
HAL Id: hal-00588832
https://hal.science/hal-00588832

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalisation and verification of interoperation
requirements on collaborative processes

Sihem Mallek, Nicolas Daclin, Vincent Chapurlat

To cite this version:
Sihem Mallek, Nicolas Daclin, Vincent Chapurlat. Formalisation and verification of interopera-
tion requirements on collaborative processes. 18th IFAC World Congress, Aug 2011, Milano, Italy.
�10.3182/20110828-6-IT-1002.01796�. �hal-00588832�

https://hal.science/hal-00588832
https://hal.archives-ouvertes.fr

Formalisation and verification of interoperation
requirements on collaborative processes

Sihem Mallek*, Nicolas Daclin*, Vincent Chapurlat*

* Laboratoire de Génie Informatique et d'Ingénierie de Production - LGI2P -

site de l’Ecole des Mines d’Alès, Parc Scientifique Georges Besse,
F30035 Nîmes Cedex 5, France

(Tel (+33) 466 387 066 - e-mail: surname.name@mines-ales.fr)

Abstract: Interoperability is became a crucial question to improve success of a collaboration in a
networked enterprise. Therefore, in a collaborative context, enterprises have to detect their
interoperability problems to solve and to reach an efficient collaboration. This research work aims then to
define, to formalise and to analyse a set of interoperability requirements that each partner of a
collaborative process have to satisfy prior to any collaboration. This paper focuses and illustrates how
interoperation requirements related to the dynamic aspect of the collaboration may be formalised and
verified by the use of a formal verification technique.

Keywords: interoperability, interoperability requirements, collaborative process, verification technique,
model checker.

1. INTRODUCTION

In the current globalized and aggressive market environment,
enterprises are more and more involved in collaborative
processes. A collaborative process can be defined as “a
process whose activities belong to different organisations”
(Aubert et al., 2002). The efficiency of this kind of process
leads enterprise to assume its interoperability in particular
prior to the collaboration. Therefore the goal is to minimise
possible defaults and risks induced by a lack of
interoperability, and to evaluate the potential performance of
the collaboration. For this (Daclin et al., 2008) proposes to
define and assess performance criteria such as: the cost, the
quality and the time of the interoperation.

The research presented in this communication aims to help
managers and engineers in networked enterprise to detect
possible interoperability problems. Interoperability
requirements are proposed and an engineering approach
allowing to establish an interoperability requirements
reference repository is developed. Moreover, some
conceptual extensions to existing processes modelling
languages to consider the notion of interoperability
requirement are proposed (Roque et al., 2009). This
enrichment is necessary to perform the verification of
interoperability requirements on the resulting collaborative
process model. A verification approach based on a formal
checking approach is then highlighted.

This paper focuses on the formalisation and verification of
“ interoperation requirements” that characterize the
expectations to be verified taking dynamic aspect of the
collaboration into account. It is structured as follows. Section
2 reminds the principles and classification of interoperability
requirements. Section 3 introduces the proposed mechanisms
used to analyse interoperability requirements. Section 4

presents the generation of the behavioural model to verify
interoperation requirements. The formalisation of
interoperation requirements is given section 5. To illustrate
the verification of interoperation requirements, an application
case is given in section 6 before presenting some outlines
perspectives of this research work.

2. INTEROPERABILITY REQUIREMENTS REFERENCE
REPOSITORY

Several definitions of enterprise interoperability are proposed
in the literature. (ISO/DIS 11354-1, 2009) defines enterprise
interoperability as the “ability of enterprises and entities
within those enterprises to communicate and interact
effectively”. In this way, interoperability is seen as the ability
for a system (here an organizational unit such as team,
enterprise, collaborative process), to work efficiently in
collaboration with any others systems. Thus, interoperability
can be considered as a set of requirements to satisfy prior any
collaboration. A requirement is defined as “a statement that
specifies a function, ability or a characteristic that a product
or a system must satisfy in a given context” (Scucanec et al.,
2008).

As far as the two dimensions (i.e. interoperability barriers and
interoperability concerns) of the interoperability framework
developed in the Network of Excellence INTEROP
(INTEROP, 2007) are considered, three classes of
interoperability requirements are defined (Mallek et al.
2010): compatibility, interoperation and reversibility
requirements.

In fact, interoperability remains often related to compatibility
requirements. Compatibility means to harmonize enterprises
(method, organization, tool...) together. For instance,
heterogeneous information exchanged can be understood and

exploited by each ones without interfacing effort. However,
the compatibility represents only the static aspect of the
collaboration that may be checked definitely and
independently from the dynamic of the entities involved in
the collaboration. The dynamic aspect of the collaboration is
thus described by the “interoperation requirements”. The
Interoperation focuses on the abilities of the (part of the)
enterprise to adapt its organisation, its operation modes and
its behaviour when it interacts. In other words, it concerns the
runtime phase of the collaborative process. Furthermore,
when collaboration takes over, partners wish to retrieve their
autonomy while remaining efficient. Indeed, any
collaboration can induce a modification of the organisation or
of the behaviour of one of the entities in order to collaborate.
As a consequence, it is necessary to describe another kind of
requirements called “reversibility requirements”.
Reversibility means that an enterprise may maintain or
retrieve easily its autonomy at the end of any collaboration.
In summary, interoperability requirements can be classified
into three classes that are, for example, in agreement with the
creation, operation and dissolution phases of a virtual
enterprise (Camarinha-Matos et al., 2003). Indeed, when a
business opportunity is detected during the creation phase,
compatibility is required. Then, an efficient interoperation is
necessary through the operation phase. Finally, reversibility
makes its all sense on the dissolution phase where enterprises
aim to retrieve their own autonomy in order to carry on their
own operations or to go to another collaboration. These
classes are defined as follow:
- A compatibility requirement is defined as “a statement

that specifies a function, ability or a characteristic,
independent of time and related to interoperability
barriers (conceptual, organizational and technological)
for each interoperability concerns (data, services,
processes and business), that enterprise must satisfy
before collaboration effectiveness”.

- An interoperation requirement is defined as “a statement
that specifies a function, ability or a characteristic,
dependent of time and related to the performance of the
interaction, that enterprise must satisfy during the
collaboration”.

- A reversibility requirement is defined as “a statement
that specify functions, abilities or characteristics related
to the capacity of enterprise to retrieve its autonomy and
to back to its original state (in terms of its own
performance) after collaboration, that enterprise must
satisfy”.

The description and the handle of the requirements expressed
in each category remains a difficult task. Therefore, the
proposed approach allows to dispose of a requirement model
for describing the expected abilities without ambiguity,
thanks to an interoperability requirements reference
repository. This repository enables to help the user for
structuring and organising its own interoperability
requirements and to reuse existing requirements. This
repository is described through a causal tree model. It is an
oriented graph G formalised as follow:

G ::= (L, N, N0) With:

- L = {L j / j ∈ [0,n] ; Lj ::= (SourceN, TargetN) with
(SourceN, TargetN) ∈ N x N, SourceN ≠ TargetN and
level(SourceN) > level(TargetN)}

- N = {N i / i ∈ [0,m] ; Ni ::= (namei, descriptioni,
relationi, facti, leveli , valuei)} where :

o (namei, descriptioni) ∈ String x String

o relationi ::= (quantifier, T, θc, θe) with :

� quantifier ∈ {“ ∀”, “ ∃”}

� T ⊆ T / set of possible moments

� θe : facti ∪ T → {0 , 1}

θe : { f1, f2, ...} ∪ { t1, t2, ...} → {0 , 1}

� θc : NNi → {0 , 1} with NNi ::= {N j ∈ N / j ∈
[0,m], j ≠ i, ∃ Lk (Ni, Nj) / k ∈ [0,n] } is the
set of Source nodes of Ni.

θc : {value(NN1), value(NN2), ...} → {0 , 1}

In other words, a node Ni represents a requirement at a given
level of detail leveli. It can be static (independent of the time)
i.e. considered verifiable at any time (the set of moment T is
empty). It can be dynamic i.e. having to be verified only at
some phases of the collaboration life cycle. The relationi is
the refinement relation linking Ni to a set of nodes from
leveli+1 i.e. nodes representing more precise requirements.
Last, the relationi is conditioned by both logical functions θe
and θc. θe is the logical function describing the condition in
which the requirement is satisfied. θc is the logical function
allowing to interpret the influence of the value of sources
nodes on the target node Ni.

o facti = {variables, parameters and predicates
values extracted from processModeli}

o leveli ∈ [0 ;+∞[indicates the level of detail of
the requirement. By definition, the root element
has level=0 i.e. interoperability in this context
and level(Ni) returns the leveli of node Ni.

o valuei ∈ {0, 1} is the result of verification node,

in absentia 0 (false). With valuei = θe ∧ θc.

- ∃ ! N0 = (name0, description0, relation0, fact0, level0=0,
value0) ∈ N is the root node of the graph G representing
the more abstract interoperability requirement.

Where, by convention:
m = number of nodes of the oriented graph G.
n = number of links of the oriented graph G.
T = set of moments.
processModel is the pointed out model of the
collaborative process to be analysed.

This model is applied on interoperability requirements
reference repository and illustrated Fig. 1. The root node (in
gray) is refined into three sub-nodes, each ones represents the
three categories of requirements. Each category is then
refined with the introduction of new sub-nodes according to
the concepts introduced in the enterprise interoperability
framework (interoperability concerns and interoperability
barriers) (INTEROP, 2007). Each category is refined by

interoperability concerns which are refined themselves by
interoperability barriers. The causal tree is then completed
with the more precise requirements extracted from several
research works about interoperability such as maturity
models (Tolk et al., 2003), (C4ISR, 1998), (Clark et al.,
1999), (ATHENA, 2005) and an investigation made from
enterprises to collect their interoperability requirements.
Therefore, possible enrichments with new interoperability
requirements are made on the last levels of abstraction in the
causal tree.

The choice of logical function (θe) used to link an abstract
requirement to more precise requirements is left to user’s
discretion. Thus, the requirements of each level can be
analyzed separately. In this case, some of requirements that
are not satisfied, can be considered as negligible or represent
an acceptable risk for the user.

Fig. 1. Interoperability requirements reference repository
represented as a causal tree

To analyse the collaborative process, the verification of more
precise interoperability requirements by formal verification
techniques is then proposed.

3. INTEROPERABILITY REQUIREMENTS ANALYSIS

Different mechanisms are highlighted to analyse
interoperability requirements on a model of collaborative
process. These mechanisms are based on formal verification
techniques (Edmund et al., 1999) (Berard et al., 2001) or on
technical expertise.

Indeed, some requirements can be verified on the
collaborative process model (processModel) - through formal
verification techniques - if the modelling language used to
build processModel allows the description of interoperability

requirements. These interoperability requirements can be
verified after an adequate translation of the processModel
into formal models upon which formal verification can be
done. In other cases, if interoperability requirements highlight
particular points of view of the process and cannot be
described by the modelling language, technical expertise is
required; this stage of checking is not detailed in this paper.

Interoperability requirements can be verified from formal
manner using two verification techniques. The first one is
based on conceptual graphs (Chein et al. 1992), (Roque et al.,
2009) for the verification of static requirements and, the
second one is based on model checking for the dynamic
requirements (Behrmann et al., 2004).

Formal verification of dynamic requirements (i.e.
interoperation requirements) is perform with the model
checker tool UPPAAL (Behrmann et al., 2004) for different
reasons (richness of TCTL temporal logic, open source, user
friendly, stand alone tool, ...). The principle of a model
checker is to verify properties (that represent requirements
formally) exhaustively with temporized and eventually
constrained automata that describe the behaviour of the
system. A model checker replies with true or false if a
property is satisfied or not and, in the second case, gives a
counter example.

Verification with model checkers requires two phases. The
first phase consists to define an (set of) equivalent
behavioural model(s) of the processModel and to define the
processModel transformation rules to be applied. The second
phase consists to reformulate the interoperation requirements
gathered into the repository under the form of properties and
respecting the formal language adopted by the chosen model
checker (e.g. a temporal logic) (Schnoebelen, 2002). The two
phases for the verification of interoperation requirements by
the model checker UPPAAL are presented in the next
sections.

4. BEHAVIOURAL MODEL GENERATION

The modelling language used to describe processModel is
BPMN (Business Process Modelling Notation) (BPMN,
2009). It provides a standardised notation that is readily
understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the
technical developers responsible to implement the technology
that will perform these processes, and finally, to the business
people who will manage and monitor these processes.
However, this notation does not consider the description of
interoperability such as the nature of the exchanged flow
(information, energy, material and person), the availability of
resources and their aptitudes. As a consequence, this
language has been enriched (1) to become able to embed the
interoperability requirements model proposed above and, (2)
to make their verification possible. Some of these
enrichments are presented in (Roque et al., 2009). Then the
processModel has to be transformed in behavioural models
compatible with the model checker UPPAAL.

In UPPAAL, a model is a set of templates representing
Networks of Timed Automata, which communicates with

synchronisation (either on the form Expression! for sending
or Expression? for receiving message), using channels and
syntax like sent/receive. Each template has locations and
transitions to link a location source to a target source
(Behrmann et al., 2004).

The proposed transformation is based on (Gruhn et al., 2005)
and proposes the transformation of the few BPMN elements:
Start and End event, the Gateway (AND and XOR) and the
Task (Activity) into templates. For instance, the Start event
can be transformed into a simplified template with two
locations and a synchronisation as presented Fig. 2.
Furthermore, the Task is transformed using four locations and
two synchronisations. To consider the message flow between
two Activities, another synchronisation between them
(message) are added. Moreover, several Start event and End
event can be considered using the Declaration System.

BPMN elements Templates in UPPAAL

Start

Activity

Activity sends MessageFlow

Activity receives MessageFlow

Activity

Activity

Activity

Fig. 2. Examples of transformation rules from enriched BPMN to
Networks of Timed Automata

These transformation rules are developed with ATL (Atlas
Transformation Language) (ATLAS, 2005) as shown in Fig.
3 in order to re-write the processModel into Networks of
Timed Automata. The objective is to obtain models without
ambiguity in order to check formal properties that describe
interoperation requirements.

Conforms to Conforms to

M1

M2

BPMNDiagram.xmi
BPMN2UPPAAL.atl

BPMNDiagram.xml

BPMN.ecore UPPAAL.ecore

Ecore.ecoreM3

Conforms to

Fig. 3. Transformation from enriched version of BPMN to Networks
of Timed Automata

The ATL is a model transformation language specified both
as a meta model and as a textual concrete syntax. The main

advantage of using ATL is to dispose of two types of model
transformation description. The preferred style of
transformation writing is declarative, which means simple
mappings can be expressed simply. However, imperative
constructs are provided so that some mappings too complex
to be declaratively handled can still specified. In Fig. 3 the
transformation procedure of models (level M1) starts taking
into account the meta models (level M2) of the enriched
BPMN language and the UPPAAL model checker which are
conform to the meta meta model ecore (level M3) of EMF
(Eclipse Modelling Framework, available online at:
http://www.eclipse.org/modeling/emf/). This transformation
is made in order to provide all the needed templates and
system declaration of the Networks of Timed Automata. All
templates are obtained by considering all the modelling
entities which will be used in the checking task. Thus, each
class (including its attributes) and each relation of the meta
model are translated into templates. Respecting this, each
BPMN element can be extracted from the processModel in
order to produce the corresponding template representing
Networks of Timed Automata. Thus, these templates gather
all the knowledge described in the model and represents the
behavioural model of the collaborative process. At this stage,
the ATL transformation remains for the moment unique. The
objective is to give the choice of the transformation to the
user. For instance, the transformation of task element from
the enriched BPMN to a template in Networks Timed
Automata can change depending on the wishes of the user.
Indeed, a task can be transformed into a simple template
which has simple states and two synchronisations using a
first ATL transformation and a template which considers
resources with another ATL transformation as shown Fig. 4.
This choice can influence the requirements checking step.

BPMN elements
ATL

Transformations Templates in UPPAAL

Activity
Transformation 1

Transformation 2

Activity

Fig. 4. Exemples of two transformations of an activity from enriched
BPMN to Networks of Timed Automata

5. INTEROPERATION REQUIREMENTS
FORMALISATION

To enable the implementation of formal verification
techniques, the interoperation requirements are formalised
into TCTL properties (Timed Computation Tree Logic i.e.
the UPPAAL property specification language) as presented in
next section. TCTL is an extension of CTL (Computational
Tree Logic) which allows considering several possible
futures from a state of a system. The model checker
UPPAAL has four TCTL quantifiers permitting to write the
following queries for a property p:

- E<>p: p Reachable i.e. it is possible to reach a state
in which p is satisfied.

- A<>p: Inevitable p i.e. p will inevitable become
true.

- E[]p: Potentially Always p i.e. p is potentially
always true.

- A[]p: Invariantly p i.e. p is true in all reachable
states.

- p→q: p leads to q i.e. if p becomes true, q will
inevitably become true.

According to the templates defined above, the interoperation
requirements written in natural language are manually re-
written into properties using TCTL. Then the model checker
UPPAAL verifies exhaustively properties in TCTL through
all execution paths of the behavioural models that are
reachable. For instance, a requirement described as “an
activity is working between T=5 time units and 10 time units”
can be formalised into a property using TCTL as

E<> Activity.Working and T>5 and T<10

This property indicates that a path can exists where an
activity is in the state Working between 5<T<10. This
property can be verified on the template representing an
Activity shown Fig. 2. To illustrate the proposed approach,
examples are given in next section.

6. INTEROPERATION REQUIREMENTS
VERIFICATION: APPLICATION CASE

To illustrate the proposed approach, an example showing the
progress of four activities in an enterprise is presented. For
instance, modelling a collaborative process where several
activities are involved can be done in several ways according
to several scenarios as shown Fig. 5.

Scenario(1)

Scenario(2)

Scenario(3)

Scenario(N)

Fig. 5. Several scenarios from enriched BPMN

The first scenario is a sequence of four activities, the second
one represents the implementation of the first two activities in
parallel and the last one represents the implementation of the
four activities in parallel. The objective is to demonstrate that
the verification of interoperation requirements can guide the
user in selecting the most appropriate scenario according to
its needs for the implementation of the collaborative process.

Several interoperation requirements depending on time can
be verified on these scenarios.

The interoperation requirement described by “the resource is
available for all activities” is formalised by the property
described as:

E<> Resource.Available and Activity.Start

Where Resource and Activity represent the name of the
template and Available and Start represent the name of the
state. This property indicates that the resource is in the state
Available when the activity starts. To verify this property for
the previous scenarios, two templates are needed, a template
representing the activity and a template representing the
resource as shown Fig 6. The verification of the property will
go through all possible paths and answering true or false.

Activity template

Resource template

Fig. 6. Activity template and resource template

If two activities (for example Activity1 and Activity4) of the
process have to use the same resource, the property is not
satisfied if the two activities are in parallel. Indeed, the two
activities can use the same resource, only if they are in
sequence. The resource can be allocated successively to the
two activities. In this case, the Nth scenario do not respect the
property (i.e. the requirement).

Moreover, this requirement may be verified in a different
way. Indeed, if a time condition is added to this requirement,
the verification will be different for the scenarios. The
interoperation requirement will be described as: “the resource
is available for all activities on time”. For instance, if the first
activity uses the resource in the first 10 time units and the
second activity needs this resource before the end on the first
one at five time units, then the properties to verify on the
Networks Timed Automata will be given by:

E<> Resource.Available and T<10 and Activity1.Start”

for the first activity and by:

E<> Resource.Active and T>5 and Activity2.Working

for the second activity where T represents a clock. In this
case, the first property is satisfied and the second one is not
satisfied. Indeed, if the resource is used by the first activity
during 10 time units the second activity cannot access the
same resource at 5 time units.

As a consequence, this approach can help the user to detect
different problems in the different scenarios. So, the user can
choose the scenario which seems the more efficient for the
collaboration (to be left to the user’s discretion) even if this
scenario does not check all the requirements. Indeed, the
consideration of the temporal aspect of collaboration changes
the result of the verification and can bring more information
about the choice of the scenario by users.

7. CONCLUSION

In a collaborative context, interoperability takes a
preponderant part. Therefore, enterprises aim to find their
interoperability problems and resolve them to have an
efficient collaboration. As a consequence, formalisation, and
verification of interoperability requirements to help
enterprises to find their interoperability problems can be a
potential solution to improve this collaboration.

This paper presented the definitions of interoperability
requirements and their formulation thanks to a reference
repository. This reference repository is used to target
interoperability problems in order to solve them easier.

This paper focused on the dynamic aspect of the
collaboration, with the verification of interoperation
requirements involved during the collaboration. To make the
verification of these requirements thanks to a model checker,
they must be formalised into properties using a formal
language. Future works are related to the verification of
interoperability properties with formal verification techniques
using multiple kinds of transformations.

REFERENCES

ATHENA. 2005. Framework for the establishment and management
methodology, Integrated Project ATHENA, deliverable A1.4,
2005.

ATLAS Groupe INA & INRIA Nantes. 2005. ATL Atlas
Transformation Language. Specification of the ATL Virtual
Machine. Version 0.1. 2005.

Aubert B., Dussart A. 2002. Système d’Information Inter-
Organisationnel, Report Bourgogne, CIRANO, March 2002. (in
french)

Behrmann G., David A., Larsen K. G., 2004. A tutorial on Uppaal
Department of Computer Science, Aalborg University, Denmark,
2004. Available online at : http://www.uppaal.com/ (last visited:
04-04-2011)

Bérard B., Bidoit M., Finkel A., Laroussinie F., Petit A., Petrucci L.,
Schnoebelen Ph., McKenzie P. 2001. Systems and Software
verification: model checking techniques and tools, Springer,
2001.

BPMN. 2009. Business Process Modeling Notation, V1.2.
http://www.bpmn.org/, 2009 (last visited: 04-04-2011)

Camarinha-Matos, L. M., Afsarmanesh, H., Rabelo, R. J. 2003.
Infrastructure developments for agile virtual enterprises. Journal
of Computer Integrated Manufacturing, ISSN 0951-192X, Vol.
16, N. 4-5, Jun-August 2003

Chapurlat, V., Roque, M. 2009. Interoperability constraints and
requirements formal modelling and checking framework.
Advances in Production Management Systems, APMS,
Bordeaux, France, 2009

Chein, M,, Mugnier, M-L, 1992. Conceptual graphs: fundamental
notions, Revue d’intelligence artificielle, vol.6, n°4, pp. 365-
406, 1992

Clark, T., Jones, R. 1999. Organisational Interoperability Maturity
Model for C2. Proc of Command and Control Research &
Techn. Symposium, Newport, USA 1999

C4ISR Architecture Working Group. 1998. Levels of Information
Systems Interoperability (LISI). United States of America
Department of Defence, Washington DC, USA, 30 March 1998

Daclin N., Chen D., Vallespir B. 2008. Methodology for enterprise
interoperability. 17th IFAC World Congress (IFAC’08), Seoul,
Korea, 2008.

Edmund M. Clarke Jr. 1999. Orna Grumbereg, Doron A. Peled,
Model checking, The MIT Press, 1999.

Gruhn V., Laue R., 2005. Using Timed Model Checking for
Verifying Workflows. Computer Supported Activity
Coordination 2005: 75-88.

INTEROP. 2007. Enterprise Interoperability-Framework and
knowledge corpus - Final report, INTEROP NoE, FP6 – Contract
n° 508011, Deliverable DI.3, May 21st

ISO/DIS 11345-1, 2009. Advanced automation technologies and
their applications. Part 1: Framework for enterprise
interoperability. 2009

Mallek S., Daclin N., Chapurlat V. 2010. Toward a
conceptualisation of interoperability requirepments. IESA 2010,
Interoperability for Enterprise Software & Applications,
Coventry, 14-15 April 2010

Roque M., Chapurlat V. 2009. Interoperability in collaborative
processes: requirements characterisation and proof approach,
PRO-VE’09, 10th IFIP Working Conference on VIRTUAL
ENTERPRISES, Thessaloniki, Greece, 7-9 October 2009.

Schnoebelen Ph. 2002. The Complexity of Temporal Logic Model
Checking, Advances in Modal Logic, Volume 4, pp1-44, 2002.

Scucanec, S. J., Van Gaasbeek, J. R. 2008. A day in the life of a
verification requirement. U.S Air Force T&E Days, Los Angeles,
California, February 2008

Tolk, A., Muguira, J.A. 2003. The Levels of Conceptual
Interoperability Model. Proceedings of Fall Simulation
Interoperability Workshop (SIW), Orlando, USA, (2003)

