N

N

A Design Pattern meta model for Systems Engineering
Francois Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut

» To cite this version:

Francois Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut. A Design Pattern meta
model for Systems Engineering. IFAC World Congress Milano 2011, Sep 2011, Milano, Italy. pp.11967-
11972, 10.3182/20110828-6-1T-1002.03005 . hal-00588830

HAL Id: hal-00588830
https://hal.science/hal-00588830

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00588830
https://hal.archives-ouvertes.fr

A design pattern meta model for Systems Engineering

Francois Pfister*, Vincent Chapurlat*
Marianne Huchard** and Clémentine Nebut**

*LGI2P, Ecole des Mines d'Alés, site de Nimes, Bmientifique Georges Besse, 30000 Nimes, France
(e-mail:{fforename.lastname}@mines-ales.fr)
*[IRMM, CNRS - Université Montpellier 2, 161 ridela, 34095 Montpellier Cedex 5, France
(e-mail: {lastname}@lirmm.fr)

Abstract: STEP (ISO 10303) and PLib (ISO 13584) standardimeleneta-models and data exchange
formats for industrial component models. Many dib@gomponent catalogs used by the CAD/CAM tools
are based on these standards. In the same way S¢Sitem Modeling Language) from OMG is a
specification language for designing, analyzing aedfying complex technical systems in Systems
Engineering domain. Models defined with SysML canttansformed to conform to STEP and PLib
standards. Within models, particular component reyements can be frequently recognized,
corresponding to specific features or functionaditiThey are now known as reusable patterns ogrdesi
patterns. These one provide a potential mean ticletine model semantics, and, as such, to enhance
generation of automatic model matching. Therefdreytallow engineers to study and improve
interoperability of systems under design. This papesents a first approach of a model alignment
method based on design patterns, which can bedsyesi here as an extension to existing modeling
tools.

Keywords design-pattern, systems engineering, model majchimodel alignment, model driven
engineering

the semantic and functional levels. To resolve gahissues,
alignment (as the result of a model matching agfivof

Systems Engineering (SI) proposes, in an approatledc Models representing these systems is a prerequisiie key
Model Based Systems Engineering (MBSE) (Estefafgp0 to interoperability is based on the mapping of emts and

to adopt the principles of MDE (Model Driven Engemimg). Processes for each system to interopeidching different
This bringd the experience of a decade effort &rdpromise but compatible systems (by aligning their modelah de
of domain models sustainability compared to theéaglity =~ done m_anually by domain experts, but alsp In a semi
of actual tools and technologies. In addition, t8ys automatic way. Indeed, current models contain heufiror
Engineering, like software engineering, uses séverdiousands of entities, and eff|_C|enc_y constralrase_!hled to
modelling languages then meta-metamodels: the ssicre the emergence of tools to assist alignment. In phiser, we

of these conceptual foundations was an obstackrisiness Will try to show how design patterns can help model
models re-usability. Allow the conservation of theter alignment. We propose to make a model pre-handiing,
despite technological evolutions and found themvaba oOrder to find pattern correspondences for each maue
stable conceptual pyramid like OMG's, this is thtehtion of ~described further. Such a pre-handling consists aof
MBSE. Systems may be composed of sub-systems Whi@gcomposmon which _W|II be. useful to facilitate ded
often are heterogeneous, themselves composed twiasef alignment. We also will consider all the conseqesnof
hardware and components, interfaced with humanrsaao Using design patterns in Systems Engineering.

other systems. Therefore, it is necessary to endureng the

conception phase, interoperability between eaamected del for S Endied

sub-system, in spite of the final system nativeetageneity we propose a pattern metamodel for Systems Engngeen

or com Ie>'<it In accordance with (Pingaud 2Oog)sec:tlon 4, we expose current pattern implementatiithin
pIEXILY. 9 metamodels. In section 5; we tell how to mobilizdterns to

s ke st PIOVE Syste roperabiy and model slgnmend
gn sy ' we'll conclude in section 6.

harmonious, and finalized behaviours, without theed of
modifying deeply their own structure and behavibur.
Systems efficiency, in terms of their missions, etags on 2. DESIGN PATTERN SEMANTICS

surrounding systems. Several types of interopetgbil individual constructions within an overall archite. This
barriers are emerging (technical, informationalpctional, idea, originally proposed by Christopher Alexander
and semantic) (ATHENA, 2003). Our target interestshere (alexander et al., 1977), has been widely usedoitvare

1. INTRODUCTION

We describe the pattern semantics in section 3gation 3

engineering (Gamma et al.,, 1994). We propose to afse pattern is far from the Composite Pattern descritbgd

Design Patterns in Systems Engineering, not inamesp to
technical implementation problems as does Gammatdu
structure the functional and physical architectupattern
mobilization occurs, in Systems Engineering, durithg
requirements definition phase, while describing pneblem
solved by the pattern application, as well as & ftimctional
and the physical architecture design phase, whakeribing
the solution carried by the pattern. A design patie a way
to represent invariant knowledge and experienaesign by
practitioners. It can help human actors to idensind solve

(Gamma et al., 1994). Instead, we can detect &loospling
pattern based on a bipartite graph. One graph septe the
structure of the product, and the other represetiss
geometry. In such a model, it will be possible tack, as
layers, many sub-models involved in various aspetthe
component representation (functional model, perforce
model, geometric model ...) Patterns at this lepatticipate
in the concern of modelling technology, and haveeffect
on the nature of the end systems. It is necessagetect
those patterns in the physical architecture thatatgorithms

problems by drawing or imitating such knowledge andust walk through, but these patterns are not iracin the

experience. The objectives are:
(comprehensiveness, relevance), reliability (proselutions,
justified and contextual argued), to gain economidue
(time savings) and, finally, to facilitate collaltive work by
sharing pattern repositories. These objectivesheaachieved
by leveraging and integrating such knowledge, godtices
and lessons learned, and by formalizing them fasee So
design patterns are a means to formalize and cstatelard
solutions repositories in response to known andukatly
encountered issues in a particular field. A patiera simple
and small artifact, rarely isolated and therefoerelated
with other ones. A pattern is described by an abstmodel
to be imitated by actual models. It defines thdatmration

to gain performaneaacroscopic system semantics we are targetingerRatthat

we seek capture the various domain concerns abfwut t
system when in the operational phase of its lifecy8o, the
example that we propose in Section 5 describessa o
applying a regulation pattern within the functionahd
physical architecture of motor vehicles.

3. APATTERN METAMODEL FOR SYSTEMS
ENGINEERING

This point constitutes the first part of our contiion. Many
proposals for formalizing patterns exist. Thesduide for
example the P-Sigma formalism (Conte et al., 20829, also

of some system components or some system functions(Gzara 2000) contribution who proposes the appiinaof

contribute to a given mission. A pattern is notraativity

method (by definition, it exists only if the soloi it proposes
is well known and frequently used in the field atitrefore,
is not innovative). In the same manner, it is naeasable
component. It is destined to be imitated and adaptea
particular context.

assembly
Product [* Product_
component Hierarchy
product
Product_
RepresentationLink
shape
parentShape ;
Product_ ; Representation
Representation S0 ldShape Hierarchy

Fig. 1. Loose Coupling Assembly Pattern

We will distinguish several types of patterns: first are
idiomatic patterns, which describe a low levelustaring
elements of a model, governing associations betvikese
elements, defining aggregation and containmentegfies.
They are structures at low level without affectingpdel
overall architecture. The GOF patterns (Gamma.etl8b4)
could be classified as such, in the software emging

design patterns for product data management, thatoi
structure a model of physical system componentsnyMa
efforts have been undertaken by the promoters oSKIBo
integrate design patterns into the models developgd
Systems Engineering (Cloutier, 2007). The AFIS
(Association Francaise d'Ingénierie Systeme - Hrenc
Association of Systems Engineering), the Frenclptevaof
INCOSE, has been mandated to further the implertientaf
design patterns in System Design. Our participatiorthe
Technical Committee MBSE within AFIS gives us the
opportunity to begin a formal reflection to repnesdesign
patterns on the basis of SysML or its implementatiy the
ISO 10303 - STEP AP233.

We rely on the Cloutier proposal (Cloutier, 20070t e
consider more formally the pattern metamodel witlain
(candidate) System metamodel (Fig. 2). The desaftem
for Systems Engineering (SystemPattern) has paaints
who can be physical components, or functions inctee of
functional patterns. The fragment of an actual rhode
impacted by a pattern imitates the latter if theuacmodel’s
components or functions play the role of the patter
participants, and also if the model's dynamic bébrav
mimics the dynamic behavior described by the patter

Fig. 3 shows a pattern associated with other oreatéd,
requested or mandatory, equivalent, anti-pattétrman have
multiple aliases (aka, also-known-as), a set ofwads
allows its localization, and has a rationale. Atgat is
legitimated by citing known application cases (kmeuses).
Its participants are components or functions, @mponents

domain. Similarly, in Systems Engineering, physicaheing associated with one another through intesfatt
components are sometimes expressed with ISO103@34P convey informational or physical flows (Item on Fg).

or AP210 STEP models (physical components in tlddiof

mechanics and electronics). If one examines the PSTE

product representation (Fig. 1), we find that tbenposition

operatesin

" interactsWith returns to generate or to correct a part of the ehduy
SystemPattern Context System . .
(from pattern) & applying a prototype (Barcia 2006).

+name

+author(s) hasA +equivalent-patterns
+creationDate * coﬂ\posedOf

1hasA +requested_patterns

4 [LieCydle | +ch|ldSystems +anti-patterns
ifeCycle
() b |- * +related_patterns
* -
-

+externalSystems

e +participants
+partidipants +compdsedOf SystemPattern
* 1..*\|, +performs 1.* * +name
Function ' - Constituent +author(s)

+name] +ahildren|* type : ConstituentType +creationDate

+description +ch||%ren +domain : ArchitectureDomain

+domain : ArchitectureDomain +isAPatternParticipant

+type : FunctionType ~ fconstitue ’ ’ . *

+isAPatternParticipant +unction 1 1] 1

+o . :
Allocation trole *fpm Rationale Alias
1 | _+role 1.* +name
1. +comment
1.7 | +transforms +performs
* *
tom 1 Interface +known-uses
+type : ltemType X H : i
Y Y +carries Application Keyword || Reguirement
<<enumeration>> | | <<enumeration>> | [<<gnumeration>> <<enumeration>> +keyword (from system)
ItemType FunctionType ArchitectureDo... ConstituentType

PhysicalEntity Rotation Physics SubSystem

InformationEntity Translation Service Element stiucture . —
Energy Fixture Energy Component unction

ToBeContinued ToBeContinued Part (from system)

+participants +name

+description

Fig. 2. Systems Engineering patterns within a Sgste +domain - ArchitectureDomain

+rolef

metamodel (overall vision). crucde +function +type :Functioh.rype 1
According to Fig. 4, a pattern embeds a controliechbulary + |isAPattemParticipant
depending on the domain where it belongs. The egtbin Mlocation o,
context of the pattern is described, so are the dfet A = . ; " | +performs
constraints and contradictions that the desigrepatsolves +partiqipants (from system)
(forces). The impact of the pattern implementatitn « | +constituent Interface
evaluated, and finally, the definition is suppleteenby a (from system)
model of the problem solved by the pattern, andoaehof Constituent
the solution to be imitated by the actual modeleSehmodels (from system)
can be described with different languages, eaclyuage *type : ConstituentType *role
offering different views (static, dynamic, functan *+domain : ArchitectureDomain !
behavioral). +isAPatternParticipant 1 +from
+name
4. PATTERN IMPLEMENTATION WITHIN *+desoription 1 +o

METAMODELS

According to the Model-Based/Model-Driven initiagiv Fig. 3. System Pattern meta-model (A).

(Soley 2000), a pattern should be represented w@siiogmal

language, handled through a design tool and beiethph 5 PATTERNS MAY IMPROVE MODEL ALIGNMENT
model transformations. Patterns (and models on wthey

apply), are expressed with languages such as SYEMIG), This constitutes the second point of our contritrutiModel
which is an UML profile, or STEP (ISO), based ore th transformation, according to the MDA paradigm, &séd on
EXPRESS schema (Schenk, 1994), and also OWL (W3@).transformation model instance of a meta-modeQsJ
Within models, design patterns apply a crystalimaprocess (Bézivin, 2001). This transformation model formakz a
(Baudry, 2003) (Jézéquel et al., 2005). Impactetities fit mapping of correspondences between the source model
together in a configuration to meet specific rotiefined in elements and the target ones. When match rulesnatre
the pattern. Design patterns are defined in UMISgsML as trivial, the transformation model formalizes moremplex
parameterized collaborations. They specify a setlagses imperative rules. The transformation model can be
and objects that have specific roles and interastio constructed manually by an expert in the domaiwtiich lie
Mechanisms such as inheritance, delegation, aride two models to align. Actually, these models rnagtain
implementation are used to give rise to collaboratithat hundreds or thousands of items, so it would beulisefrely

will be captured by use cases as well as throutgraotion on a tool to assist the expert. Our proposal isige the
diagrams. (Jacobson, 1997) (Sunyé 2000). Applyipgteern contribution of design patterns and related todisaaly

integrated modeling platforms to improve the autmda surface aspect, non-functional requirements) caallbeated
discovery of mapping alignment, in combination withon the current components. These fit together ao ttey
existing techniques (Falleri et al. 2010) (Euzemial., 2004). assume the roles of the parameters defined foatomiations
that represent the pattern in the model. These m@present

Term 1 DomainVocabulary associations between current model components had t
*+term “ pattern participants. If the pattern is involved the
+definition erms] functional architecture, the elements are impaéwedtions.

In addition to their structural impact, the patteatso

specifies dynamic constraints in prescribing setjaken
Rationale Context Domain collaboration protocols between components or behsv
+name described with state diagrams. In the case wheterpa are
not expressed in the model by the existence of salds,

1 some tools can detect when buried (Tonella et 1899)

(Arevalo & al. 2004) (Gueheneuc, 2008).

+rationales 1

SystemPattern

+name The example shown Fig. 5 describes a cruise-copatiérn,
+author(s) applied to an electric car, on the one hand, andaon
+creationDate conventional thermic car on the other. Each modiehios

1.+ | +forces this pattern to define its own cruise-control sudtesn. Thus,
1.7 this case represents the need to interoperate inomative
systems helped by aligning their models. The pattier
described by its organizational structure (funailorand
+solutions dynamic views have been omitted). The pattern gpents
1 1 (throttle, brake, transmission control unit ...)ig¥hare the
component components of a solution-type cruiserobrdre
associated with the roles played by the component
components of the two actual models that imitagepthttern.
A classical alignment model based on the Simildfityoding
(Melnik et al., 2002), which is a method of propéga of
1\I/ 1 similarities in a labeled graph to determine a mateill be

Model used to generate a mapping between two models. This

algorithm will be effectively complemented by theadyzing
the roles connecting the pattern to both models.

Force

+challenge
+constraint

Problem 1.* Solution
+description +description
+type : ProblemType 1 +language : ModelingLanguage
+langu... : ModelingLa...

1
- +examples

1.% 1..* | +impacts
Vigw Impact 6. CONCLUSIONS
+type : ViewType +variationSense
+domain : ImpactDomain We proposed to complete the process initiated b3OSE,
to formalize a Pattern for Systems Engineering metiel.
<<enumeration>> <<enumeration>> <<enumeration>> This metaquel _takes advantage of Ie_sspns learned i
ViewType ProblemType ModelingLanguage softyvare engineering, but adapts the principle (&t&n
Semantic Fluid SysML design.
FSut :’Gctzltsnrzll St'r::itire Iggll: If a model keeps trace of patterns it imitates, ldteer will
Behavioural Security Triz contribute to document it and to promote interopiitg of
ToBeContinued Optimization ToBeContinued the represented system, with Surrounding systen’me T
ToBeContinued system components are often physical componentdeled
<<enumeration>> with languages used to represent products througthsir
ImpactDomain life cycle, such as STEP AP203 and AP214 (Mechénica
Time Engineering) and AP210 (Electronic Engineering). In
Space continuation of our work, we focus to implement igas
Flexibility patterns within this family of languages, and stuilhe
Performance consequences in terms of interoperability in thepecific
Organization areas. Finally, from a methodological point of vieme will
Methodology propose to help designers to describe domain pattnd to
ToBeContinued

pass from problems to solutions by implementing the

metamodel described above. Such a methodologyleet

Fig. 4. System Pattern meta-model (B). us to contribute to existing Systems Engineeringhos,
with the proposition of a pattern application fuangl

The currentl model components are reconfigured tmien model, expressed in SysML activity diagrams.

the pattern. Notably, in the case of physical orchaaical

oriented systems, particular constraints (structgemmetry,

Electrical car

(’

| TemperatursSetting J | AirCooler

ClimRaegulator |

+habitacleTemperature Sensor l “‘ "

TemperatureSensor

Habitacle |

+extemnal Temperaturefensor

L4 L)

o] Speed3ensor s

Car

Chassis

Pattern

CruiseControl

Thretily — Engine
'

N

"
"
. Targue
% | Converter
0

v
b Gaarsat
Transmjgsion (=3
ContralUnit it
n

E
EY
v

ﬂ. I‘
el ~

— e =

A

BrakePadal

0
L]
0

SpecdManager i -

— GasPedal [-*

TTRTA

.
+

l— 'I’hsrmalEn_gma

-— Wehiche

"-“'

I Heater-Cooler

| TemperatureCommand

4

X " 1 > ClimDevice
+internal Sgnsor

+extemSensor

Temperature Transmitier

Fig. 5. Role based model alignment.

rbles

o
h
1 .l-' L
e
L& ;
e Conventional car
" iy Py _I
5 . “_ r
.

'-L.n .
I
-

REFERENCES

Alexander, C. & al., 1977. A pattern language : risw
buildings, construction, Oxford University Press.

Arevalo, G., Buchli, F. & Nierstrasz, O., 2004. Beting
implicit collaboration patterns. In 11th Working
Conference on Reverse Engineering. Delft, Nethdda

ATHENA, 2003. Advanced Technologies for Interopéigb
of Heterogeneous Enterprise Networks and their
Applications,

Barcia, R. & Gerken, C., 2006. Get started with lattiven
development using the Design Pattern Toolkit. I1BM
WebSphere Developer Technical Journal.

Baudry, B., 2003. Assemblage testable and validatie
composants. Renens, France: Rennes 1.

Bézivin, J. & Gerbé, O., 2001. Towards a Precisérid®n
of the OMG/MDA Framework. In 16th IEEE
international conference on Automated software
engineering. San Diego, U.S.A.

Cloutier, R. & Verma, D., 2007. Applying the contemf
patterns to systems architecture. In Systems Eagimg
Wiley, p. 138-154.

Conte, A. & al., 2002. A tool and a formalism tosg and
apply patterns. In International conference on cbje
oriented information systems. Conference on Object-
Oriented Information Systems OOIS. Montpellier,
France, p. 135-146.

Estefan, J., 2008. Survey of Model-Based Systems
Engineering (MBSE) Methodologies, Seattle, WA -
U.S.A.: INCOSE.

Euzenat, J. & Valtchev, P., 2004. Similarity-basedology
alignment in OWL-Lite. In European Conference on
Artificial Intelligence. Valencia, Spain.

Falleri, J. & al., 2010. Metamodel Matching for Auotatic
Model Transformation Generation. Model Driven
Engineering Languages and Systems, 5301, 326-340.

Fenves, S. & al.,, 2005. Product Information Excleang
Practices and Standards. Transactions of the ASME
Journal of Computing and Information Science in
Engineering.

Friendenthal, S., Moore, A. & Steiner, R., 2009P#actical
Guide to SysML: The Systems Modeling Language,
Morgan Kaufmann.

Gamma, E. & al., 1994. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

Gueheneuc, Y. & Antoniol, G., 2008. DeMIMA: A
Multilayered Approach for Design Pattern Identifica.
IEEE Transactions on Software Engineering.

Gzara, L., Rieu, D. & Tollenaere, M., 2000. An Apach for
Building Product Models by Reuse of Patterns. In 7t
ISPE International Conference On Concurrent
Engineering CE2000. Lyon, France.

Jacobson, I., Griss, M. & Jonsson, P., 1997. SoévReuse:
Architecture, Process and Organization for Business
Success, Addison-Wesley Professional.

Jézéquel, J., Plouzeau, N. & Le Traon, Y. 2005.
Développement de logiciel a objets avec UML,
Université de Rennes 1.

Kemmerer, S., 2009. Manufacturing Interoperability
Program, a Synopsis, N.I.S.T.

Melnik, S., Garcia-Molina, H. & Rahm, E., 2002. Hamty
flooding: A versatile graph matching algorithm. 18th
International Conference on Data Engineering. Ree,
CA, U.S.A.

Pingaud, H., 2009. Rationalitt du développement de
l'interopérabilité dans les organisations. In Maemagnt
des Techniques Organisationnelles. Nimes, France.

Schenk, D. & Wilson, R., 1994. Information Modelitige
EXPRESS Way, Oxford University Press.

Soley, R., 2000. Model Driven Architecture, OMG

Sunyé, G., Le Guennec, A. & Jézéquel, J., 2000.ignes
Patterns Application in UML. In ECOOP. Sophia
Antipolis, France: Springer.

Tonella, P. & Antoniol, G., 1999. Object Orientecedign
Pattern Inference. In IEEE International Conferenoe
Software Maintenance. Oxford, England, UK.

