
HAL Id: hal-00588830
https://hal.science/hal-00588830

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Design Pattern meta model for Systems Engineering
François Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut

To cite this version:
François Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut. A Design Pattern meta
model for Systems Engineering. IFAC World Congress Milano 2011, Sep 2011, Milano, Italy. pp.11967-
11972, �10.3182/20110828-6-IT-1002.03005�. �hal-00588830�

https://hal.science/hal-00588830
https://hal.archives-ouvertes.fr

A design pattern meta model for Systems Engineering

François Pfister*, Vincent Chapurlat*
Marianne Huchard** and Clémentine Nebut**

*LGI2P, Ecole des Mines d'Alès, site de Nîmes, Parc Scientifique Georges Besse, 30000 Nîmes, France
(e-mail:{forename.lastname}@mines-ales.fr)

**LIRMM, CNRS – Université Montpellier 2, 161 rue Ada, 34095 Montpellier Cedex 5, France
(e-mail: {lastname}@lirmm.fr)

Abstract: STEP (ISO 10303) and PLib (ISO 13584) standards define meta-models and data exchange
formats for industrial component models. Many digital component catalogs used by the CAD/CAM tools
are based on these standards. In the same way SysML (System Modeling Language) from OMG is a
specification language for designing, analyzing and verifying complex technical systems in Systems
Engineering domain. Models defined with SysML can be transformed to conform to STEP and PLib
standards. Within models, particular component arrangements can be frequently recognized,
corresponding to specific features or functionalities. They are now known as reusable patterns or design
patterns. These one provide a potential mean to enrich the model semantics, and, as such, to enhance
generation of automatic model matching. Therefore they allow engineers to study and improve
interoperability of systems under design. This paper presents a first approach of a model alignment
method based on design patterns, which can be considered here as an extension to existing modeling
tools.

Keywords: design-pattern, systems engineering, model matching, model alignment, model driven
engineering

1. INTRODUCTION

Systems Engineering (SI) proposes, in an approach called
Model Based Systems Engineering (MBSE) (Estefan, 2008),
to adopt the principles of MDE (Model Driven Engineering).
This bringd the experience of a decade effort and the promise
of domain models sustainability compared to the variability
of actual tools and technologies. In addition, Systems
Engineering, like software engineering, uses several
modelling languages then meta-metamodels: the succession
of these conceptual foundations was an obstacle to business
models re-usability. Allow the conservation of the latter
despite technological evolutions and found them above a
stable conceptual pyramid like OMG’s, this is the intention of
MBSE. Systems may be composed of sub-systems which
often are heterogeneous, themselves composed of software,
hardware and components, interfaced with human actors or
other systems. Therefore, it is necessary to ensure, during the
conception phase, interoperability between each connected
sub-system, in spite of the final system native heterogeneity
or complexity. In accordance with (Pingaud 2009),
“interoperability can be defined as an aptitude for two
foreign systems to interact in order to establish collective,
harmonious, and finalized behaviours, without the need of
modifying deeply their own structure and behaviour.”
Systems efficiency, in terms of their missions, depends on
their ability to establish and maintain connections with
surrounding systems. Several types of interoperability
barriers are emerging (technical, informational, functional,
and semantic) (ATHENA, 2003). Our target interests are here

the semantic and functional levels. To resolve these issues,
alignment (as the result of a model matching activity) of
models representing these systems is a prerequisite. One key
to interoperability is based on the mapping of concepts and
processes for each system to interoperate. Matching different
but compatible systems (by aligning their models) can be
done manually by domain experts, but also in a semi-
automatic way. Indeed, current models contain hundreds or
thousands of entities, and efficiency constraints have led to
the emergence of tools to assist alignment. In this paper, we
will try to show how design patterns can help model
alignment. We propose to make a model pre-handling, in
order to find pattern correspondences for each model, as
described further. Such a pre-handling consists of a
decomposition which will be useful to facilitate model
alignment. We also will consider all the consequences of
using design patterns in Systems Engineering.

We describe the pattern semantics in section 2; in section 3
we propose a pattern metamodel for Systems Engineering. In
section 4, we expose current pattern implementation within
metamodels. In section 5; we tell how to mobilize patterns to
improve system interoperability and model alignment, and
we’ll conclude in section 6.

2. DESIGN PATTERN SEMANTICS

Design patterns are one of the approaches used to abstract
individual constructions within an overall architecture. This
idea, originally proposed by Christopher Alexander
(Alexander et al., 1977), has been widely used in software

engineering (Gamma et al., 1994). We propose to use of
Design Patterns in Systems Engineering, not in response to
technical implementation problems as does Gamma, but to
structure the functional and physical architecture. Pattern
mobilization occurs, in Systems Engineering, during the
requirements definition phase, while describing the problem
solved by the pattern application, as well as in the functional
and the physical architecture design phase, while describing
the solution carried by the pattern. A design pattern is a way
to represent invariant knowledge and experience in design by
practitioners. It can help human actors to identify and solve
problems by drawing or imitating such knowledge and
experience. The objectives are: to gain performance
(comprehensiveness, relevance), reliability (proven solutions,
justified and contextual argued), to gain economic value
(time savings) and, finally, to facilitate collaborative work by
sharing pattern repositories. These objectives can be achieved
by leveraging and integrating such knowledge, good practices
and lessons learned, and by formalizing them for reuse. So
design patterns are a means to formalize and create standard
solutions repositories in response to known and frequently
encountered issues in a particular field. A pattern is a simple
and small artifact, rarely isolated and therefore correlated
with other ones. A pattern is described by an abstract model
to be imitated by actual models. It defines the collaboration
of some system components or some system functions to
contribute to a given mission. A pattern is not a creativity
method (by definition, it exists only if the solution it proposes
is well known and frequently used in the field and, therefore,
is not innovative). In the same manner, it is not a reusable
component. It is destined to be imitated and adapted to a
particular context.

Fig. 1. Loose Coupling Assembly Pattern

We will distinguish several types of patterns: the first are
idiomatic patterns, which describe a low level, structuring
elements of a model, governing associations between these
elements, defining aggregation and containment strategies.
They are structures at low level without affecting model
overall architecture. The GOF patterns (Gamma et al., 1994)
could be classified as such, in the software engineering
domain. Similarly, in Systems Engineering, physical
components are sometimes expressed with ISO10303 AP214
or AP210 STEP models (physical components in the fields of
mechanics and electronics). If one examines the STEP
product representation (Fig. 1), we find that the composition

pattern is far from the Composite Pattern described by
(Gamma et al., 1994). Instead, we can detect a loose coupling
pattern based on a bipartite graph. One graph represents the
structure of the product, and the other represents it's
geometry. In such a model, it will be possible to stack, as
layers, many sub-models involved in various aspects of the
component representation (functional model, performance
model, geometric model ...) Patterns at this level, participate
in the concern of modelling technology, and have no effect
on the nature of the end systems. It is necessary to detect
those patterns in the physical architecture that our algorithms
must walk through, but these patterns are not involved in the
macroscopic system semantics we are targeting. Patterns that
we seek capture the various domain concerns about the
system when in the operational phase of its lifecycle. So, the
example that we propose in Section 5 describes a case of
applying a regulation pattern within the functional and
physical architecture of motor vehicles.

3. A PATTERN METAMODEL FOR SYSTEMS
ENGINEERING

This point constitutes the first part of our contribution. Many
proposals for formalizing patterns exist. These include for
example the P-Sigma formalism (Conte et al., 2002), and also
(Gzara 2000) contribution who proposes the application of
design patterns for product data management, that is, to
structure a model of physical system components. Many
efforts have been undertaken by the promoters of MBSE to
integrate design patterns into the models developed by
Systems Engineering (Cloutier, 2007). The AFIS
(Association Française d'Ingénierie Système - French
Association of Systems Engineering), the French chapter of
INCOSE, has been mandated to further the implementation of
design patterns in System Design. Our participation in the
Technical Committee MBSE within AFIS gives us the
opportunity to begin a formal reflection to represent design
patterns on the basis of SysML or its implementation by the
ISO 10303 - STEP AP233.

We rely on the Cloutier proposal (Cloutier, 2007) but we
consider more formally the pattern metamodel within a
(candidate) System metamodel (Fig. 2). The design pattern
for Systems Engineering (SystemPattern) has participants
who can be physical components, or functions in the case of
functional patterns. The fragment of an actual model
impacted by a pattern imitates the latter if the actual model’s
components or functions play the role of the pattern
participants, and also if the model’s dynamic behavior
mimics the dynamic behavior described by the pattern.

Fig. 3 shows a pattern associated with other ones (related,
requested or mandatory, equivalent, anti-pattern). It can have
multiple aliases (aka, also-known-as), a set of keywords
allows its localization, and has a rationale. A pattern is
legitimated by citing known application cases (known-uses).
Its participants are components or functions, one components
being associated with one another through interfaces that
convey informational or physical flows (Item on Fig. 2).

Fig. 2. Systems Engineering patterns within a System
metamodel (overall vision).

According to Fig. 4, a pattern embeds a controlled vocabulary
depending on the domain where it belongs. The application
context of the pattern is described, so are the set of
constraints and contradictions that the design pattern solves
(forces). The impact of the pattern implementation is
evaluated, and finally, the definition is supplemented by a
model of the problem solved by the pattern, and a model of
the solution to be imitated by the actual model. These models
can be described with different languages, each language
offering different views (static, dynamic, functional,
behavioral).

4. PATTERN IMPLEMENTATION WITHIN
METAMODELS

According to the Model-Based/Model-Driven initiative
(Soley 2000), a pattern should be represented using a formal
language, handled through a design tool and be implied in
model transformations. Patterns (and models on which they
apply), are expressed with languages such as SysML (OMG),
which is an UML profile, or STEP (ISO), based on the
EXPRESS schema (Schenk, 1994), and also OWL (W3C).
Within models, design patterns apply a crystallization process
(Baudry, 2003) (Jézéquel et al., 2005). Impacted entities fit
together in a configuration to meet specific roles defined in
the pattern. Design patterns are defined in UML or SysML as
parameterized collaborations. They specify a set of classes
and objects that have specific roles and interactions.
Mechanisms such as inheritance, delegation, and
implementation are used to give rise to collaborations that
will be captured by use cases as well as through interaction
diagrams. (Jacobson, 1997) (Sunyé 2000). Applying a pattern

returns to generate or to correct a part of the model by
applying a prototype (Barcia 2006).

Fig. 3. System Pattern meta-model (A).

 5. PATTERNS MAY IMPROVE MODEL ALIGNMENT

This constitutes the second point of our contribution. Model
transformation, according to the MDA paradigm, is based on
a transformation model instance of a meta-model as QVT
(Bézivin, 2001). This transformation model formalizes a
mapping of correspondences between the source model
elements and the target ones. When match rules are not
trivial, the transformation model formalizes more complex
imperative rules. The transformation model can be
constructed manually by an expert in the domain in which lie
the two models to align. Actually, these models may contain
hundreds or thousands of items, so it would be useful to rely
on a tool to assist the expert. Our proposal is to use the
contribution of design patterns and related tools already

integrated modeling platforms to improve the automated
discovery of mapping alignment, in combination with
existing techniques (Falleri et al. 2010) (Euzenat et al., 2004).

Fig. 4. System Pattern meta-model (B).

The currentl model components are reconfigured to mimic
the pattern. Notably, in the case of physical or mechanical
oriented systems, particular constraints (structure, geometry,

surface aspect, non-functional requirements) can be allocated
on the current components. These fit together so that they
assume the roles of the parameters defined for collaborations
that represent the pattern in the model. These roles represent
associations between current model components and the
pattern participants. If the pattern is involved in the
functional architecture, the elements are impacted functions.
In addition to their structural impact, the pattern also
specifies dynamic constraints in prescribing sequential
collaboration protocols between components or behaviors
described with state diagrams. In the case where patterns are
not expressed in the model by the existence of such roles,
some tools can detect when buried (Tonella et al., 1999)
(Arevalo & al. 2004) (Gueheneuc, 2008).

The example shown Fig. 5 describes a cruise-control pattern,
applied to an electric car, on the one hand, and on a
conventional thermic car on the other. Each model mimics
this pattern to define its own cruise-control subsystem. Thus,
this case represents the need to interoperate two automotive
systems helped by aligning their models. The pattern is
described by its organizational structure (functional and
dynamic views have been omitted). The pattern participants
(throttle, brake, transmission control unit ...) which are the
component components of a solution-type cruise control, are
associated with the roles played by the component
components of the two actual models that imitate the pattern.
A classical alignment model based on the Similarity Flooding
(Melnik et al., 2002), which is a method of propagation of
similarities in a labeled graph to determine a match, will be
used to generate a mapping between two models. This
algorithm will be effectively complemented by the analyzing
the roles connecting the pattern to both models.

6. CONCLUSIONS

We proposed to complete the process initiated by INCOSE,
to formalize a Pattern for Systems Engineering metamodel.
This metamodel takes advantage of lessons learned in
software engineering, but adapts the principle to System
design.

If a model keeps trace of patterns it imitates, the latter will
contribute to document it and to promote interoperability of
the represented system, with surrounding systems. The
system components are often physical components, modeled
with languages used to represent products throughout their
life cycle, such as STEP AP203 and AP214 (Mechanical
Engineering) and AP210 (Electronic Engineering). In
continuation of our work, we focus to implement design
patterns within this family of languages, and study the
consequences in terms of interoperability in these specific
areas. Finally, from a methodological point of view, we will
propose to help designers to describe domain patterns and to
pass from problems to solutions by implementing the
metamodel described above. Such a methodology will lead
us to contribute to existing Systems Engineering methods,
with the proposition of a pattern application functional
model, expressed in SysML activity diagrams.

Fig. 5. Role based model alignment.

REFERENCES

Alexander, C. & al., 1977. A pattern language : towns,
buildings, construction, Oxford University Press.

Arevalo, G., Buchli, F. & Nierstrasz, O., 2004. Detecting
implicit collaboration patterns. In 11th Working
Conference on Reverse Engineering. Delft, Netherlands.

ATHENA, 2003. Advanced Technologies for Interoperability
of Heterogeneous Enterprise Networks and their
Applications,

Barcia, R. & Gerken, C., 2006. Get started with model-driven
development using the Design Pattern Toolkit. IBM
WebSphere Developer Technical Journal.

Baudry, B., 2003. Assemblage testable and validation de
composants. Renens, France: Rennes 1.

Bézivin, J. & Gerbé, O., 2001. Towards a Precise Definition
of the OMG/MDA Framework. In 16th IEEE
international conference on Automated software
engineering. San Diego, U.S.A.

Cloutier, R. & Verma, D., 2007. Applying the concepts of
patterns to systems architecture. In Systems Engineering.
Wiley, p. 138-154.

Conte, A. & al., 2002. A tool and a formalism to design and
apply patterns. In International conference on object-
oriented information systems. Conference on Object-
Oriented Information Systems OOIS. Montpellier,
France, p. 135-146.

Estefan, J., 2008. Survey of Model-Based Systems
Engineering (MBSE) Methodologies, Seattle, WA -
U.S.A.: INCOSE.

Euzenat, J. & Valtchev, P., 2004. Similarity-based ontology
alignment in OWL-Lite. In European Conference on
Artificial Intelligence. Valencia, Spain.

Falleri, J. & al., 2010. Metamodel Matching for Automatic
Model Transformation Generation. Model Driven
Engineering Languages and Systems, 5301, 326-340.

Fenves, S. & al., 2005. Product Information Exchange:
Practices and Standards. Transactions of the ASME
Journal of Computing and Information Science in
Engineering.

Friendenthal, S., Moore, A. & Steiner, R., 2009. A Practical
Guide to SysML: The Systems Modeling Language,
Morgan Kaufmann.

Gamma, E. & al., 1994. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.

Gueheneuc, Y. & Antoniol, G., 2008. DeMIMA: A
Multilayered Approach for Design Pattern Identification.
IEEE Transactions on Software Engineering.

Gzara, L., Rieu, D. & Tollenaere, M., 2000. An Approach for
Building Product Models by Reuse of Patterns. In 7th
ISPE International Conference On Concurrent
Engineering CE2000. Lyon, France.

Jacobson, I., Griss, M. & Jonsson, P., 1997. Software Reuse:
Architecture, Process and Organization for Business
Success, Addison-Wesley Professional.

Jézéquel, J., Plouzeau, N. & Le Traon, Y., 2005.
Développement de logiciel à objets avec UML,
Université de Rennes 1.

Kemmerer, S., 2009. Manufacturing Interoperability
Program, a Synopsis, N.I.S.T.

Melnik, S., Garcia-Molina, H. & Rahm, E., 2002. Similarity
flooding: A versatile graph matching algorithm. In 18th
International Conference on Data Engineering. San Jose,
CA, U.S.A.

Pingaud, H., 2009. Rationalité du développement de
l’interopérabilité dans les organisations. In Management
des Techniques Organisationnelles. Nîmes, France.

Schenk, D. & Wilson, R., 1994. Information Modeling the
EXPRESS Way, Oxford University Press.

Soley, R., 2000. Model Driven Architecture, OMG
Sunyé, G., Le Guennec, A. & Jézéquel, J., 2000. Design

Patterns Application in UML. In ECOOP. Sophia
Antipolis, France: Springer.

Tonella, P. & Antoniol, G., 1999. Object Oriented Design
Pattern Inference. In IEEE International Conference on
Software Maintenance. Oxford, England, UK.

