
HAL Id: hal-00588856
https://hal.science/hal-00588856

Submitted on 26 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight Bounds for Black Hole Search with Scattered
Agents in Synchronous Rings

Jérémie Chalopin, Shantanu Das, Arnaud Labourel, Euripides Markou

To cite this version:
Jérémie Chalopin, Shantanu Das, Arnaud Labourel, Euripides Markou. Tight Bounds for Black Hole
Search with Scattered Agents in Synchronous Rings. 2011. �hal-00588856�

https://hal.science/hal-00588856
https://hal.archives-ouvertes.fr

Tight Bounds for Black Hole Search with Scattered Agents in

Synchronous Rings∗

Jérémie Chalopin1, Shantanu Das1, Arnaud Labourel1, and Euripides Markou2

1LIF, CNRS & Aix Marseille University, 39 rue Joliot Curie, 13453 Marseille, France.

Email: {jeremie.chalopin,shantanu.das,arnaud.labourel}@lif.univ-mrs.fr
2Department of Computer Science and Biomedical Informatics, University of Central

Greece, Lamia, Greece. Email: emarkou@ucg.gr

Abstract

We study the problem of locating a particularly dangerous node, the so-called black hole
in a synchronous anonymous ring network with mobile agents. A black hole is a harmful
stationary process residing in a node of the network and destroying destroys all mobile agents
visiting that node without leaving any trace. Unlike most previous research on the black hole
search problem which employed a colocated team of agents, we consider the more challenging
scenario when the agents are identical and initially scattered within the network. Moreover, we
solve the problem with agents that have constant-sized memory and carry a constant number
of identical tokens, which can be placed at nodes of the network. In contrast, the only known
solutions for the case of scattered agents searching for a black hole, use stronger models where
the agents have non-constant memory, can write messages in whiteboards located at nodes or
are allowed to mark both the edges and nodes of the network with tokens. This paper solves
the problem for ring networks containing a single black hole. We are interested in the minimum
resources (number of agents and tokens) necessary for locating all links incident to the black
hole. We present deterministic algorithms for ring topologies and provide matching lower and
upper bounds for the number of agents and the number of tokens required for deterministic
solutions to the black hole search problem, in oriented or unoriented rings, using movable or
unmovable tokens.

Keywords: Distributed Algorithms, Fault Tolerance, Black Hole Search, Mobile Agents,
Anonymous Networks, Identical tokens, Finite State Automata

1 Introduction

1.1 Overview

We consider the problem of exploration in unsafe networks which contain malicious hosts of a
highly harmful nature, called black holes. A black hole is a node which contains a stationary
process destroying all mobile agents visiting this node, without leaving any trace [12]. In the
Black Hole Search (BHS) problem the goal for a team of agents is to locate the black hole within
finite time, with the additional constraint that at least one of the agents must remain alive. In

∗Part of this work was done while E. Markou was visiting the LIF research laboratory in Marseille, France.
Authors J. Chalopin, S. Das and A. Labourel are partially supported by ANR projects SHAMAN and ECSPER.

1

particular, at least one agent must survive and the surviving agents must have located (or marked)
all edges leading to the black hole. It is usually assumed that all the agents start from the same
location and have distinct identities. In this paper, we do not make such an assumption and study
the problem for identical agents starting from distinct locations within the network. We focus on
minimizing the resources required to find the black hole.

The only way of locating a black hole is to have at least one agent visiting it. However, since
any agent visiting a black hole is destroyed without leaving any trace, the location of the black
hole must be deduced by some communication mechanism employed by the agents. Four such
mechanisms have been proposed in the literature: a) the whiteboard model in which there is a
whiteboard at each node of the network where the agents can leave messages, b) the ‘pure’ token
model where the agents carry tokens which they can leave at nodes, c) the ‘enhanced’ token model
in which the agents can leave tokens at nodes or edges, and d) the time-out mechanism (only for
synchronous networks) in which one agent explores a new node while another waits for it at a
safe node.

The most powerful inter-agent communication mechanism is having whiteboards at all nodes.
Since access to a whiteboard is provided in mutual exclusion, this model could also provide the
agents a symmetry-breaking mechanism: If the agents start at the same node, they can get
distinct identities and then the distinct agents can assign different labels to all nodes. Hence in
this model, if the agents are initially co-located, both the agents and the nodes can be assumed
to be non-anonymous without any loss of generality. The BHS problem has been studied using
whiteboards in asynchronous networks, with the objective of minimizing the number of agents
required to locate the black hole. Note that in asynchronous networks, it is not possible to answer
the question of whether or not a black hole exists in the network, since there is no bound on
the time taken by an agent to traverse an edge. Assuming the existence of (exactly one) black
hole, the minimum sized team of co-located agents that can locate the black hole depends on
the maximum degree ∆ of a node in the network (unless the agents have a complete map of the
network). In any case, the prior knowledge of the network size is essential to locate the black hole
in finite time.

In the case of synchronous networks two co-located distinct agents can discover one black
hole in any graph by using the time-out mechanism, without the need of whiteboards or tokens.
Furthermore it is possible to detect whether a black hole actually exists or not in the network.
Hence, with co-located distinct agents, the issue is not the feasibility but the time efficiency of
black hole search (see [3, 4, 6, 7, 21, 22, 23] for example). However when the agents are scattered
in the network (as in our case), the time-out mechanism is not sufficient to solve the problem
anymore.

Most of the previous results on black hole search used agents whose memory is at least loga-
rithmic in the size of the network. This means that these algorithms are not scalable to networks
of arbitrary size. This paper considers agents modeled as finite automata, i.e., having a constant
number of states. This means that these agents can not remember or count the nodes of the
network that they have explored. In this model, the agents cannot have prior knowledge of the
size of the network. For synchronous ring networks of arbitrary size, containing exactly one black
hole, we present deterministic algorithms for locating the black hole using scattered agents each
having constant-sized memory. We are interested in minimizing both the number of agents and
the number of tokens required for solving the BHS problem.

We use the ‘pure’ token model. While the whiteboard model is commonly used in unsafe
networks, the token model has been mostly used for exploration of safe networks. Note that the
‘pure’ token model can be implemented with O(1)-bit whiteboards (assuming that only a constant
number of tokens may be placed on a node at the same time), while the ‘enhanced’ token model

2

can be implemented with O(log∆)-bit whiteboards. In the previous results using the whiteboard
model, the capacity of each whiteboard is always assumed to be of at least Ω(log n) bits, where
n is the number of nodes of the network. Unlike the whiteboard model, we do not require any
mutual exclusion mechanism at the nodes of the network. We distinguish movable tokens (which
can be picked up from a node and placed on another) from unmovable tokens (which can not be
picked up once they are placed on a node). For both types of tokens, we provide matching upper
and lower bounds on both the number of agents and the number of tokens per agent, required
for solving the black hole search problem in synchronous rings. Although our algorithms require
only a constant size memory for each agent, the impossibility results presented in this paper hold
even for agents having unbounded memory.

1.2 Related Works

The exploration of an unknown graph by one or more mobile agents is a classical problem initially
formulated in 1951 by Shannon [25] and it has been extensively studied since then (e.g., see
[1, 8, 19]). In unsafe networks containing a single dangerous node (black hole), the problem of
searching for it has been studied in the asynchronous model using whiteboards and given that all
agents initially start at the same safe node (e.g., [9, 11, 12, 13]). It has also been studied using
‘enhanced’ tokens in [10, 14, 26] and in the ‘pure’ token model in [17]. It has been proved that
the problem can be solved with a minimal number of agents performing a polynomial number of
moves. Notice that in an asynchronous network the number of the nodes of the network must be
known to the agents otherwise the problem is unsolvable [12]. If the network topology is unknown,
at least ∆ + 1 agents are needed, where ∆ is the maximum node degree in the graph [11]. It is
usually assumed that the network is bi-connected and the existence of one black hole is common
knowledge.

In asynchronous networks, with scattered agents (not initially located at the same node), the
problem has been investigated for arbitrary topologies [2, 18] in the whiteboard model while in
the ‘enhanced’ token model it has been studied for rings [15, 16] and for some interconnected
networks [26].

The issue of efficient black hole search has been studied in synchronous networks without
whiteboards or tokens (only using the time-out mechanism) in [3, 4, 6, 7, 21, 22, 23] under the
condition that all distinct agents start at the same node.

The problem has also been studied for co-located agents in asynchronous and synchronous di-
rected graphs with whiteboards in [5, 23]. In [4] they study how to locate and repair faults (weaker
than black holes) using co-located agents in synchronous known networks with whiteboards and
in [20] they study the problem in asynchronous networks with whiteboards and co-located agents
without the knowledge of incoming link. A different dangerous behavior is studied for co-located
agents in [24], where the authors consider a ring and assume black holes with Byzantine behavior,
which do not always destroy a visiting agent.

In all previous papers (apart from [17]) studying the Black Hole Search problem using tokens,
the ‘enhanced’ token model is used. The weakest ‘pure’ token model has only been used in [17]
for co-located agents in asynchronous networks. In all previous solutions to the problem using
tokens, the agents are assumed to have non-constant memory.

1.3 Our Contributions

Unlike previous studies on BHS, we consider the scenario of anonymous (i.e., identical) agents that
are initially scattered in an anonymous ring. We focus our attention on very simple mobile agents.
The agents have constant-size memory, they carry a constant number of identical tokens which

3

can be placed at nodes and, (apart from using the tokens), they can communicate with other
agents only when they meet at the same node. We consider four different scenarios depending on
whether the tokens are movable or not, and whether the agents agree on a common orientation.
We present deterministic optimal algorithms and provide matching upper and lower bounds for
the number of agents and the number of tokens required for solving BHS (See Table 1 for a
summary of results). Surprisingly, the agreement on the ring orientation does not influence the
number of agents needed in the case of movable tokens but is important in the case of unmovable
tokens.

The lower bounds presented in this paper are very strong in the sense that they do not allow
any trade-off between the number of agents and the number of tokens for solving the BHS problem.
In particular we show that:

• Any constant number of agents, even having unlimited memory, cannot solve the BHS
problem with less tokens than depicted in all cases of Table 1.

• Any number of agents less than that depicted in all cases of Table 1 cannot solve the BHS
problem even if the agents are equipped with any constant number of tokens and they have
unlimited memory.

Meanwhile our algorithms match the lower bounds, are time-optimal and since they do not re-
quire any knowledge of the size of the ring or the number of agents, they work in any anonymous
synchronous ring, for any number of anonymous identical agents (respecting the minimal require-
ments of Table 1).

Resources necessary
and sufficient

Tokens are Ring is # agents # tokens References in the paper

Movable
Oriented

3 1 Theorem 3.1, 3.2 and 4.1
Unoriented

Unmovable
Oriented 4 2 Theorem 3.1, 3.3 and 5.1

Unoriented 5 2 Theorem 3.1, 3.4 and 5.2

Table 1: Summary of results for BHS in synchronous rings

2 Our Model

Our model consists of an anonymous, synchronous ring network with k ≥ 2 identical mobile agents
that are initially located at distinct nodes called homebases. Each mobile agent owns a constant
number t of identical tokens which can be placed at any node visited by the agent. The tokens are
indistinguishable. Any token or agent at a given node is visible to all agents on the same node,
but not visible to agents on other nodes. The agents follow the same deterministic algorithm and
begin execution at the same time and being in the same initial state. In all our protocols a node
may contain at most two tokens at the same time. At any node of the ring, the ports leading
to the two incident edges are distinguishable and locally labelled (e.g. as 1 and 2) and an agent
arriving at a node knows the port-label of the edge through which it arrived. In the special case
of an oriented ring, the ports are consistently labelled as Left and Right (i.e., all ports going in
the clockwise direction are labelled Left). In an unoriented ring, the local port-labeling at a node
is arbitrary and each agent in its first step chooses one direction as Left and in every subsequent

4

step, it translates the local port-labeling at a node into Left and Right according to its chosen
orientation.

In a single time unit, each mobile agent completes one step which consists of the Look, Com-
pute and Move stages (in this order). During the Look stage, an agent obtains information about
the configuration of the current node (i.e., agents, tokens present at the node) and its own con-
figuration (i.e., the port through which it arrived and the number of tokens it carries). During
the Compute stage, an agent can perform any number of computations (i.e., computations are
instantaneous in our model). During the Move stage, the agent may put or pick up a token at the
current node and then either move to an adjacent node or remain at the current node. Since the
agents are synchronous they perform each stage of each step at the same time. We call a token
movable if it can be put on a node and picked up later by any mobile agent visiting the node.
Otherwise we call the token unmovable in the sense that, once released, it can occupy only the
node where it was released.

Formally we consider a mobile agent as a finite Moore automaton A = (S, S0,Σ,Λ, δ, φ),
where S is a set of σ ≥ 2 states among which there is a specified state S0 called the initial state;
Σ ⊆ D × Cv × CA is the set of possible configurations an agent can see when it enters a node;
Λ ⊆ D × {put, pick, no action} is the set of possible actions by the agent; δ : S × Σ → S is the
transition function; and φ : S → Λ is the output function. D = {left, right, none} is the set of
possible directions through which the agent arrives at or leaves a node (none represents no move
by the agent). Cv = {0, 1}σ ×{0, 1, 2} is the set of possible configurations at a node, consisting of
a bit string that denotes for each possible state whether there is an agent in that state, and an
integer that denotes the number of tokens at that node (in our protocols at most 2 tokens reside
at a node at any time). Finally, CA = {1, 2} × {0, 1} is the set of possible configurations of an
agent, i.e., its orientation and whether it carries any tokens or not.

Notice that all computations by the agents are independent of the size n of the network and
the number k of agents. The agents have no knowledge of n or k. The agents only know the
number of tokens they have. Since the agents are identical they face the same limitations on their
knowledge of the network. There is exactly one black hole in the network. An agent can start
from any node other than the black hole and no two agents are initially colocated∗. Once an agent
detects a link to the black hole, it marks the link permanently as dangerous (i.e., disables this
link). We require that at the end of a black hole search scheme, all links incident to the black hole
(and only those links) are marked dangerous and that there is at least one surviving agent. Note
that our definition of a successful BHS scheme is slightly different from the original definition,
since we consider finite state agents. The time complexity of a BHS scheme is the number of time
units needed for completion of the scheme, assuming the worst-case location of the black hole and
the worst-case initial placement of the scattered agents.

3 Impossibility Results

3.1 Oriented Rings

We first show that when the tokens are unmovable, any constant number of agents need at least
two tokens to solve the BHS problem.

Theorem 3.1 For any constant k, there exists no algorithm that solves BHS in all oriented rings
containing one black hole and k or more scattered agents, when each agent is provided with only

∗Since there is no symmetry breaking mechanism at a node, two agents starting at the same node and in the
same state, would behave as a single (merged) agent.

5

one unmovable token. The result holds even if the agents have unlimited memory.

Proof : Suppose there is a correct BHS algorithm that solves the problem with k or more agents
in rings of any size. If the algorithm does not require any agent to put down its token, such an
algorithm should work even if every agent puts its token on its homebase in the first step. So
without loss of generality, we assume that an agent puts down its token after executing a finite
number of steps of the algorithm (unless it encounters some agents, some tokens or the black
hole within this time). Now consider the behavior of this agent when placed on an infinite line
(with no other agent). Suppose the agent puts down its token at a distance of x (w.l.o.g. in
the left direction) from its homebase. Further let p be the maximum distance that the agent has
travelled from its homebase (in either direction) before it puts down its token (thus, x ≤ p). Now,
consider a ring R1 of size n = 2k(p + 1) with one black hole and k agents such that the agents
are initially placed at a distance of 2(p + 1) apart (see Figure 1(a)). The black hole is located in
the middle of a segment between two consecutive agents (i.e., it is at a distance (p+ 1) from the
closest agents). Since the agents start in the same state, they take the same actions and remain
in identical states (until they encounter another agent, or a token or the black hole). As long
as the agents do not travel any further than a distance p from their homebase, they will not see
anything different from the agent on the infinite line. Thus, each agent will put its token x ≤ p

places to the left of its homebase. Each agent will do so at the same time and in the same state.
During the rest of the algorithm, an agent can only move, observe the tokens and possibly mark
some link as dangerous. Due to the correctness of the algorithm, at some time τ , some agent will
mark one link leading to the black hole as dangerous. Up to time τ , all surviving agents behave
the same. If there are more than one surviving agent, all of them are in the same state β and still
at a distance of 2(p+1) apart. Thus, if one such agent marks a link as dangerous, the next agent
would mark a link at a distance of 2(p + 1) away. So, one of the agents would have incorrectly
marked a link—a contradiction to the correctness of the algorithm.

The remaining case to consider is when the agent that marks a link, is the last surviving agent.
In this case, we can construct another ring R2 of size n = 2(k + 1)(p + 1) with one black hole
and (k + 1) agents initially placed the same distance apart as in the ring R1 (see Figure 1(b)).
In an execution of the same algorithm on ring R2, after exactly τ time steps, there will be two
surviving agents both in the same state β and at a distance of 2(p + 1) from each other. Thus
the two agents will mark as dangerous, two distinct links at a distance of 2(p + 1) apart. Hence
the algorithm fails for the ring R2.

We now derive some lower bounds on the number of agents necessary to solve the BHS problem.
The following result proves that at least one agent needs to be sacrificed for detecting each link
leading to the black hole.

Lemma 3.1 During any execution of any BHS algorithm, if a link to the black hole is correctly
marked, then at least one agent must have entered the black hole through this link.

Proof : Suppose for the sake of contradiction that there exists a correct BHS algorithm such
that during any execution of this algorithm one link incident to the black hole is marked before
any agent traverses this link. Assume without loss of generality that the link is on the left of the
black hole. Consider the ring of size n which leads to this execution. Now, add a vertex on the
left of the black hole, obtaining a ring of size n+1, while keeping the same initial positions for the
agents. The agents will behave as in the ring of size n since they do not know the size of the ring
and will see exactly the same configuration. Hence they will mark the left link of the new node
as the link leading to the black hole. This contradicts with the correctness of the BHS algorithm.

6

2(p+1)

2(p+1)

2(p+1)

2(p+1)

p+1

p+1

R1

2(p+1)

2(p+1)

2(p+1)

2(p+1)

p+1

p+1

R2

2(p+1)

Figure 1: (a) An oriented ring R1 with k agents and a black hole, (b) a larger oriented ring R2

with k + 1 agents and one black hole.

To solve the BHS problem in a ring, both links leading to the black hole need to be marked
as dangerous. Thus, we immediately arrive at the following result.

Theorem 3.2 Two mobile agents carrying any number of movable (or unmovable) tokens each,
cannot solve the BHS problem in an oriented ring, even if the agents have unlimited memory.

When the tokens are unmovable, even three agents are not sufficient to solve BHS as shown below.

Theorem 3.3 Three mobile agents carrying a constant number of unmovable tokens each, cannot
solve the BHS problem in an oriented ring, even if agents have unlimited memory.

Proof : Suppose for the sake of contradiction that there exists an algorithm which solves the
BHS problem for three agents each carrying a constant number t of unmovable tokens. Let x and
y be two integers chosen by the adversary, such that 1 ≤ x, y ≤ 2t. Suppose the three agents are
initially placed on a ring of size 8t + x + y such that the distance between the first and second
and between the second and third agent is 4t. The black hole is between the third and the first
agent at a distance x from one of them and at distance y from the other (as in Figure 2). By
Lemma 3.1, at least one agent would fall into the black hole before any link to the black hole
is identified. Consider the phase P of the algorithm from the start until the first time an agent
falls into the black hole. Let us call this agent a. Assume without loss of generality that agent a
enters the black hole by going right (i.e., after traveling a distance of x from its homebase). First,
notice that the agents never meet each-other during phase P since they are always at a distance
less than 2t from their homebases.

Suppose for the sake of contradiction that after agent a has vanished, the two surviving agents
can identify the link used by agent a to enter the black hole without sacrificing another agent.
This is only possible if, whenever agent a explores a new node to the right, it leaves a message
encoding this fact and the only way to do this is by leaving another token. However, after t

explored nodes agent a runs out of tokens. The adversary may then set x to be any value between
t+1 and 2t. The remaining agents would not have enough information to determine the position
of the black hole from the left (without the sacrifice of another agent). However, by Lemma 3.1,
at least one agent must enter the black hole from the other link (on the right). Thus either one
of the links to the black hole is never marked or there are no surviving agents.

7

4t

1≤y≤2t

4t1≤x≤2t

Figure 2: Three agents with t unmovable to-
kens each in an oriented ring.

2t

4t+14t+1

1≤x≤2t1≤x≤2t

2t

Figure 3: Four agents with t unmovable tokens
each in an unoriented ring.

3.2 Unoriented Rings

In an unoriented ring, even four agents do not suffice to solve the BHS problem with unmovable
tokens. In fact we show a stronger result that it is not even possible to identify just one of the
links to the black hole, using four agents.

Theorem 3.4 In an unoriented ring, four agents carrying any constant number of unmovable
tokens each, cannot correctly mark any link incident to the black hole, even when the agents have
unlimited memory.

Proof : Suppose for the sake of contradiction that there exists an algorithm which marks one
of the links incident to the black hole, using four agents each carrying t unmovable tokens. For
some integer x, 1 ≤ x ≤ 2t, chosen by the adversary, suppose that the four agents and the black
hole are initially placed as in Figure 3. The distance between two consecutive agents is 4t + 1
and the distance between the black hole and the closest agent on each side is x. Thus, the initial
configuration is symmetric and the axis of symmetry crosses an edge and the black hole. The
adversary can choose the orientations of the agents in such a way that the two agents closest to
the black hole would fall into the black hole at the same time and before any agent meets another
agent. Thus, the two surviving agents would continue to be in symmetric situation and they
would take similar actions. Using the same argument as in proof of Theorem 3.3, the information
left by the vanished agent is not sufficient for one agent to correctly identify any link incident
to the black hole. Due to the symmetry of the resulting configuration (and the fact that agents
cannot meet on an edge), the two remaining agents can never meet and will always be in the
same state until they both fall into the black hole (without marking any of the links incident to
the black hole).

4 BHS Scheme with Movable Tokens

We first consider the case when the agents have movable tokens. If each agent has a movable
token it can perform a cautious walk [12]. The Cautious-Walk procedure consists of the following
actions: Put the token at the current node, move one step in the specified direction, return to
pick up the token, and again move one step in the specified direction (carrying the token). After

8

each invocation of the Cautious Walk, the agent looks at the configuration of the current node†

and decides whether to continue performing Cautious Walk.
We show that only three agents are sufficient to solve BHS, when they have one movable

token each. Algorithm 1 achieves this, both for oriented and unoriented rings. The procedure
Mark-Link permanently marks as dangerous the specified link.

Algorithm 1: BHS-Ring-1

/* BHS in any ring using k ≥ 3 agents having 1 movable token each */

repeat CautiousWalk (Left);
until current node has a token and no agent or next link is marked Dangerous;
Mark-Link(Left);
repeat CautiousWalk (Right);
until current node has a token and no agent or next link is marked Dangerous;
Mark-Link(Right);

Theorem 4.1 Algorithm 1 solves the BHS problem in an unoriented ring with k ≥ 3 agents
having constant memory and one movable token each.

Proof : Notice that all agents start at the same time executing Procedure CautiousWalk(dir)
and at each time they are at the same phase of this procedure. Since the only time an agent
checks the number of tokens it sees is after completing an execution of the procedure, if the agent
sees at least one token (not including the one it carries) then, either (i) there is another agent (i.e.,
they were traveling in opposite directions) or (ii) there is no other agent (which means that the
token was left by an agent that disappeared). In case (i) the agent continues executing Procedure
CautiousWalk(dir). In case (ii) it is clear that the black hole resides at the next node in direction
dir. In this case, the agent marks the edge to the black hole, reverses direction and repeats the
process. Since the agents start from distinct locations at the same time, exactly two agents would
fall into the black hole and both links to the black hole would be eventually marked.

5 BHS Scheme with Unmovable Tokens

For agents having only unmovable tokens, we use the technique of Paired Walk (called Probing in
[3]) for exploring new nodes. The procedure is executed by two co-located agents with different
roles and the same orientation. One of the agents called the leader explores an unknown edge
while the other agent, called follower waits for the leader. If the other endpoint of the edge is
safe, the leader immediately returns to the previous node to inform the follower and then both
move to this new node. On the other hand, if the leader does not return in two time steps, the
follower knows that the next node is the black hole. (See Procedure Paired Walk).

In order to use the Paired Walk technique, we need to gather two agents at the same node and
then break the symmetry between them, so that distinct roles can be assigned to each of them.
The basic idea of our algorithms is the following. We first identify the two homebases that are
closest to the black hole (one on each side). These homebases are called gates. The gates divide
the ring into two segments: one segment contains the black hole (thus, is dangerous); the other
segment contains all other homebases (and is safe). Initially all agents are in the safe part and
an agent can move to the dangerous part only when it passes through the gate node. We ensure
that any agent reaching a gate node, waits for a partner agent in order to perform the Paired

†Recall that only the tokens put on the node are counted, not the tokens carried by the agent itself.

9

Walk procedure. We now present two BHS algorithms, one for oriented rings and the other for
unoriented rings.

Procedure PairedWalk(isLeader)

if isLeader then

Move one step in specified direction;
Move one step back;
Move one step in specified direction;

else

WAIT(2);
if there is a leader then

Move one step in specified direction;

5.1 Oriented Rings

In an oriented ring, all agents may move in the same direction (i.e., Left). During the first phase
of the algorithm each agent places a token on its homebase, moves left until the next homebase
(i.e., next node with a token) and then returns to its homebase to put down the second token.
During this phase one agent will fall into the black hole and there will be a unique homebase
with a single token (a “gate” node) and the other homebases will have two tokens each. However,
the agents may not complete this phase of the algorithm at the same time. Thus during the
algorithm, there may be multiple homebases that contain a single token. Whenever an agent
reaches a “single token” node, it waits for a partner and then performs Paired Walk in the left
direction. One of the agents of a pair (the leader) eventually falls into the black hole and the other
agent (the follower) marks the edge leading to the black hole and returns to the gate node, waiting
for another partner. When another agent arrives at this node, these two agents perform Paired
Walk in the opposite direction to find the other incident link to the black hole. The algorithm
sketched below ensures that exactly one leader agent falls into the black hole from each side while
performing Paired Walk. (For the full algorithm, please see Algorithm 2)

Algorithm BHS-Ring-2:

During the algorithm, an agent a performs the following actions.

1. Agent a puts a token and moves left until the next node with a token (state CHECK-LEFT)
and then returns to its homebase v (state GO-BACK) and puts its second token.

2. If there are no other agents at v, the agent moves left until it reaches a node containing
exactly one token (state ALONE) and then waits for other agents arriving at this node
(state WAITING).

3. Otherwise, if there is a WAITING (or ALONE) agent b at node v, the agents a and b form
a (LEADER, FOLLOWER) pair.

4. If an ALONE agent meets a WAITING agent (and there are no other agents), they form a
(LEADER, FOLLOWER) pair.

5. A LEADER agent performs Paired Walk until it falls into the black hole or it sees a link
marked dangerous. In the latter case it moves to the gate node (state SEARCHER) and
participates in Paired Walk in the other direction (state RIGHT-FOLLOWER).

10

Algorithm 2: BHS-Ring-2

/* BHS in an Oriented Ring, using k ≥ 4 agents having 2 unmovable tokens each */

/* Assumptions: All agents have the same initial state START. */

START:
Place token at homebase; State :=CHECK-LEFT;

CHECK-LEFT:
Move Left until the next node that contains a token; State :=GO-BACK ;

GO-BACK: /* Go home to put the second token */

Move Right until the next node that contains a token; Put the second token;
if there is a LEADER agent then State :=LEFT-SEARCHER;
else if there is a ALONE agent or a WAITING agent then State :=FOLLOWER;
else State :=ALONE;

ALONE: /* Move alone to the node with single token */

Move Left until a node that contains either only one token or two tokens and a GO-BACK agent ;
if there is a RIGHT-LEADER agent then State :=RIGHT-FOLLOWER;
else if there is a GO-BACK agent and no WAITING agent then State :=LEADER;
else if there is a WAITING agent and no GO-BACK agent then State :=FOLLOWER;
else if there are no other agents then State :=WAITING;

WAITING: /* Wait for a partner agent */

Wait until other agents arrive at the current node;
if there is a LEADER agent then State :=LEFT-SEARCHER;
else if there is a GO-BACK agent or ALONE agent then State :=LEADER;
else if there is a RIGHT-LEADER agent then State :=RIGHT-FOLLOWER;

LEADER: /* Perform Paired walk with Follower agent */

while the left link is not marked dangerous do PairedWalk (1) in Left direction;
if the left link is marked dangerous then State :=RIGHT-SEARCHER;

FOLLOWER: /* Perform Paired walk with Leader agent */

while there is a LEADER agent and the left link is not marked BH-link do

PairedWalk (0) in Left direction;
if the LEADER did not return during the last step then

Mark-Link (Left); State :=RIGHT-LEADER; exit loop;

LEFT-SEARCHER: /* Move Left to become a Right-Follower */

while not at a node with one token do Move Left;
Wait until there is a RIGHT-LEADER agent; State :=RIGHT-FOLLOWER;

RIGHT-SEARCHER: /* Move Right to become a Right-Follower */

while not at a node with one token do Move Right;
if there is a RIGHT-LEADER agent then State :=RIGHT-FOLLOWER;

RIGHT-LEADER: /* Perform Paired walk in the other direction */

while not at a node with one token do Move Right;
Wait until there is another agent; while true do PairedWalk (1) in Right direction;

RIGHT-FOLLOWER: /* Perform Paired walk in the other direction */

while there is a RIGHT-LEADER agent do

PairedWalk (0) in Right direction;
if the RIGHT-LEADER did not return during the last step then Mark-Link (Right);
State :=HALT;

11

Algorithm 3: BHS-Ring-3

/* BHS in Unoriented Ring, using k ≥ 5 agents having 2 unmovable tokens each */

START:
Place token at homebase; State :=CHECK-LEFT;

CHECK-LEFT:
Move Left until the next node that contains a token; State :=CHECK-RIGHT ;

CHECK-RIGHT:
Move Right until the next node that contains a token; Move Right again until the next node that
contains some token; State :=GO-BACK ;

GO-BACK: /* Go home to put the second token */

Move Left until the next node that contains one token; Put the second token;
if there is a RIGHT-LEADER agent then State :=RIGHT-FOLLOWER;
else if there is a LEADER agent then State :=SEARCHER;
else if there is a ALONE agent or a WAITING agent then State :=FOLLOWER;
else State :=ALONE;

ALONE: /* Move alone to the node with single token */

Move Left until a node that contains either only one token or two tokens and a GO-BACK agent ;
if there are no other agents then State :=WAITING;
if there is a RIGHT-LEADER agent then State :=RIGHT-FOLLOWER;
else if there is a LEADER agent then State :=SEARCHER;
else if there is a WAITING agent and no GO-BACK agent then

if there is another ALONE agent having same orientation as the WAITING agent then

State :=SEARCHER;
else

State :=FOLLOWER;

else if there is a GO-BACK agent and no WAITING agent then

if there is another ALONE agent having same orientation as the GO-BACK agent then

State :=SEARCHER;
else

State :=LEADER;

else State :=SEARCHER;

WAITING: /* Wait for a partner agent */

Wait until other agents arrive at the current node;
if there is a RIGHT-LEADER agent then State :=RIGHT-FOLLOWER;
else if there is a GO-BACK or ALONE agent a and no LEADER agent then

if there is another WAITING agent having same orientation as agent a then

State :=SEARCHER;
else

State :=LEADER;

else State :=SEARCHER;

12

Algorithm 4: Algorithm BHS-Ring-3 (Continued)

LEADER:
while the left link is not marked dangerous do PairedWalk (1) in Left direction;
if the left link is marked dangerous then State :=SEARCHER;

FOLLOWER:
Align orientation with the LEADER agent;
while the left link is not marked BH-link do

PairedWalk (0) in Left direction;
if the LEADER did not return during the last step then

Mark-Link (Left); State :=RIGHT-LEADER; Exit Loop;

SEARCHER: /* Go to the gate node to become RIGHT-FOLLOWER */

while not at a node with one token do Move Right; State :=RIGHT-FOLLOWER;

RIGHT-LEADER: /* Find a Follower and perform Paired Walk */

while not at a node with one token do Move Right;
if there is no other agent then

repeat Move Right; Wait (2);
until the current node contains one token

if there is no other agent then

repeat Move Left;
until the current node contains one token

while true do PairedWalk (1) in Right direction;

RIGHT-FOLLOWER:
Wait until there is a RIGHT-LEADER agent; Align orientation with the RIGHT-LEADER agent;
while there is a RIGHT-LEADER agent do

PairedWalk (0) in Right direction;
if the RIGHT-LEADER did not return during the last step then

Mark-Link (Right); Exit loop;

13

6. A FOLLOWER agent performs Paired Walk until the corresponding leader falls into the
black hole or they see a link marked dangerous. In the former case, the agent (state RIGHT-
LEADER) moves to the gate node and waits for a partner to start Paired Walk in the other
direction.

7. When aWAITING agent ameets a RIGHT-LEADER, agent a becomes a RIGHT-FOLLOWER
and participates in the Paired Walk.

8. The algorithm has some additional rules to ensure that no two LEADERs are created at
the same node at the same time. No agent becomes a LEADER if there is already another
LEADER at the same node (In this case, the agent become a SEARCHER and eventually
a RIGHT-FOLLOWER when it reaches the gate node).

When the algorithm BHS-Ring-2 is executed by four or more agents starting from distinct loca-
tions, the following properties hold:

• Exactly one CHECK-LEFT agent falls into the black hole.

• There is at least one LEADER agent and each LEADER has exactly one FOLLOWER.

• No two LEADER agents are created at the same time on the same node and thus, two
LEADERs can not reach the black hole at the same time.

• There is exactly one RIGHT-LEADER agent and it falls into the black hole through the
edge on the left side of the black hole.

• An agent in any state other than CHECK-LEFT, LEADER, or RIGHT-LEADER, never
enters the black hole.

Theorem 5.1 Algorithm BHS-Ring-2 correctly solves the black hole search problem in any ori-
ented ring with 4 or more agents having constant memory and carrying two unmovable tokens
each.

Proof : (Sketch) : Due to the above properties we know that at most three agents fall into the
black hole. Thus there is at least one surviving agent at the end of the algorithm. Since there
is at least one (LEADER,FOLLOWER) pair moving in the left direction, one of the links to
the black hole is discovered and marked by this pair of agents. The FOLLOWER agent of this
pair becomes the RIGHT-LEADER. At this point, only two agents have been destroyed (one
LEADER and one CHECK-LEFT agent). Thus there exists at least one other agent and this
agent will eventually reach the gate node, i.e., the only node having a single token (Note that an
agent may wait only at node containing a single token). Thus, this agent will become the RIGHT-
FOLLOWER and perform a Paired Walk with the RIGHT-LEADER to discover the other link
to the black hole.

5.2 Unoriented Rings

For unoriented rings, we need at least 5 agents with two unmovable tokens each. The algorithm
for unoriented rings with unmovable tokens is similar to the one for oriented rings, except that
each agent chooses an orientation. When two agents meet and one has to follow the other, we
assume that the state of the agent contains information about the orientation of the agent (i.e.,
the port at the current node considered by the agent to be Left). Thus, when two agents meet

14

at a node, one agent (e.g. the Follower) can orient itself according to the direction of the other
agent (e.g. the Leader).

Algorithm BHS-Ring-3:

Each agent puts one token on its homebase, goes on its left until it sees another token and then
returns to its homebase. Now the agent goes on its right until it sees a token and then returns
again to the homebase. The agent now puts its second token on its homebase. During this
operation exactly two agents will fall into the black hole. Each surviving agent walks to its left
until it sees a node u with a single token. At this point the agent has to wait, since either there is
a black hole ahead, or u is the homebase of an agent b that has not returned yet to put its second
token.

It may happen that two agents arrive at node u at the same time from opposite directions. In
this case, both agents can wait until another agent arrives. Note that in this case, the ring is safe
on both directions until the next homebase and thus, an agent b (whose homebase is u) would
arrive within a finite time. When agent b arrives, only one of the waiting agents (the one having
the same orientation as b) changes to state LEADER and pairs-up with agent b. A similar case
occurs when an agent a is waiting and two agents (both ALONE) arrive from different directions.
Among these two agents, the one having the same orientation as agent a pairs up with agent a

and starts the Paired Walk procedure.
As before there can be multiple leader-follower pairs performing Paired Walk in different parts

of the ring. Note that no two LEADERs can be created at the same node at the same time. Thus,
two LEADERs may not enter into the black hole at the same time from the same direction. After
the first LEADER enters the black hole from one direction, the corresponding FOLLOWER agent
marks the link as a dangerous link and thus, no other agents enter the black hole from the same
direction.

We ensure that each LEADER agent has exactly one FOLLOWER agent. When the LEADER
agent falls into the black hole, the corresponding FOLLOWER agent becomes the RIGHT-
LEADER. The objective of the RIGHT-LEADER is to discover the other link incident to the
black hole. The RIGHT-LEADER agent moves to the other end of the ring until the node with
one token. Since we assume there are at least five agents, there must be either an unpaired agent
at one of the gates or, there must be another (LEADER, FOLLOWER) pair that has already
detected and marked the other link leading to the black hole. If the RIGHT-LEADER does
not find a RIGHT-FOLLOWER at the first gate, it performs a slow walk to the other gate and
returns again to the former gate. During the slow walk, it moves at one-third the speed of any
other agent (i.e., waits two steps after each move). This ensures that it will meet another agent
in at least one of the two gates. These two agents now starts the Paired Walk procedure in the
other direction.

A complete description of the algorithm can be found in Algorithm 3. The following properties
can be verified:

1. Exactly two agents fall into the black hole before placing their second token.

2. There is at least one LEADER and each LEADER has a corresponding FOLLOWER.

3. There is either one or two RIGHT-LEADER agents (with opposite orientations).

4. At most one LEADER or RIGHT-LEADER enters the black hole from each direction.

5. An agent in any other state never enters the black hole after placing its second token.

15

Due to the above properties, we know that at most 4 agents may fall into the black hole. We
now show that both links to the black hole are actually discovered and marked as dangerous,
during the algorithm.

Theorem 5.2 Algorithm BHS-Ring-3 correctly solves the black hole search problem in unoriented
ring with 5 or more agents having constant memory and carrying two unmovable tokens each.

Proof : (Sketch) Let v be the black hole and u and w be the gates. Assume nodes u, v and w

appear in this order (say, in clockwise direction) with only non-homebase nodes between u and
v and between v and w. Let us denote by d(u, v), d(v,w) and d(w, u) the distances between
these nodes in the clockwise direction. Due to Property 2 above we know that there is at least
one LEADER. Suppose there are two LEADERs moving in opposite directions. In this case,
the two LEADER agents will fall into the black hole through distinct links, while executing the
Paired Walk procedure. Thus, both links to the black hole will be marked by the corresponding
FOLLOWER agents and BHS is solved.

The second scenario to consider is when there are multiple LEADER agents but they all have
the same orientation. In this case, no two LEADERs are created at the same node at the same
time. Only the first LEADER to reach the black hole falls into it and thus there will be exactly
one RIGHT-LEADER agent (the FOLLOWER of the agent that falls into a black hole becomes
RIGHT-LEADER). All the other LEADERs become RIGHT-FOLLOWER and they go to one
of the gate nodes (say u) and wait for the RIGHT-LEADER. We need to show that the RIGHT-
LEADER would meet at least one RIGHT-FOLLOWER. There is a time difference of at most
d(w, u) between the RIGHT-LEADER and any RIGHT-FOLLOWER. The RIGHT-LEADER
traverses a path of length 2(d(u, v) − 1) + 2d(w, u) before reaching the node u for the second
time. During this time any RIGHT-FOLLOWER agent would have certainly reached node u

and would be waiting for the RIGHT-LEADER. Thus, the RIGHT-LEADER meets at least one
RIGHT-FOLLOWER and they perform the Paired Walk in the other direction to discover the
other link to the black hole.

The third and only other possible scenario is when there is only one LEADER agent (and
thus only one FOLLOWER). We know that one of the links to the black hole would be discov-
ered by this (LEADER, FOLLOWER) pair. The FOLLOWER agent would eventually become
RIGHT-LEADER. We need to show that the RIGHT-LEADER would meet at least one RIGHT-
FOLLOWER. Suppose (w.l.o.g.) that the RIGHT-LEADER was created on the same side of the
black hole as node u. Since there are at least 5 agents, there must be an unpaired agent waiting
for a partner. The WAITING agent could be waiting either at node u or at node w. Note that
the RIGHT-LEADER moves from u to w, waiting two steps after each edge traversal. This takes
time 3d(u,w). Since no other agent makes more than 3d(u,w) edge traversals before it starts
waiting at the gate, the RIGHT-LEADER is guaranteed to find at least one waiting agent either
at node w or at u when it returns. Thus this agent becomes RIGHT-FOLLOWER and joins the
Paired Walk procedure. Hence, the second link to the black hole would be discovered by this pair
of agents.

6 Conclusions

The results of this paper determine the minimum resources necessary for locating a black hole
in synchronous ring networks. We presented algorithms that use the optimal number of agents
and the optimal number of tokens per agent, while requiring only constant-size memory. Thus,
all resources used by our algorithms are independent of the size of the network. Notice that

16

all the algorithms presented in the paper have a time complexity of O(n) steps, so, they are
asymptotically optimal for BHS in a ring. The main question answered by the paper is how the
limitation on the memory of the agents influences the resources required for solving BHS. We
show that the constant memory limitation has no influence on the resource requirements since the
(matching) lower bounds hold even if the agents have unlimited memory. It would be interesting
to investigate if similar tight results hold for BHS in other network topologies. We would also like
to investigate the difference between ‘pure’ and ‘enhanced’ token model in terms of the minimum
resources necessary for black hole search in higher degree networks.

References

[1] M. A. Bender and D. Slonim. The power of team exploration: Two robots can learn unlabeled
directed graphs. In Proceedings of 35th Annual Symposium on Foundations of Computer
Science, pages 75–85, 1994.

[2] J. Chalopin, S. Das, and N. Santoro. Rendezvous of mobile agents in unknown graphs with
faulty links. In Proceedings of 21st International Conference on Distributed Computing, pages
108–122, 2007.

[3] C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a network using
multiple agents. In Proceedings of 10th International Conference on Principles of Distributed
Systems, LNCS 4305, pages 320–332, 2006.

[4] C. Cooper, R. Klasing, and T. Radzik. Locating and repairing faults in a network with
mobile agents. Theoretical Computer Science, 411(14-15):1638–1647, 2010.

[5] J. Czyzowicz, S. Dobrev, R. Kralovic, S. Miklik, and D. Pardubska. Black hole search in
directed graphs. In Proceedings of 16th International Colloquium on Structural Information
and Communication Complexity, pages 182–194, 2009.

[6] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for a black
hole. Fundamenta Informaticae, 71(2,3):229–242, 2006.

[7] J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in synchronous
tree networks. Combinatorics, Probability & Computing, 16(4):595–619, 2007.

[8] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph Theory,
32(3):265–297, 1999.

[9] S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro. Optimal
search for a black hole in common interconnection networks. Networks, 47(2):61–71, 2006.

[10] S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring a dangerous unknown graph
using tokens. In Proceedings of 5th IFIP International Conference on Theoretical Computer
Science, pages 131–150, 2006.

[11] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole in arbitrary
networks: Optimal mobile agents protocols. Distributed Computing, 19(1):1–19, 2006.

[12] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole in an
anonymous ring. Algorithmica, 48:67–90, 2007.

17

[13] S. Dobrev, P. Flocchini, and N. Santoro. Improved bounds for optimal black hole search
in a network with a map. In Proceedings of 10th International Colloquium on Structural
Information and Communication Complexity, pages 111–122, 2004.

[14] S. Dobrev, R. Kralovic, N. Santoro, and W. Shi. Black hole search in asynchronous rings
using tokens. In Proceedings of 6th Conference on Algorithms and Complexity, pages 139–150,
2006.

[15] S. Dobrev, N. Santoro, and W. Shi. Scattered black hole search in an oriented ring using
tokens. In Proceedings of IEEE International Parallel and Distributed Processing Symposium,
pages 1–8, 2007.

[16] S. Dobrev, N. Santoro, and W. Shi. Using scattered mobile agents to locate a black hole in
an un-oriened ring with tokens. International Journal of Foundations of Computer Science,
19(6):1355–1372, 2008.

[17] P. Flocchini, D. Ilcinkas, and N. Santoro. Ping pong in dangerous graphs: Optimal black
hole search with pure tokens. In Proceedings of 22nd International Symposium on Distributed
Computing, LNCS 5218, pages 227–241, 2008.

[18] P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Map construction and exploration
by mobile agents scattered in a dangerous network. In Proceedings of IEEE International
Symposium on Parallel & Distributed Processing, pages 1–10, 2009.

[19] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration. Networks,
48:166–177, 2006.

[20] P. Glaus. Locating a black hole without the knowledge of incoming link. In Proceedings
of 5th International Workshop on Algorithmic Aspects of Wireless Sensor Networks, pages
128–138, 2009.

[21] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation results for
black hole search in arbitrary graphs. Theoretical Computer Science, 384(2-3):201–221, 2007.

[22] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for black hole
search problems. Networks, 52(4):216–226, 2008.

[23] A. Kosowski, A. Navarra, and C. Pinotti. Synchronization helps robots to detect black
holes in directed graphs. In Proceedings of 13th International Conference on Principles of
Distributed Systems, pages 86–98, 2009.

[24] R. Kràlovic and S. Mikl̀ık. Periodic data retrieval problem in rings containing a malicious
host. In Proceedings of 17th International Colloquium on Structural Information and Com-
munication Complexity, pages 156–167, 2010.

[25] C. E. Shannon. Presentation of a maze-solving machine. In Proceedings of 8th Conference of
the Josiah Macy Jr. Found. (Cybernetics), pages 173–180, 1951.

[26] W. Shi. Black hole search with tokens in interconnected networks. In Proceedings of 11th
International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages
670–682, 2009.

18

