

))

.

It yields

Dm,m,ν(m−1),m−k−1,α(µm) =
φ(ν, µ, α, k) + δν,1−µψ(ν, k − α) + δν,µψ(1 − ν, α)

mΞ(ν, µ)

(

k

1 − µ

)k
e−

k
1−µ

k!

(

1 +O

(

1

m

))

.

Let’s set Ξ(ν, µ, k) =
k
∑

α=0
ξ(ν, µ, α, k). We have

Ξ(ν, µ, k) =















k(k + 1) if ν < µ and ν > 1 − µ
k(k+1)

2 if ν ≥ µ and ν > 1 − µ
0 if ν ≥ µ and ν ≤ 1 − µ
k(k+1)

2 if ν < µ and ν ≤ 1 − µ



Let’s set Ψ(ν, k) =
k
∑

α=0
ψ(ν, k − α). We have Ψ(ν, k) = k(k+1)

2 − kν. We also have
k
∑

α=0
ψ(1 − ν, α) = Ψ(1 − ν, k).

Then we set fN (µ) =
N
∑

k=1

(k + 1)
(

k
1−µ

)k
e
− k

1−µ

(k−1)! and gN (µ) =
N
∑

k=1

(

k
1−µ

)k
e
− k

1−µ

(k−1)! . Thoses 2 series converge

∀0 < µ < 1, and their remainder term equal o
(

1
m

)

. We denote the limits

f(µ) =

∞
∑

k=1

(k + 1)

(

k

1 − µ

)k
e−

k
1−µ

(k − 1)!
and g(µ) =

∞
∑

k=1

(

k

1 − µ

)k
e−

k
1−µ

(k − 1)!
.

Finally, we set Tνµ =
∞
∑

k=1

(ξ(ν, µ, k) + δν,1−µψ(ν, k) + δν,µψ(1 − ν, k))
(

k
1−µ

)k
e
− k

1−µ

k! . Then,

Tνµ =



























f(µ) if ν < µ and ν > 1 − µ
f(µ)

2 + δν,µ

(

f(µ)
2 − (1 − ν)g(µ)

)

if ν ≥ µ and ν > 1 − µ

δν,µ

(

f(µ)
2 − (1 − ν)g(µ)

)

+ δν,1−µ

(

f(µ)
2 − νg(µ)

)

if ν ≥ µ and ν ≤ 1 − µ

f(µ)
2 + δν,1−µ

(

f(µ)
2 − νg(µ)

)

if ν < µ and ν ≤ 1 − µ

=



























f(µ) if ν < µ and ν > 1 − µ
f(µ)

2 + δν,µ

(

f(µ)
2 − (1 − µ)g(µ)

)

if ν ≥ µ and ν > 1 − µ

(δν,µ + δν,1−µ)
(

f(µ)
2 − (1 − µ)g(µ)

)

if ν ≥ µ and ν ≤ 1 − µ

f(µ)
2 + δν,1−µ

(

f(µ)
2 − (1 − µ)g(µ)

)

if ν < µ and ν ≤ 1 − µ

and we have
m−2
∑

l=(m−1)−(m−1)ǫ

Xm,m,ν(m−1),l(µm) = − Tνµ

mΦνµ
+O

(

1

m2

)

. (32)

Therefore, equations 31 and 32 give : ∀0 < ν < 1 and ∀µ < ρ,

Pm,m,ν(m−1)(µm) = 1 − Tνµ

mΦνµ
+O

(

1

m2

)

. (33)


