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Accurate, non-oscillatory, remeshing schemes for particle methods

A. Magni and G.-H. Cottet

Université de Grenoble and CNRS, Laboratoire Jean Kuntzmann,

BP 53, 38041 Grenoble Cédex, France

Abstract

In this article we propose and validate new remeshing schemes for the simulation of transport
equations by particle methods. Particle remeshing is a common way to control the regularity
of the particle distribution which is necessary to guarantee the accuracy of particle methods in
presence of strong strain in a flow. Using a grid-based analysis, we derive remeshing schemes
that can be used in a consistent way at every time-step in a particle method. The schemes
are obtained by local corrections of classical third order and fifth order interpolation kernels.
The time-step to be used in the resulting push-and-remesh particle method is determined on
the basis of rigorous bounds and can significantly exceed values obtained by CFL conditions in
usual grid-based Eulerian methods. In addition, we extend the analysis of [5] to obtain TVD
remeshing schemes that avoid oscillations of remeshing formulas near sharp variations of the
solution. These methods are illustrated in several flow conditions in 1D, 2D and 3D.

Keywords : particle methods, transport equation, remeshing scheme, TVD method, level
set method, Navier-Stokes equations.

1 Introduction

The accurate simulation of transport equations is a central issue in many problems in physics or

engineering. The transported quantity can either be a passive scalar or vector (concentration,

density, marker of a Lagrangian interface) or produce a feedback to the velocity vector and other

quantities of interest (momentum or energy in fluid mechanics, charge density in plasma physics).

The case of a Lagrangian interface, in particular inside a variable density fluid, is of particular

interest. An interface can be just a marker indicating a free surface or interact with the fluid itself,

for example in a curvature driven motion or in reacting fluids where reactions take place at the

interface between different species.

The production of small scales is a typical feature of transport in many important applications e.g

in turbulent, free surface or reactive flows. A great deal of work has therefore been devoted to
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the derivation of methods that are at the same time accurate, oscillation-free and conservative. In

particular, recent works have been done where Lagrangian markers are used to improve or correct

grid-based methods to capture interface dynamics in a conservative and accurate way. In [12] sub-

grid particles are introduced near the interface to improve the accuracy of finite-difference level set

methods. [25] describes a Volume-of-Fluid method for advection problems designed in the same

spirit for general transport equations. These works take advantage of the exact Lagrangian solution

to advection equation in order to limit the numerical diffusion of grid-based method and enforce

mass conservation. In [15, 10], on the other hand, the use of regular remeshed particle methods was

advocated to ensure an efficient treatment of advection equations. By remeshed particles methods,

we mean particle methods where particles are simply advected and remeshed on a regular grid

through high order interpolation kernels.

Particle methods are Lagrangian techniques that have been designed for advection-dominated phys-

ical problems. Among the features that are generally acknowledged for these methods are the lack

of numerical dissipation and the robustness due to the absence of Courant type stability condition.

A well recognized drawback is the potential accuracy deterioration resulting form high distortion

in the flow. In particle methods macroscopic quantities are recovered by regularizing particle into

overlapping cores, and the overlapping ratio should in principle increase as the particle spacing is

reduced. In practice this condition is rarely satisfied and flow distortions result in a deterioration

of the accuracy of the method. A now commonly used remedy to this problem is the periodic

remeshing of particles in a way that conserves as much as possible the physical invariants of the

flow. Although particle remeshing was already used in some of the early simulations using particles,

systematic and generic use of remeshing was first used in [17] to deliver high resolution analysis

of a flow past a two-dimensional obstacle. Three-dimensional simulations using remeshed particle

methods followed [7, 21, 6, 24]. A parallel library of particle-mesh programs has been designed

[22] and used for extensive simulations of vortex dynamics [3, 4]. Remeshed particle methods also

enable the use of Adaptive Mesh Refinement [1, 2] and particle-grid domain decomposition [20, 4].

Obviously, remeshing comes at the expense of introducing numerical errors in methods that, for

advection problems with constant coefficient, are otherwise exact. The truncation errors related

to remeshing can be measured on the basis of the conservation of the invariants of the advected

quantities [9]. Particle remeshing is performed through interpolation formulas that can be derived

to conserve as many of these invariants as desired. In practical implementation of the method it

turns out that the time-scales which control the particle advection schemes and on which particle

remeshing is done are both given in terms of the flow shear. Although in principle remeshing should

be done on a time scale larger than the time step used to advect particles, with a ratio increasing
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as the particle resolution increases, in practice it is performed every ”few” time steps, and often at

every time step. In such implementations of particle methods, which we will call remeshed particle

methods, it is clearly necessary to revisit the numerical analysis of the method.

In [11, 26] remeshed particle methods were rewritten as finite-difference methods and analyzed

as such. This analysis in particular led to a new understanding of remeshed particle methods

for nonlinear conservation laws. In [13] a similar analysis is used to take into account remeshing

in the solution of diffusion for viscous terms. The work of [11] was further pursued in [5] with

the objective of understanding and overcoming oscillations generated by remeshing formulas near

discontinuities. TVD remeshing formulas were derived for both linear and nonlinear advection

equations. The present paper is a continuation of this work, with a particular emphasis on the

design of non-oscillatory remeshing formulas for linear advection problems with large time-steps.

The outline of the paper is as follows. In section 2 we recall our previous work on the finite-difference

interpretation of remeshed particle methods. In section 3 we derive corrections formulas to ensure

consistency of second and fourth order remeshing formulas for large time steps. In section 4 we

derive limiting techniques to avoid oscillations generated by sharp variations of the solution. In

section we describe alternate direction techniques to extend the 1D formulas to multi-dimensional

problems and we sketch the overall algorithm of the method. Finally section is devoted to numerical

illustrations of the methods designed in sections 3 to 5. Finally, conclusions and directions for future

work are given in section 7.

2 Previous work

Throughout this work, we assume that particles are initialized and remeshed on a uniform grid of

grid-size h. In [5, 26] an analysis of remeshed particle methods in terms of grid-based schemes was

given, and is summarized below.

Consider the constant coefficient linear advection equation in 1 space dimension : ∂u/∂t+a∂u/∂x =

0, with a > 0. The advection of particles over a time-step ∆t followed by a remeshing over the

nearest grid points conserving the m first moments of the solution leads to the following formula

for each grid point i :

un+1
i =

∑

−[m−1

2
]≤j≤[m

2
]

wju
n
i−j−l , wj = cj

∏

−[m−1

2
]≤k 6=j≤[m

2
]

(λ′ − k), (1)
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where the integer l is defined by l = [a∆t/h], λ′ = a∆t/h− l and

ck = (−1)[m−1

2
]+k ([

m− 1

2
] + k) ! ([

m

2
] + k) !.

Not surprisingly, if λ = a∆t/h ≤ 1 then λ′ = λ is the usual CFL number, and we obtain general

finite-difference formulas for the linear advection equation [23]. For m = 3 we obtain w0 = 1 −
λ2, w±1 = ∓λ(1∓ λ)/2 - the Lax-Wendroff scheme. If λ > 1, the resulting solution consists of the

exact solution of the equation over a time-step ∆t′ = lh/a followed by a finite difference scheme of

order m− 1 over the time interval ∆t−∆t′.

More generally, consider the advection equation

∂u

∂t
+

∂

∂x
(au) = 0. (2)

where a = a(x, t). Assume at a given time-step tn particles carrying the local values of u move

with a velocity ã(x) and then are remeshed by a formula which conserves the m first moments of u.

Then it is proved in [26] that, if ã and u are smooth enough and λ ≤ 1/2, the values un+1
j obtained

at the grid points satisfy

un+1
j =

m−1∑

i=0

(−1)i∆t
i

i!

∂

∂xi
(ãiu)(xj , tn) +O(hm). (3)

In particular, if particles are advected by a second order Runge-Kutta scheme, with ã(x) = a(x+

δta(x)/2) and m = 3, the scheme is second order.

Consider finally the case of non-linear systems of the form

Ut + div(G(U)
⊗
U) = 0. (4)

In that case, particle methods consist of sampling U on particles advected with velocity G(U) and

constant strength:

U(x) ≃
∑

p

αpδ(x− xp) , ẋp = G(Up). (5)

The strength of particles combines local volumes vp and local values Up of U : αp = vpUp. From

the conservative nature of (5), particle strengths are constant, but their volumes and local values

evolve according to

v̇p = divG(Up)vp , U̇p = −divG(Up)Up. (6)

A second order in time and space remeshed particle methods is obtained as follows. At time tn

particles xp are located on a regular grid. Particle velocities at time tn + ∆t/2 are evaluated on

the basis of (6) by the following formula:

Gn+1/2
p = G

[
Un
p

(
1− ∆t

2
divGp

)]
. (7)
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In the above formulas, divGp is evaluated by second order centered finite-differences of the quantity

G(U) at the particle (coinciding with a grid point) xp. Then, according to (5), particles move with

the velocities G
n+1/2
p :

xn+1
p = xnp +∆tGn+1/2

p

and are finally remeshed with a three points formula preserving the three first moments of the

particle distribution. The resulting scheme is second order in time and space.

For systems of conservation laws, U is a vector whose components are the density, the momentum

and the energy. The system (4) is complemented by a pressure gradient in the right hand side.

The complete system can then be solved in an Euler-Lagrange fashion by alternating the particle

scheme just described and a finite-difference scheme for the gradient part of the system on the grid

[26].

In [5] this analysis is further used to derive limiters in order to remove oscillations that are produced

in remeshed particle methods near discontinuities. In this reference, limiters inspired by finite-

difference formulas, are derived under CFL conditions for constant coefficient linear equations and

for the Burgers equation, and turned into non linear remeshing schemes.

Figure 2 illustrates the effect of the remeshing schemes with limiters for the Burgers equation. The

initial condition is a Heaviside function

u0(x) = 0 if x ≤ 0, u0(x) = 1 otherwise.

It develops a shock and a wave, both propagating to the right. The boundary conditions are

periodic. The remeshing scheme is the three-points piecewise quadratic function preserving the 3

first moments described in section 3. TVD remeshing formula were derived with a Van-Leer limiter.

The solution is shown at time t = 0.8 for h = 0.02 and a CFL number 2/3. The TVD remeshing

formula removes the oscillations that are visible when a classical remeshing scheme is used. One

goal of the present work is to extend the work in [5] in the case of linear equations by relaxing the

constraint on the time-step.

3 Consistent 1D remeshing formulas for large CFL numbers

In this section we focus on the linear advection equation (2) and we analyze, in the case of large

CFL numbers, particle methods which consist for each time-step of a motion of particles with their

local velocities followed by a remeshing step. The underlying grid is assumed to have a fixed grid

size h.
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Figure 1: From [5]. Simulation of the Burgers equation with h = 0.02 and CFL number 2/3. Particle
method with a classical 3-points remeshing scheme (blue line) or a TVD 3 points remeshing scheme
(green line), compared to the exact solution (red line).

To begin with, let us consider the case when particles are advected with an Euler scheme and

remeshed with a linear interpolation. For a sake of simplicity in the notations, we assume that the

advection velocity a is time-independent. We denote by xj = jh the particles lying on the grid

after remeshing, by aj their velocity and we set ν = ∆t/h and λj = ajν.

If we assume that for all particle 0 ≤ λj ≤ 1 then it is readily that the corresponding finite-difference

scheme is

un+1
i = uni + ν(aiu

n
i − ai−1u

n
i−1)

which is the first order upwind scheme. If now at a given particle i we have a local CFL number

satisfying λi < 0 ≤ λi+1 ≤ 1 then we obtain un+1
i = uni + νaj , which is not consistent with the

advection equation. The same difficulty arises if λi < 1 ≤ λi+1.

Higher order remeshing schemes can be obtained by ensuring the conservation of the 3 first moments

of the particles. One then obtains the so-called Λ2 interpolation kernel,cas

Λ2(x) =





1− |x|2 if |x| ≤ 1/2,

(1− |x|)(2− |x|) if 1/2 < |x| ≤ 3/2,

0 elsewhere.

(8)

It is readily seen that if remeshing is performed at every time-step, the resulting finite-difference

schemes will be consistent (and second order) under the conditions |λi| ≤ 1/2. A one-sided version

of this remeshing formula, which will be defined in the next section, is consistent if 0 ≤ λi ≤ 1.

We wish to stress the fact that in the discussion above it is not the value itself of the local CFL

numbers that matters, but rather its variations from one particle to the next. For instance the
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centered-Λ2 scheme will be consistent and second order if all particles have a local CFL number

value between N − 1/2 and N + 1/2 for a given integer number N . Likewise, the one-sided Λ2

scheme will be second order if all particles have a local CFL number value between N and N+1 for

a given integer number N . The same properties are valid with all centered or one-sided remeshing

formulas of even order.

A smoother version of the Λ2 kernel, the so-called M ′
4 scheme originally proposed in [19], is often

used in practice. It uses one additional grid point and is given by :

M ′
4(x) =





1− 5|x|2/2 + |x|2/2 if |x| ≤ 1,

(1− |x|)(2− |x|)2/2 if 1 < |x| ≤ 2,

0 elsewhere.

(9)

This kernel does not suffer the consistency problem of Λ2 but one can check that it is only first

order at sonic points, independently of the local time-step value, and more generally when the CFL

number crosses an integer value.

3.1 Correction formulas for second order remeshing schemes

In this section and the following we focus on the case of the Λ2 remeshing schemes, and we derive

formulas to enforce a consistent treatment of CFL variations between neighboring particles. Let us

first define some notations. We denote by y the distance between the particle after an advection

step and its nearest grid point i on the left, normalized by the grid-size. We thus have y = λ− [λ].

The left-Λ2 scheme assign to the grid points i− 1, i and i+ 1 weights respectively defined by (see

figure 2)

α(y) = y(y − 1)/2 , β(y) = 1− y2 , γ(y) = y(1 + y)/2 . (10)

Similarly the right-Λ2 scheme uses the grid points i, i+ 1 and i+ 2 wit the following weights

α′(y) = (y − 1)(y − 2)/2 , β′(y) = y(2− y) , γ′(y) = y(y − 1)/2 . (11)

We can observe that the following relationships hold:

α′(y) = α(y − 1) , β′(y) = β(y − 1) , γ′(y) = γ(y − 1). (12)

The center-Λ2 remeshing scheme uses the weights α, β, γ if y ≤ 1/2 and α′, β′, γ′ if y ≥ 1/2.

The solution we propose to overcome inconsistencies due to CFL variations is to combine centered

and left remeshing schemes. The idea is to split particles in patches where either centered or left

formulas can be used in a consistent way. More precisely, at the beginning of a given time step, we
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Figure 2: Left and center Λ2 remeshing schemes. Top row: left remeshing, bottom row : center
remeshing. Left (respectively right) pictures correspond to the case λ ≤ 1/2 (respectively λ ≥ 1/2).
The middle of the cell is materialized by a dashed line. Weight values are given in (10) and (11).

split the particles into blocks of size Mh. Each box thus contains M + 1 particles. We first choose

the time step on the basis of the strain rate of the flow, as it is usual for particle methods, and on

the integer M , with the formula

∆t =
1

2(M + 1)|a|1,∞
(13)

where |a|1,∞ denotes the maximum of the absolute values of the derivatives of the advection field

a. In the sequel M can be any positive integer (and in practice it can be chosen equal to 1).

Let us consider two particles xi = ih and xj = jh lying in the same block. We can write

|λi − λj | ≤ |a|1,∞∆tMh/h ≤ 1/2.

As a result we can state that, for a given block B, there exists an integer N such that, either

∀i such that xi ∈ B, |λi −N | ≤ 1/2, (14)

or

∀i such that xi ∈ B, |λi −N − 1/2| ≤ 1/2. (15)

The determination of the case to be considered, and thus of the formula to be used, can be done

by computing the minimal displacement of the particles within a block. We set

λ̄ = min
xi∈B′

λi, (16)

where B′ is the block B extended to the next particle to the right (the reason for choosing B′

instead of B will be apparent below). If N (λ) denotes the nearest integer to λ, it is straightforward

to check that, for a certain value of N
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• if λ̄ ≤ N (λ̄), then all particles in B satisfy (14),

• if λ̄ > N (λ̄), then all particles in B satisfy (15).

Using the appropriate remeshing formulas, depending on which case one falls, guarantees the con-

sistency of the push-and-remesh scheme inside each block.

Let us denote by Bm the blocks as defined above and by Nm the corresponding integers defined by

(14) or (15). We will call this integer the index of the block. We will say that a given block Bm is

of type C if (14) is satisfied, in which case a center-Λ2 scheme is used for its particles, and of type

L if (15) is satisfied, in which case the left-Λ2 formula is used. The question is now to determine

the formula to be used for the last and first particles in each block.

Let us first show that if two blocks of the same type (C or L) follow each other, then they can

be merged into a single block where the center or left Λ2 formula is consistent. Consider the case

of two C-blocks Bm and Bm+1 and denote by Nm the index of Bm. There exists xj ∈ Bm such

that λj ≤ Nm. Let us denote by xl the first particle in Bm+1. We have |xj − xl| ≤ (M + 1)h

and, by (13), |λi − λl| ≤ (M + 1)/2(M + 1) = 1/2. Therefore λl ≤ Nm + 1/2. This implies that

Nm+1 = Nm. All particles in blocks Bm ∪ Bm+1 have a value of λ in [Nm − 1/2, Nm + 1/2] and

thus the center-Λ2 remeshing is consistent in Bm ∪ Bm+1. A similar argument shows that if two

type L blocks are next to each other, these two blocks can be merged into a single block where the

left-Λ2 scheme is consistent.

It remains now to consider the case of neighboring blocks of different types.

Assume two blocks Bm and Bm+1 of different type are next to each other. Denote by i the index

of the last particle in Bm. If Bm is of type L and Bm+1 is of type C we can write

|Nm + 1/2−Nm+1| ≤ |Nm + 1/2− λi|+ |Nm+1 − λi+1|+ |λi − λi+1| ≤ 1/2 + 1/2 + 1/2(M + 1).

Since we have assumed M ≥ 1 we thus have |Nm + 1/2 −Nm+1| < 5/4 which implies that Nm −
Nm+1 ∈ {−1, 0}. Similarly, If Bm is of type C and Bm+1 is of type L then Nm −Nm+1 ∈ {0,+1}.

For a sake of simplicity we fix m = 1 and we denote by I the index of the last particle in B1.

Consider first the case when B1 is of type L and B2 of type C. We can assume without restricting

the generality that N1 = 0. We represent in Figure 3 the possible configurations. The two first

correspond to N2 = 0, respectively with λI+1 ≤ 0 (we will denote this configuration as case (a))

and λI+1 ≥ 0 (case b) and the others to N2 = 1, respectively with λI+1 ≤ 1 (case c) and λI+1 ≥ 1

(case d).
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Figure 3: The different possible configurations at the interface between a block of type L (B1) and
a block of type C (B2). Particles of B1 (resp. B2) are in green (resp. blue). On the top rows, the
colors indicate what type of particle contributes to the grid values after remeshing.

We need to determine how to modify the remeshing schemes for particles I and I + 1 in order to

recover a consistent scheme at time tn+1 at all grid points.

For case (a), we observe that, due to (13) with M ≥ 1, we have 0 ≤ λI−1 ≤ 1/2 and 0 ≤ λI ≤ 1/2.

Thus for particles I−1 and I the left and center remeshing schemes are equivalent and the remeshing

formulas give a consistent 2nd order value to the grid point I and I + 1. In other words no

corrections are needed at this block interface. Similarly, for case (b), we observe that the center

and left remeshing schemes are equivalent for particle I + 1 and that the left scheme is consistent

including for the particle I+1 (recall that this scheme is inconsistent only when λ crosses an integer

value). Therefore, no modification is needed in this case for particles I and I + 1.

Let us next consider the case (c). In that case the center-Λ2 scheme used for the particle I + 1

uses the right formulas (11). First we observe that if we choose the weights α(yI) , β(yI) for the

particle I respectively on grid points I − 1 and I, and the weight α(yI+1) for the particle I + 1 on

the grid point I we obtain a finite-difference scheme on grid points I − 1 and I equivalent to that

obtained if a left-Λ2 remeshing scheme was used up to the particle I + 1, that is a second order

scheme. Similarly, assigning a weight γ′(yI) from the particle I on the grid point I + 2 and the

weights β′(yI+1) and γ′(yI+1) from particle I + 1 onto grid points I + 2 and I + 3 gives on the
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Particles
Grid points Cases (a) / (b) Case (c) Case (d)

I I + 1 I I + 1 I I + 1

I ′ − 1 α(yI) 0 α(yI) 0 α(yI) 0
I ′ β(yI) α′ /α (yI+1) β(yI) α′(yI+1 + 1) β(yI) α(yI+1 + 1)

I ′ + 1 γ(yI) β′ / β (yI+1) yI 1− yI+1 yI −yI+1

I ′ + 2 0 γ′ / γ (yI+1) γ′(yI) β′(yI+1) γ′(yI) β(yI+1)
I ′ + 3 0 0 0 γ′(yI+1) 0 γ(yI+1)

Table 1: Remeshing weights at the interface between a block of type L and a block of type C. The
cases are illustrated in Figure 3. The weights α, β, · · · are given in (10) and (11). I ′ denotes the
nearest grid-point on the left of particle I after one advection step.

grid points I + 2 second order finite difference formulas corresponding to the right-Λ2 schemes for

the particles I and I + 1. It thus only remains to determine the contributions of particles I and

I+1 to the grid-point I+1. To do this, we remark that to ensure conservation of the mass of each

particle, since α+β+ γ = α′+β′+ γ′ = 1 the weight assigned to the grid point I from the particle

need to be γ(yI) − γ′(yI) = yI , and the weight assigned from the particle I + 1 on the same grid

point has to be α′(yI+1) − α(yI+1) = 1 − yI+1. Particles with indices below I do not contribute

to the grid point I + 1 : due to (13), yI−1 ≤ 1 and this particle remeshed with the left-Λ2 scheme

does not contribute to the grid point I + 1. Similarly, particles with indices beyond I + 2 do not

contribute to the grid point I + 1 : because the particle I + 2 is in a block of type C, it satisfies

yI+2 ≥ 1/2 and the center-Λ2 formula does not assign weight to the grid point I + 1. As a result

the final contribution to the grid point I + 1 is yIuI + (1 − yI+1)uI+1 which corresponds to the

upwind scheme. We have therefore derived a correction formula which is locally first order.

We now turn to the last case (d). Particle I is dealt with the same way as in case (c): it is remeshed

with weights α(yI), β(yI), yI and γ′(yI) respectively for grid points I − 1, I, I + 1 and I + 2. To

determine the weights to remesh the particle I +1, we observe that λI+1 = yI+1 +1. Therefore, to

obtain a second order finite-difference scheme at the grid point I, this particle must assign there

a weight α(yI+1 + 1). To obtain a second order scheme on grid points I + 2 and I + 3, it must

assign weights β(yI+1) and γ(yI+1) on these grid points. Finally, to ensure mass conservation, the

weight assigned by particle I + 1 to the grid point I + 1 must be α(yI+1)− α(yI+1 + 1) = −yI+1.

Since −yI+1 = 1−λI+1, it is now readily seen that at the grid-point I+1 we recover the first order

upwind scheme. Note that in cases (c) and (d), the remeshing formulas spread on a stencil of 4

grid points.

The general case (when N 6= 0) is simply recovered by shifting appropriately the grid indices. The

corrections derived above are summarized in Table 1. We now consider the case of a block B2 of

11
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Figure 4: The different possible configurations at the interface between a block of type C (B1) and
a block of type L (B2). Particles of B1 (resp. B2) are in green (resp. blue). On the top rows, the
colors indicate what type of particle contributes to the corresponding grid values after remeshing.

type L following a block B1 of type C. We denote by N1 and N2 the indices of B1 and B2. For

simplicity, we again assume that N1 = 0, which implies that N2 = 0 or N2 = −1. Again, 4 cases

have to be considered, as depicted in Figure 4. The two first cases correspond to N2 = 0.

In case (a’), which corresponds to λI ≤ 0 we observe that, by (13), λI+2 ≤ 1/2 and the remeshing

formula at particles I and I + 1 are equivalent to the centered one, which ensures a consistent

second order scheme at grid points I and I + 1. If λI ≥ 0 (case (b’)), center and left remeshing

formulas are equivalent for particles I which again ensures a consistent second order scheme at grid

points I and I + 1. Therefore, cases (a’) and (b’) do not require any special treatment.

We now consider case (c’) in Figure 4, which corresponds to λI ≤ 0 and N1 = −1 . To ensure a

consistent second order treatment at grid points I − 1 and I +2, it is readily seen that the particle

I must assign a weight α′(yI) to the grid point I − 1 and the particle I + 1 must assign a weight

γ(yI+1) to the grid point I + 1. To conserve their mass, the particles I and I + 1 must then assign

respectively a weight β′(yI)+ γ′(yI) and a weight α(yI+1)+β(yI+1) to the grid point I. The proof

of the consistency of the resulting finite-difference scheme is postponed to the appendix.

We finally consider the case (d’) which corresponds to λI ≥ 0 and N1 = −1. To obtain a consistent

second order upwind scheme on grid-points satisfying J ≤ I − 1 or J ≥ I + 1 we assign a weight

12



Particles
Grid points Cases (a’) and (b’) Case (c’) Case (d’)

I I + 1 I I + 1 I I + 1

I ′ − 1 α′/α(yI) 0 α′(yI) 0 α(yI) 0
I ′ β′/β(yI) α(yI+1) (β′ + γ′)(yI) (α+ β)(yI+1) (β + γ)(yI) (α+ β)(yI+1)

I ′ + 1 γ′/γ(yI) β(yI+1) 0 γ(yI+1) 0 γ(yI+1)
I ′ + 2 0 γ(yI+1) 0 0 0 0

Table 2: Same as in Table 1 for a block of type L following a block of type C. The cases correspond
to Figure 4. I ′ denotes the nearest grid-point to particle I after one advection step.

γ(yI+1) from particle I + 1 onto the grid point I + 1 and a weight α(yI) from particle I onto the

grid-point I − 1. To ensure mass conservation, the particles I and I + 1 must assign respectively

the weights β(yI) + γ(yI) and α(yI+1) + β(yI+1) onto the grid-point I. The proof that this results

in a first order scheme at the grid-point I is given in the appendix.

The remeshing formulas just derived are summarized in Table 2.

3.2 Higher order schemes

Higher order remeshing formulas for particle methods are obtained by redistributing the weights of

the particles on a larger number of grid-points to enforce the conservation of additional moments.

We consider here the case of the fourth order Λ4 remeshing scheme. This scheme uses 5 points.

Using the same notations as above, for the left-Λ4 scheme, the weights associated to the grid points

i− 2, i− 1, i, i+ 1 and i+ 2 are respectively

α(y) = 1
24(y + 1)y(y − 1)(y − 2) , β(y) = −1

6(y + 2)y(y − 1)(y − 2)
γ(y) = 1

4(y + 2)(y + 1)(y − 1)(y − 2) , δ(y) = −1
6(y + 2)(y + 1)y(y − 2)

η(y) = 1
24(y + 2)(y + 1)y(y − 1).

(17)

For the right-Λ4 scheme, the weights associated to the grid points i − 1, i, i + 1, i + 2, and i + 3

are respectively given by the following relationships

α′(y) = α(y − 1) , β′(y) = β(y − 1) , γ′(y) = γ(y − 1) , δ′(y) = δ(y − 1) , η′(y) = η(y − 1). (18)

As for the Λ2 remeshing schemes, the centered-Λ4 (respectively left-Λ4) scheme will be consistent

if all particles have a local CFL number value between N − 1/2 and N + 1/2 (respectively N and

N + 1) for a given integer number N . Blocks where centered and left formulas can be used are

therefore determined in the same way as previously, and corrections in the remeshing weights are

needed at the interface between two blocks of different types and different indices.

13



Assume two blocks Bm and Bm+1 of different type are next to each other. As for the Λ2-remeshing

scheme, Nm − Nm+1 ∈ {0, 1} if Bm is of type C, Bm+1 of type L and Nm − Nm+1 ∈ {−1, 0}
otherwise. The same cases - (a) to (d) if a block of type C follows a block of type L, (a’) to (d’)

otherwise - have to be considered. Corrections have to be derived only in the cases (c), (d), (c’)

and (d’). As for the second order remeshing formulas, no correction is needed in the cases (a),

(b), (a’), (b’). For the other cases, because the stencil is larger for the remeshing function Λ4, one

needs to distinguish several sub-cases depending on the CFL number of the particle I + 2. These

cases are denoted by c1, c2, d1, d2, c
′
1, c

′
2, d

′
1, d

′
2 and are defined as follows. Cases (c1) and (d1)

(resp (c2) and (d2)) correspond to particles I and I+1 in the configuration of the case (c) or (d) in

Figure 3, and λI+2 ≤ N (resp λI+2 > N) where N is the index of the block containing the particle

I + 2. Similarly, cases (c′1) and (d′1) (resp (c′2) and (d′2)) correspond to particles I and I + 1 in the

configuration of the case (c’) or (d’) in Figure 4, and λI−1 ≤ N (respectively λI−1 > N) where N

is the index of the block containing the particle I − 1. For blocks of size Mh with M ≥ 3, and

time-steps satisfying the condition (13), the corrected remeshing schemes which need to be used

for particles I−1 to I+2 in each of these cases are given in the tables 3 for cases (c) and (d) and 4

for cases (c’) and (d’). The proof that these remeshing schemes lead to grid formulas of third order

under the condition on the time-step is given in [16]. In this reference these correction formulas are

also extended to the case of smaller blocks (M ≥ 1).

4 Limiting techniques for TVD remeshing formulas

High order remeshing formulas, like any non-dissipative grid-based methods, are likely to produce

oscillations wherever the advected quantity undergoes strong variations. In this section we extend

the approach of [5] to derive limiting techniques for remeshing formulas in the case when the CFL

number is larger than 1.

We restrict here our discussion the case of the 3-points Λ2 remeshing formula considered in sec-

tion 3.1. Limiting techniques for the 4th order formulas derived in section 3.2 is studied elsewhere

[16]. In [5] we derived limiters that were based on the linear first order remeshing scheme. As we

have already seen, this scheme is not appropriate when the advection velocity changes sign. To be

able to combine limiting techniques to the corrections just derived, we will instead use two different

first order formulas based on quadratic splines and using three grid points. The first formula is

obtained by taking successive convolutions of the top hat function. This is the formula used in tra-

ditional Particle In Cell methods for the so-called TSC (for Triangular Shape Clouds) assignment

schemes. Following the terminology of [9], we will call M3 this remeshing technique, with left and

14



Particles
Grid points I − 1 I

I ′ − 4 α(yI−1) 0

I ′ − 3 β(yI−1) α(yI)

I ′ − 2 γ(yI−1) β(yI)

I ′ − 1 δ(yI−1) γ(yI)

I ′ η(yI−1)− η(yI−1 − 1) (δ + η)(yI)− (δ + η)(yI − 1)

I ′ + 1 η(yI−1 − 1) δ(yI − 1)

I ′ + 2 0 η(yI − 1)

Particles
Grid points I + 1 I + 2

Case (c1) / (c2) Case (d1) / (d2) Case (c1) / (d1) Case (c2) / (d2)

I ′ − 2 α′(yI+1 + 1) α(yI+1 + 1) 0 0

I ′ − 1 β′(yI+1) β′(yI+1) α′(yI+2 + 1) α(yI+2 + 1)

I ′ (α′ + β′)(yI+1) (α+ β)(yI+1) α′(yI+2) α(yI+2)
−(α′ + β′)(yI+1 + 1) −(α+ β)(yI+1 + 1) −α′(yI+2 + 1) −α(yI+2 + 1)

I ′ + 1 γ′(yI+1) γ(yI+1) β′(yI+2) β(yI+2)

I ′ + 2 δ′(yI+1) δ(yI+1) γ′(yI+2) γ(yI+2)

I ′ + 3 η′(yI+1) η(yI+1) δ′(yI+2) δ(yI+2)

I ′ + 4 0 0 η′(yI+2) η(yI+2)

Table 3: 4th order remeshing weights at the interface between a block of type L and a block of
type C. The weights α, β, · · · are given in (17) and (18). Cases are defined in the text below (18)
and in Figure 3 .
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Particles
Grid points I − 1 I

Case (c′1) / (d′1) Case (c′2) / (d′2) Case (c′1) / (c′2) Case (d′1) / (d′2)

I ′ − 3 α′(yI−1) α(yI−1) 0 0

I ′ − 2 β′(yI−1) β(yI−1) α′(yI) α(yI)

I ′ − 1 γ′(yI−1) γ(yI−1) β′(yI) β(yI)

I ′ δ′(yI−1) δ(yI−1) (γ′ + δ′ + η′)(yI) (γ + δ + η)(yI)
+η′(yI−1) +η′yI−1) −δ′(yI + 1) −δ(yI + 1)

I ′ + 1 δ′(yI+1) δ(yI+1) γ′(yI+2) γ(yI+2)

Particles
Grid points I + 1 I + 2

I ′ − 1 α(yI+1 − 1) 0

I ′ (α+ β + γ)(yI+1)− α(yI+1 − 1) (α′ + β′)(yI+2)

I ′ + 1 δ(yI+1) γ′(yI+2)

I ′ + 2 η(yI+1) δ′(yI+2)

I ′ + 3 0 η′(yI+2)

Table 4: 4th order remeshing weights at the interface between a block of type C and a block of
type L. The cases are illustrated in Figure 3. The weights α, β, · · · are given in (17) and (18).
Cases are defined in the text below (18) and in Figure 4.

right variants as for the Λ2 formulas. With the same notations as in (11), the weights assigned

from a particle to the grids points for the left-M3 formula are, from left to right

α(y) =
1

2
(
1

2
+ y)2 , β(y) = 3/4− y2 , γ(y) = 1

2
(
1

2
− y)2 . (19)

As for the case of the Λ2 formulas, the weights corresponding to the right formula are obtained by

the formulas

α′(y) = α(y − 1) , β′(y) = β(y − 1) , γ′(y) = γ(y − 1). (20)

The center M3 formula consists of taking the α, β, γ if y ≤ 1/2 and α′, β′, γ′ otherwise.

For a constant velocity field a, it is readily seen that if λ = a∆t/h is such that |λ| ≤ 1/2 the

center-M3 remeshing formula (19) is equivalent the following finite-difference scheme

un+1
j = unj (

3

4
− λ2) + 1

2
(
1

2
+ λ)2unj−1 + (

1

2
− λ)2unj+1. (21)

This scheme can be rewritten as a central finite-difference scheme corrected by an artificial viscosity

term:

un+1
j = unj −

λ

2
(unj+1 − unj−1) + (

λ2

2
+

1

8
)(unj+1 − 2unj + unj−1). (22)

From this expression, one can see that this scheme is TVD provided that λ2+1/4 ≤ 1, a condition

which is satisfied when 0 ≤ λ ≤ 1/2.
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This calculation actually shows that the center-M3 remeshing scheme is TVD for any value of the

CFL number, and that the left-M3 scheme is TVD for λ− [λ] ≤
√

3/4. In the case the center-M3

scheme, if n is the nearest integer to a∆t/h, the method can be seen as an exact solution over a

time nh/a, a step which is clearly TVD, followed by the above finite difference scheme over a time

∆t′ = ∆t − nh/a. Since |a∆t′/h| ≤ 1/2 this method is TVD. In the case of the left-M3 scheme,

this remeshing scheme is equivalent to the exact solution to the advection equation over a time

∆t′ = [λh/a] followed by the finite-difference scheme (21), over a time-step equal to ∆t−∆t′. Since

a(∆t−∆t′) ≤
√

3/4h this scheme is TVD.

In the general case of a varying velocity field, if |νaj | ≤ 1/2 for all j the finite-difference equation

(22) extends in the following way :

un+1
j = unj −

ν

2
(aj+1u

n
j+1−aj−1u

n
j−1)+

ν2

2
(aj+1u

n
j+1−2ajunj +aj−1u

n
j−1)+

1

8
(unj+1−2unj +unj−1). (23)

This proves that, in all blocks of type C, as defined in the previous section, the center-M3 scheme is

consistent with the advection equation, with a truncation error of the order of ((a2u)′′+u′′/4)h2/∆t.

Similarly, it can be checked that the left-M3 scheme is consistent in all blocks of type L.

We now show how these first-order remeshing formulas can be used to limit the left and center-Λ2

schemes devised in the previous section in order to give a TVD remeshing scheme. Let us go back to

the case of an advection equation with constant velocity field (note that for a varying velocity field

the advection equation in conservation form is not TVD so there is no clear cut criterion to limit

oscillations in this case). We recall that the choice of the left or center remeshing schemes is based

on the value of λ̄ as defined in (16) compared to its nearest integer. If we consider the linearized

advection equation we thus have two cases to consider for λ, up to the addition of an integer :

either 0 ≤ λ = a∆t/h ≤ 1/2, in which case left-formulas are used, or −1/2 ≤ λ = a∆t/h ≤ 0, in

which case the center formulas are used. Let us first consider the case 0 ≤ λ = a∆t/h ≤ 1/2. We

proceed like in [5] and write the finite-difference forms of the remeshing formulas in incremental

form. The left-Λ2 scheme is then equivalent to the Lax-Wendroff scheme and can be written as

un+1
j = unj + C

(2)
j+1/2∆u

n
j+1/2 −D

(2)
j−1/2∆u

n
j−1/2, (24)

where we used the classical notation ∆uj+1/2 = uj+1 − uj and the coefficient C and D take the

following values:

C
(2)
j+1/2 = −

λ

2
(1− λ) , D(2)

j−1/2 =
λ

2
(1 + λ).

Similarly, the left-M3 remeshing scheme yields the following incremental form

un+1
j = unj + C

(1)
j+1/2∆u

n
j+1/2 −D

(1)
j−1/2∆u

n
j−1/2, (25)
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where :

C
(1)
j+1/2 =

1

2
(λ− 1

2
)2 , D

(1)
j−1/2 =

1

2
(λ+

1

2
)2.

We thus have

C
(2)
j+1/2 = C

(1)
j+1/2 −

1

8
, D

(2)
j−1/2 = D

(1)
j−1/2 −

1

8
.

Following the approach of [14] we now look for a limiter of the Λ2 formula by theM3 formula under

the form:

un+1
j = unj + (C

(1)
j+1/2 −

φj+1/2

8
)∆unj+1/2 − (D

(1)
j−1/2 −

φj−1/2

8
)∆unj−1/2

= unj +
1

2
(λ− 1

2
)2∆unj+1/2 −∆unj−1/2

[
1

2
(λ+

1

2
)2 +

φj−1/2

8
−
φj+1/2

8rj+1/2

]
. (26)

In the above equation we have set rj+1/2 = ∆unj−1/2/∆u
n
j+1/2 and φj+1/2 = φ(rj+1/2), where φ is

the limiter function to be determined. Equation (26) defines a TVD scheme provided the following

conditions are satisfied [14]:

φ ≥ 0 , φ(r) = 0 if r ≤ 0, and |φ(s)− φ(r)/r| ≤ Φ

where the constant Φ is such that the coefficients of ∆unj±1/2 in (26) are positive and have a sum

less than or equal to 1. This yields the following conditions: :

1

2
(λ+

1

2
)2 − Φ

8
≥ 0

and
1

2
(λ− 1

2
)2 +

1

2
(λ+

1

2
)2 +

Φ

8
= λ2 +

1

4
+

Φ

8
≤ 1.

If 0 ≤ λ = a∆t/h ≤ 1/2, these conditions are satisfied as soon as Φ ≤ 1. One may then use

the classical limiter formulas to derive eligible function φ. For a given limiter choice, the finite

difference formula becomes:

un+1
j = unj +

[
1

2
(λ− 1

2
)2 −

φj+1/2

8rj+1/2

]
∆unj+1/2 −

[
1

2
(λ+

1

2
)2 −

φj−1/2

8

]
∆unj−1/2

= unj +

[
3

4
− λ2 +

φj+1/2 + φj−1/2

8

]

+ unj−1

[
1

2
(λ+

1

2
)2 −

φj−1/2

8

]
+ unj+1

[
1

2
(λ− 1

2
)2 −

φj+1/2

8

]
. (27)

This scheme can in turn be interpreted as a particle scheme using a left remeshing formula. Using

the same notations as in (10), (19), it is readily seen that for a given particle j the weights α, β, γ

assigned to the grid points i− 1, i, i+ 1 are given by the formula:

α(y) =
3

4
− y2 +

φj+1/2 + φj−1/2

8
, β(y) =

1

2
(y +

1

2
)2 −

φj+1/2

8
, γ(y) =

1

2
(y − 1

2
)2 −

φj−1/2

8
. (28)
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As expected, one recovers for φ = 1 the left-Λ2 scheme, and, for φ = 0, the left-M3 scheme.

Let us now consider the case −1/2 ≤ λ = a∆t/h ≤ 0. Proceeding as before, we can write the

center-Λ2 scheme, limited by the center-M3 scheme in the following incremental form:

un+1
j = unj −

1

2
(λ+

1

2
)2∆unj−1/2 +∆unj+1/2

[
1

2
(λ− 1

2
)2 −

ψj+1/2

8
+
ψj−1/2

8r̃j−1/2

]
. (29)

where r̃j−1/2 = ∆unj+1/2/∆u
n
j−1/2 and ψj+1/2 = ψ(r̃j+1/2). The conditions on ψ to enforce the TVD

property of the finite-difference scheme are similar to those found above for φ, namely:

ψ ≥ 0 , ψ(r) = 0 if r ≤ 0, and |ψ(s)− ψ(r)/r| ≤ 1.

The incremental formula (29) can then be turned into the following remeshing weights:

α′(y) =
1

2
(y− 3

2
)2−

ψj−1/2

8
, β′(y) =

3

4
− (y− 1)2+

ψj+1/2 + ψj−1/2

8
, γ′(y) =

1

2
(y− 1

2
)2−

ψj+1/2

8
.

(30)

Note that the upwinding direction only appears in the choice of the slopes in the formulas giving

φ (for positive velocities) and ψ (for negative velocities).

5 Extension to higher dimension

Particle remeshing in dimension higher than one is in general performed by formulas that are

tensor products of 1D formulas. However, the correction and limiters that we have just derived

do not extend to tensor product formulas. It is therefore necessary to adopt the viewpoint of

directional splitting to deal with multi-dimensional problems. Using 1D remeshing formulas saves

computational time compared to the traditional tensor-product approach (for instance, for the

5 points Λ4 remeshing, in 3D the cost will be of the order of O(15N) instead of O(125N) if N

is the number of particles) but makes the derivation of high order time-stepping schemes less

straightforward.

In the context of particle methods, splitting can be envisioned in two different ways. The first

option is to follow the classical Strang splitting method, which alternates advection equation in

all directions. In this case, one has to successively push then remesh particles along each axis. If

second order is desired, one has to alternate directions over half time-steps. In case a second order

Runge-Kutta scheme is used to advect particles, in 2 dimensions one time-step push-and-remesh

second order time stepping can be sketched as follows:

Advection along 1st direction for ∆t/2
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• Evaluation of velocities by mid-point rule : x̃p = xp + a1(xp)∆t/4, then ã1 = a1(x̃p)

• Advection of particles along 1st axis: xp ← xp + ã1∆t/2

• 1D particle remeshing along 1st axis: (xi, ui)← (xp, up)

Advection along 2nd direction for ∆t

• Evaluation of velocities by mid-point rule : x̃p = xp + a2(xp)∆t/2, then ã2 = a2(x̃p)

• Advection of particles along 2nd axis: xp ← xp + ã2∆t

• 1D particle remeshing along 2nd axis

Advection along 1st direction for ∆t/2 · · ·

In the above description, the velocity a1, a2 are the components of the velocity field a, and, by

extension, we also denote by a1 the velocity field (a1, 0).

The second option is specific to particle methods. Assume again we choose a second order Runge-

Kutta method for the particle advection. This means that at the beginning of a time-step one has

available a velocity field which allows to advect particles with accuracy O(∆t2). Of course one

obtains the same output by advecting particles successively along each axis with the corresponding

velocity component. If remeshing takes place after advection in each direction, one can obtain the

same accuracy in time provided some care is taken on the velocity values used after remeshing in

the first direction. Instead of the local velocity on the grid points, one needs to track back the

proper velocity. More precisely, the algorithm at time tn = n∆t is as follows:

Computation of velocity first component by a RK2 scheme

Advection of particles in 2D for ∆t/2 : x̃p = xp + a(xp, tn)∆t/2 (31)

Velocity evaluation by mid-point rule : ã1(xp) = a1(x̃p, tn +∆t/2) (32)

Push and remesh along 1st direction for ∆t

Advection of particles along 1st axis : xp ← xp + ã1(xp)∆t (33)

1D Particle remeshing along first axis (34)

Computation of velocity second component by a RK2 scheme

Advection of particles in 2D for ∆t/2 : x̃p = xp + (−a1(xp, tn)∆t/2, a2(xp, tn)∆t/2) (35)

Velocity evaluation by mid-point rule : ã2(xp) = a2(x̃p, tn +∆t/2) (36)
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Push and remesh along 2nd direction for ∆t

Advection of particles along 2nd axis : xp ← xp + ã2(xp)∆t (37)

1D Particle remeshing along second axis. (38)

The reason for choosing the velocity field ã2 = a2(x̃p), where x̃p = xp+(−a1∆t/2, a2∆t/2) in (35),

can be best understood in the case when a given particle moves exactly to the next grid point after

advection along the first axis. In this case, remeshing does not change its weights and this particle

should next move along the second axis with the RK2 velocity computed at the beginning of the

time-step. It is not difficult to realize that ã2 is a second order approximation of this velocity. The

extension to 3D of this scheme is straightforward: one just has to add a push-and-remsh step in

the third direction, with velocities evaluated on particles x̃p = xp + (−a1∆t/2,−a2∆t/2, a3∆t/2).

This scheme only requires two remeshing formulas - one in each direction, instead of 3 for the first

option, so it is mode economical if velocity values are known analytically.

The extension to third order goes along the following lines :

Push and remesh along 1st direction for ∆t

• Computation of velocity:

a(1)(xp) = a
[
xp + (23 ∆t a1(xp),

2
3 ∆t a2(xp)

]

ã1(xp) = −a1(xp) +
3
4 a

(1)
1 (xp) + a1

[
xp +

∆t
4 (−a1(xp) + a

(1)
1 (xp), 0)

]

+1
4 a1

[
xp −∆t(0, a2(xp) + a

(1)
2 (xp)

] (39)

• Advection of particles along 1st axis : xp ← xp + ã1∆t

• 1D Particle remeshing

Push and remesh along 2nd axis for ∆t

• Computation of velocity:

a
(1)
1 (xp) = a1

[
xp + (−1

6 ∆t a1(xp),
1
3 ∆t a2(xp)

]

a
(1)
2 (xp) = a2

[
xp + (−2

3 ∆t a1(xp),
1
3 ∆t a2(xp)

]

ã2(xp) = −a2(xp) +
3
4 a

(1)
2 (xp) + a2

[
xp +∆t(a1(xp)− a(1)1 (xp), 0)

]

+1
4 a2

[
xp −∆t(0, a2(xp) + 2a

(1)
2 (xp)

]
(40)

• Advection of particles along 2nd axis : xp ← xp + ã2∆t

• 1D Particle remeshing.
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The numerical analysis of the above splitting methods are given in [16].

To conclude this section, let us give some remarks on the overall algorithm. For a 2D or 3D simu-

lation, whatever time-splitting strategy is chosen, the algorithm proceeds by alternating advection-

remeshing steps in successive direction. For an advection-remeshing step in a given direction, one

proceeds line by line. On each line, particles with a strength beyond a certain threshold are created

and sorted in blocks. Then one determines, on the basis of the time step and the local velocity

of particles in each blocks, the types (L or C) and the indices of the blocks. Particles at the in-

terface of blocks of different type and indices are tagged, together, for the corrected Λ4 scheme,

with the next particles on the left and on the right. Finally untagged particles are remeshed by

regular remeshing kernels, and tagged particles with the corrected formulas. For the schemes with

TVD limiters, slopes are determined when particles are created, and then incorporated in the Λ2

remeshing formulas.

Concerning the corrected Λ2 remeshing formulas, one may observe that one goes from case (c) to

case (d) by changing, for the particle I +1, the weights α, β, γ into α′, β′, γ′, or equivalently using

the distance of the particle under consideration to the nearest grid point instead of the nearest grid

point on the left. The same observation ca be made for the particle I in cases (c’) and (d’). In the

case of the corrected Λ4 this observation is also valid to go from cases (c1) or (d1) to (c2) or (d2) for

particle I + 2, and from cases (c′1) or (d
′
1) to (c′2) or (d

′
2) for particle I − 1. In practice this means

that in the actual algorithm for the corrected Λ2 or Λ4 formulas, only two type of formulas have

to be implemented. Overall, in a 3D code, the correction formulas concern only a portion of the

particles and have therefore a marginal cost. The algorithm for sorting and tagging particles takes

about the same amount of CPU time as the 3 line-by-line one-dimensional remeshing algorithms.

6 Numerical illustrations

In all the experiments below we have taken blocks of size M = 1 for the second order Λ2 remeshing

schemes, and M = 3 for the 4th order Λ4 remeshing scheme.

6.1 Convergence study in 2D flows

To illustrate the correction formulas given in section 3 and the time-stepping schemes in section 4,

we first consider the case of 2D flows. Our first example is a smooth axisymmetric blob u advected
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Figure 5: Refinement study for the case of a smooth blob rotating in an incompressible flow.
Remeshing by (from top to bottom) : uncorrected Λ2 (pink), uncorrected Λ6 (magenta),M ′

4 (blue),
corrected Λ2 (green), uncorrected Λ2 (red) and corrected Λ4 (brown). Except for the red curve,
all cases used a CFL number of 3. For the red curve, the uncorrected Λ2 remeshing was used with
CFL number 0.4. All cases used a RK2 particle pusher and a second order time-splitting, except
for the Λ4 and Λ6 cases which used a third Runge-Kutta and time-splitting. Black lines correspond
to second and third order convergence rates.

by an incompressible rotating field a:

u(x, y) = max(0, (1.− (x2 + y2))6) , a(x, y) = cos (3π
√
x2 + y2)(y,−x) (41)

The solution to this problem is stationary. In Figure 5 we show the relative L2 error for increasing

resolution for several remeshing schemes and CFL numbers at t = 0.8. The remeshing schemes are

the original and corrected Λ2 schemes, the nominally 6th order Λ6 scheme, and the corrected Λ4

scheme. We also consider the case of the M ′
4 remeshing formula (9). For the time advancement

of particles we chose in all cases a classical RK3 scheme. Second order methods were used in

combination with the second order time splitting method (31)-(37), and higher order methods were

used with the third order time splitting method (39)-(40). As expected, the plain Λ2 formula

gives second order accuracy for CFL numbers smaller that 0.5. For larger CFL numbers (3 in this

experiment) it is barely convergent. The higher order Λ6 remeshing formula fails to converge with

the expected accuracy. On the contrary the corrected second order formula gives almost second

order accuracy, and the corrected 4th order formula, in combination with third order splitting and

particle time-stepping yields the desired 3rd order accuracy. One may also observe that in this

test case the M ′
4 formula also exhibits second order convergence. We next consider the case of the

advection of a smooth ring in an expanding velocity field. The computational box is the square

[−2,+2]2. The initial condition is the C2 axisymmetric function with value 0 for r ≤ 0.4 or r ≥ 1,

value 1 for 0.6 ≤ r ≤ 0.8 and polynomial of degree 5 for 0.4 ≤ r ≤ 0.6 and 0.8 ≤ r ≤ 1. The

23



velocity field is

a(x, y) = (x/r, y/r) (42)

Figure 6 shows a 3D view of the solution at time t = 0.8 for h = 0.01 and CFL number equal to 6, for

the M ′
4 formula, and the corrected Λ2 and Λ4 formulas. One can see that the M ′

4 schemes generate

oscillations along radii that correspond to variations of the local CFL number. Oscillations created

by the original Λ2 scheme (not shown) are even larger. The corrected Λ2 and Λ4 formulas avoid

theses oscillations. One can also notice the effects of the first order corrections in the corrected Λ2

formula.

The bottom-right picture in Figure 6 is a convergence study in the L∞ norm for the same test,

which illustrates the gain in accuracy of the corrected formulas.

6.2 Illustrations in incompressible 3D flows

Interface capturing is an important particular case where transport equations need to be solved

with high accuracy. We first consider here the classical test case of a sphere advected in a shear flow

proposed in [18]. The computations are done in a unit cubic box.The sphere is initially centered at

the point of coordinates (0.5, 0.5, 0.5) and its radius is 0.15. In Figure 7 we compare the particle

method using the corrected Λ4 scheme and a second order time splitting, with several similar

recent experiments in the literature where lagrangian markers are used to complement grid-based

methods: the particle level set method [12] and the volume of fluid method [25]. To compare with

[12, 25] we have first considered the following velocity field





u(x, y, z, t) = 2f(t) sin2(πx) sin(2πy) sin(2πz),

v(x, y, z, t) = −f(t) sin(2πx) sin2(πy) sin(2πz),
w(x, y, z, t) = −f(t) sin(2πx) sin(2πy) sin2(πz)

(43)

with f(t) = cos(πt/T ), T = 3. Figure 7 shows the interface at time t = T/2 when the flow distortion

is maximum. In the top left picture, we show the results of [12]. In this method, 5th order finite-

difference weno scheme is used to advance and reinitialize the level set equation. The method uses

100 grid points in each direction, supplemented by 4 particles per grid-size in each direction to

improve the accuracy at the interface. The time-step value is not mentioned in the reference, but

the CFL number, related to the finite-difference grid spacing is presumably of the order of 1. The

top right picture shows the results of [25]. In this reference a Volume of Fluid method is used

on a 643 grid, and complemented with nine markers per cell, and the CFL number was 0.1. On

the bottom left picture we use the particle method with the corrected Λ4 remeshing formula on

a grid using 100 points in each direction. The CFL number resulting from (13) is 8. The VOF
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Figure 6: Advection of a smooth axisymmetric function with a radial velocity fieldd (42). Top-
left M ′

4 remeshing scheme with second order time-splitting. Top-right corrected Λ2 with second
order time-splitting. Bottom left : corrected Λ4 with second-order time-splitting. N = 400 and
CFL = 6. Bottom-right convergence study in the maximum error norm for the M ′

4 (green curve),
Λ2 (red curve), and Λ4 (blue curve) for a CFL number equal to 3. The lines corresponding to first,
second order and third order convergence.
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Figure 7: Sphere advected in a shear flow (43). Top-left : [12] with N = 100 grid points com-
plemented with 4 particles per grid-size in each direction around the interface. Top-right : [25],
N = 64 and 9 particles per grid-cell, CFL = 0.1. Bottom : present 4th order method with N = 100
and CFL = 8 (left picture), N = 160 and CFL = 12 (right picture).

and the particle method discretize a color function, with value 1 inside the sphere and 0 outside.

The particle level set method of [12] captures a distance function to the surface of the sphere.

The bottom-right picture corresponds to the same simulation on a grid using 160 points with a

CFL number equal to 12. The three first results agree rather well. However the particle method

uses significantly less particles than in [12] and the time step is larger. Our number of particles

is comparable to that in [25] but our time step is significantly larger. The higher resolution case

is shown to illustrate the resolution necessary to prevent the lack of connectivity of the surface.

In all our experiments particles carrying a value smaller than 10−4 were discarded. In the higher

resolution case, the number of particles started at 63, 000 and reached 345, 000. The total mass was

conserved up to 0.04%. A complete run takes about 30 seconds for 40 iterations on a MacInstosh

laptop running a 3.06 GhZ intel processor. Note that, if in interface capturing applications one

is only interested in contours for levels above 0.5, one may choose a higher cut-off level without

changing the results. Taking a value of 0.025 like in [15] divides the final number of particle by a

factor about 2, with of course a further reduction in the CPU cost.

For this particular experiment, very similar results are obtained with the same CFL condition by the
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Figure 8: Sphere advected in a shear flow (43). Volumes contained inside the 0.5 (top curves)
and 0.75 (bottom curves) contours for the M ′

4 (magenta and green curves) and the fourth order
remeshing scheme (blue and red curves). In both cases N = 100 and the CFL number is equal to
8.

classical M ′
4 remeshing scheme that was used in [15]. A more quantitative comparison with other

methods can be obtained by looking at the volume contained inside isosurfaces of different values.

Ideally all these volumes should give the same constant value, equal to the volume of the sphere.

In Figure 8 we show the values obtained by the M ′
4 and the corrected Λ4 remeshing schemes, for

the isosurfaces corresponding to the levels 0.5 and 0.75. The grid uses 100 points in each direction

and the CFL number is equal to 8 in both cases. For this experiment we do not modulate the

value of the velocity (in other words we take f(t) = 1 in (43)) and we run for longer times. This

experiment shows the increased accuracy obtained by the Λ4 scheme. One can observe in passing

that in the previous experiment the solution at the time of maximum strain T/2 is equivalent to the

one obtain here at time t = T/π < 1. At this time for the iso-surface 0.5 both remeshing methods

gives similar volumes for the isosurface 0.5, with an error less than 1%. In passing we notice that

this case is most challenging without modulating the velocity field on times larger than 1.

Our next experiment is of a more qualitative nature but shows the potential and limitation of the

present methods. This experiment concerns the transport of a scalar in a turbulent plane jet. The

jet is computed by the vortex in cell method using the M ′
4 remeshing scheme [7], in a periodic

box of size 1 using 1283 grid points. The scalar is advected by the velocity field obtained from the

vortex method, filtered on a 323 grid. The goal of such experiment, following the idea of [8], is
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to explore the possibility to use particle methods at a sub-grid resolution in a flow LES to resolve

small scales of the scalar.

More precisely, the initial condition is as follows. In the unit box [0, 1]3, the initial vorticity is given

by ω(x, y, z) = ∇× u(x, y, z) + rand(x, y, z) where

ux(x, y, z) = (1 + tanh(y′)(1 + λ sin 8πx)/2, uy = uz = 0 (44)

where rand is a random perturbation of magnitude 0.05, λ = 0.3, y′ = (|y− 0.5| −w/2)η, η = 0.02

and w = 0.1. The advected scalar is initialized with the same profile as ux.

The scalar is discretized by particles remeshed on a 2563 uniform grid. The Reynolds number, based

on the jet width w, is equal to 103 and the Schmidt number, ratio of the scalar diffusivity and flow

viscosity is equal to 10. In this experiment we use the corrected Λ4 remeshing scheme, a classical

second-order alternate direction Strang time-splitting for the scalar advection and a second order

Runge Kutta time-stepping for the particle motion. The time-step is adapted at every time-step

to the flow conditions to satisfy the upper bound of the condition (13) with M = 3.

The left picture of figure 9 shows the time evolution of the enstrophy, the time step for the scalar

advection and the percentage of particles where corrections are implemented in the remeshing

formula. The scalar time-step is expressed as a CFL number related to the maximal flow velocity

and the scalar grid-size h = 1/256. One can observe that in a first stage, when the jet is laminar,

the scalar time-step corresponds to CFL number of the order of 10 to 20. When the flow evolves

to a turbulent stage, something which is correlated to a rapid enstrophy increase, the CFL number

decreases to 3-4. Figure 10 shows the scalar contours in a top and side views through the middle

of the jet. The 3D scalar spectrum at time t = 4.5 is shown on the right picture of Figure 9. It

exhibits a k−1decay beyond the cut-off scale corresponding to the flow velocity. This test illustrates

the capabilities of the method to allow very fine resolution of advected scalar without the need to

reduce the time-step at a prohibitive value. However, when the advection field becomes turbulent

the advantage of particle methods over more classical grid-based schemes is less clear. In that

case, to take full advantage of the Lagrangian nature of particle methods, it is advisable to adapt

locally the time-step, a possibility that was used in [1] but was not yet tested in the context of

non-oscillatory formulas, independently of the local grid refinement.

6.3 Results for remeshing formulas with limiters

We now give numerical illustrations of the limiters that we have derived in section 4 for the Λ2

remeshing formula. In one dimension, it of course does not make sense to consider the usual
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Figure 9: Scalar transport in a plane jet using a filtered 323 velocity field and a scalar discretization
on 2563 points. Left picture : time evolution of the enstrophy (green curve), CFL number (red
curve) and percentage of particles using correction formulas in Λ4 remeshing. Right picture: three-
dimensional scalar spectrum at time t = 4.5 (red curve). Black line : k−1 slope, green line : velocity
cut-off wave number. The jet initial condition is given in (44)

Figure 10: Side and top view of scalar contours at t = 4.5 for the jet (44).
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constant velocity case : in this case, as predicted by the condition (13), it is not necessary to

remesh particles, and particle methods give the exact solution. We instead consider the case of

the advection of a discontinuous function in a deformation field. The computational domain is the

interval [−1,+1]. The scalar is at time t = 0 a double top hat function and the velocity field a is a

periodic sinusoidal wave:

u0(x) = 1 if x ∈ [−0.3,−0.1]⋃[0.1, 0.3] , 0 elsewhere, (45)

a(x) = 1 + sin(π x)/2. (46)

This velocity field results in a translation to the right together with alternating increase and decrease

of the solution. The solution is time periodic with a period given by T = 4/
√
3. In the top picture

of Figure 11 we compare the solution obtained by the limited Λ2 scheme with the solution obtained

by a 5th order Weno scheme using a Lax-Friedrichs flux and a RK3 time-stepping. In both cases

we take h = 0.005. The particle method uses a Van Leer limiter and the CFL number is equal

to 12. For the Weno scheme the CFL number is equal to 2. The bottom-left picture of this

figure shows a comparison of these 2 methods after 3 turns. One can see that the particle method

resolves better the sharp variations of the solution, although it is only second order and uses a

time-step 6 times larger. Finally the bottom-left picture is a comparison of our method with the

result of a particle method using the same number of points, the same CFL number and the M ′
4

remeshing formula. One can see that the M ′
4 formula gives acceptable results for the location of

the discontinuities, but produces overshoots and oscillations of the order of 10% of the maximum

value of the solution. Finally the bottom-right picture of this figure shows the result of our method

when a CFL number of 0.5 is used. In this case, no correction is implemented for the remeshing

formula, but the limitation introduces a large amount of diffusion. This is not surprising, since, for

this value of the CFL number, the particle method with Λ2 remeshing reduces to a plain second

order finite-difference scheme with first-order correction. This case is interesting in showing that

using high CFL numbers is important, not only because it reduces the computational cost but also

because, by taking advantage that particle methods give the exact solution when the advection

field is constant, it reduces numerical diffusion.

Our last illustration is the ring in a radial velocity field already considered, but with an initial

condition which is 1 inside the ring, 0 outside. For this case, we compare our second order corrected

and limited Λ2 scheme with the M ′
4 remeshing scheme. In both case we use a grid with h = 0.01

and a CFL number equal to 10. In Figure 12 one can see that the M ′
4 scheme produces oscillations

near the discontinuities, in additions to those already seen in the smooth zone of the solution. The

corrected and limited Λ2 scheme avoids these oscillations.

30



Figure 11: Discontinuous profile (45) in a deformation field (46). Top pictures: Comparisons of
particle methods with second order remeshing and TVD limiter at CFL12 (green curves) to the
exact solution (red curve) and to a 5th order Weno scheme at CFL 2 (blue curve). Solution shown
at t = 3 (top-left) and t=6.926 = 3T (top-right). Bottom picture : comparison at time t = 3T
with results of the M ′

4 remeshing scheme at CFL 12 (blue curve, bottom-left) and to second order
TVD remeshing at CFL 0.5. In all cases h = 0.005.
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Figure 12: Same as top pictures in Figure 6 with top hat profile inside the ring.

7 Conclusion

In this paper we have analyzed remeshing formulas, when they are used at every time-step in particle

methods, in a grid-based framework. We have derived, for second order and fourth order remeshing

interpolation kernels, correction formulas to ensure the consistency of the resulting grid schemes

when the CFL number varies from one particle to the next. In addition we have shown that the grid-

based analysis enables the implementation of TVD limiters in remeshing formulas. This analysis

yields rigorous bounds for the time step, or remesh frequency, to be used in remeshed particle

methods. The accuracy of the resulting methods have been demonstrated in several examples. The

results in particular show that the efficiency of the method, both in terms of computational cost

and accuracy, is very much related to the possibility to use large time-steps only limited by the

local flow strain.

Ongoing works include the implementation of these new remeshing schemes in AMR based particle

methods and their applications in high resolution simulations of scalar transport in turbulent flows.
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Appendix

We prove here that the remeshing formulas defined in Table 2 are consistent in the cases (c’) and

(d’). We first consider the case (c’). We set λi = a(xi)∆t/h, αI = α(yI) and similar notations for

the other remeshing weights and indices.. Let us first assume λI−1 ≤ 0.

At the grid point I we obtain after remeshing the following value at time tn+1:

u′I = γ′I−1uI−1 + (β′I + γ′I)uI + (αI+1 + βI+1)uI+1 + αI+2uI+2. (47)

We next evaluate the weights by the formulas (10), (11) and observe that yI−1 = 1 + λI−1, yI =

1 + λI , yI+1 = 1 + λI+1, yI+2 = 1 + λI+2. After some elementary calculations we obtain

u′I =
λI−1

2
(λI−1 +1)uI−1 + (1− λI

2
(λI − 1))uI −

λI+1

2
(λI+1 +3)uI+1 +

λI+2

2
(λI+2 +1)uI+2. (48)

A Taylor expansion of u gives

aJuJ = aIuI + (J − I)h ∂
∂x

(au)(xI , tn) +O(h2)

and thus

λJuJ = λIuI + (J − I)∆t ∂
∂x

(au)(xI , tn).

Using this equality for J from I − 1 to I + 2 in (48) gives

u′I = uI −∆t
∂

∂x
(au)(xI , tn) +

1

2
(λ2I−1uI−1 − λ2IuI − λ2I+1uI+1 + λ2I+2uI+2) +O(h2). (49)

Finally, it is readily seen that

a2I−1uI−1 − a2IuI − a2I+1uI+1 + a2I+2uI+2 = 2h2
∂

∂x2
(a2u)(xi) + 0(h3).

Therefore:

u′I = uI −∆t
∂

∂x
(au)(xI , tn) +O(h2),

which is consistent with one time-step for the advection equation (2).
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In he case when λI−1 > 0 the term γ′I−1 in (47) has to be replaced by γI−1 but in this case

yI−1 = λI−1 and the contribution to the grid point I − 1 is the same as in (48).

We now turn to the grid point I + 1. We obtain after remeshing the following value at time tn+1:

u′I+1 = γI+1uI+1 + βI+2uI+2 + αI+3uI+3 (50)

From (10) we get

u′I+1 = (1 +
λI+1

2
(λI+1 + 3))uI+1 − λI+2(2 + λI+2)uI+2 +

λI+3

2
(λI+3 + 1)uI+3. (51)

By Taylor expansions of au around the grid point I + 1 we get

u′I+1 = uI+1 −∆t
∂

∂x
(au)(xI+1, tn) +

1

2
(λ2I+1uI+1 − 2λ2I+2uI+2 + λ2I+3uI+3) +O(h2). (52)

Finally, it is readily seen that

a2I+1uI+1 − 2a2I+2uI+2 + a2I+3uI+3 = h2
∂

∂x2
(a2u)(xI+2) + 0(h4)

and therefore

u′I+1 = uI+1 −∆t
∂

∂x
(au)(xI+1, tn) +O(h2)

which is consistent with one time-step for the advection equation (2) at the grid point I + 1.

We now turn to the case (d’). Let us consider the grid point I. We first assume that λI−1 ≥ 0, and

we get after remeshing the following value:

u′I = γI−1uI−1 + (βI + γI)uI + (αI+1 + βI+1)uI+1 + αI+2uI+2. (53)

We have yI−1 = λI−1, yI = λI , yI+1 = 1 + λI+1 and yI+2 = 1 + λI+2, and we obtain after some

calculation a formula identical to (48), and thus the same, consistent, finite difference approximation

to the advection equation. In the case when λI−1 ≥ 0, on has to replace γI−1 by γ′I−1. Since in

this case yI−1 = 1 + λI−1 and γ′(y) = γ(y − 1), we again find the same finite-difference formula.

Finally, on can notice that at the grid point I + 1 we obtain the same value in the case (d’) as in

the case (c’).
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