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Abstract

We construct a C1 symplectic twist map f of the annulus that has an essential
invariant curve Γ such that:

• Γ is not differentiable;

• the dynamic of f|Γ is conjugated to the one of a Denjoy counter-example.
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1 Introduction

The exact symplectic twist maps of the two-dimensional annulus1 were studied for a
long time because they represent (via a symplectic change of coordinates) the dynamic
of the generic symplectic diffeomorphisms of surfaces near their elliptic periodic points
(see [5]). One motivating example of such a map was introduced by Poincaré for the
study of the restricted 3-Body problem.

The study of such maps was initiated by G.D. Birkhoff in the 20’s (see [3]). Among
other beautiful results, he proved the following one (see [9] too) :

Theorem. (G.D. Birkhoff) Let f be a symplectic twist map of the two-dimensional
annulus. Then any essential curve that is invariant by f is the graph of a Lipschitz
map.

In this statement, an essential curve is a simple loop that is not homotopic to a
point.

Later, in the 50’s, the K.A.M. theorems provide the existence of some invariant
curves for sufficiently regular symplectic diffeomorphisms of surfaces near their elliptic
fixed points (see [10], [2], [11] and [12]). These theorems provide also some essential
invariant curves for the symplectic twist maps that are close to the completely inte-
grable ones. These K.A.M. curves are all very regular (at least C3, see [9]).

But general invariant curves for general symplectic twist maps have no reason to be
so regular. The example of the simple pendulum (see [6]) shows us that an invariant
curve can be non-differentiable at one point: the separatrix of the simple pendulum
has an angle at the hyperbolic fixed point. In [9] and [1], some other examples are
given of symplectic twist maps that have an non-differentiable essential invariant curve
that contains some periodic points.

In all these examples, the non-differentiability appears at the periodic points. A
natural question is then:
Question. Does a symplectic twist map exist that has an essential invariant curve
that is non-differentiable at a non-periodic point?
A related question is the following one, due to J. Mather in [7]:
Question. (J. Mather) Does there exist an example of a symplectic Cr twist map
with an essential invariant curve that is not C1 and that contains no periodic point
(separate question for each r ∈ [1,∞] ∪ {ω})?

1all these notions will be precisely defined is subsection 2.1
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Let us point out that such an invariant essential curve cannot be too irregular :

• firstly, Birkhoff theorem implies that this curve has to be the graph of a Lipschitz
map; hence, by Rademacher theorem, it has to be differentiable above a set that
has full Lebesgue measure;

• secondly, I proved in [1] that this curve has too be C1 above a Gδ subset of T
that has full Lebesque measure2.

We will prove:

Theorem 1. There exists a symplectic C1 twist map f of the annulus that has an
essential invariant curve Γ such that:

• Γ contains no periodic points;

• the restriction f|Γ is C0-conjugated to a Denjoy counter-example;

• if γ : T → R is the map whose Γ is the graph, then γ is C1 at every point
except along the projection of one orbit, along which γ has distinct right and left
derivatives.

This lets open Mather’s question for r ≥ 2 and also the following question:
Question. Does a symplectic twist map exist that has an essential invariant curve
that is non-differentiable and that is such that the dynamic restricted to this curve is
minimal?

Before giving the guideline of the proof, let us comment on some related results.

Finding invariant curves with no periodic points that are less regular that the con-
sidered symplectic twist map has been a challenging problem for a long time.
First at all, as an application of K.A.M. theorems, for a fixed diophantine rotation
number and a 1-parameter smooth family (for example the standard family) such that
the invariant curve disappears, it is classical that the “last invariant curve” is not C∞,
even if the dynamic is C∞ : if this happens, by using K.A.M. theorems the curve
cannot disappear. . .
Secondly, M. Herman built in [9] some C2 symplectic twist maps that have a C1-
invariant curve on which the dynamic is conjugated to the one of a Denjoy counter-
example; such a curve cannot be C2. In [7], J. Mather asks if such a C3 counter-example
exists.

To build our counter-example, we will use a family of symplectic twist maps that
was introduced by M. Herman in [9]. These maps are defined by :

fϕ : T× R → T× R; (θ, r) 7→ (θ + r, r + ϕ(θ + r)).

2The precise definition of C1 in this context will be given in subsection 2.1

3



where ϕ : T → R is a C1 map such that
∫

T
ϕ(θ)dθ = 0.

As noticed by M. Herman, the main advantage of this map is the following one. We
denote a lift of g : T → T by g̃ : R → R. Then the graph of ψ : T → R is invariant by
fϕ if and only if we have:

• g = IdT + ψ is an orientation preserving homeomorphism of T;

• IdR + 1
2ϕ = 1

2

(

g̃ + g̃−1
)

.

Hence, in order to answer to Mather’s question, we just have to find g = IdT+ψ : T → T

that is an increasing non-differentiable homeomorphism of T with no periodic points
such that g̃ + g̃−1 is C1.
We begin by using a C1 Denjoy counter-example (see [8] and [9] for precise construc-
tions) g = IdT + ψ : T → T. The non-wandering set of g is then a Cantor subset
K of T such that g|K is minimal. We then consider a point x0 ∈ T\K that is not

in the Cantor subset K and its orbit (xk)k∈Z = (gk(x0))k∈Z. Then we modify g in a
neighborhood of this orbit in such a way that the new homeomorphism h : T → T

coincides with g along the orbit of x0 and is C1 at every point but the orbit of x0. At
every point xk of the orbit of x0, we assume that h has some left and right derivatives,
denoted by βlk and βrk such that: ∀k ∈ Z, βrk +

1
βr

k−1

= βℓk +
1

βℓ

k−1

.

If now we define ϕ : T → R by : IdR + 1
2ϕ = 1

2

(

h̃+ h̃−1
)

, then ϕ is C1 at

every point of T but the orbit of x0, has a right and left derivative along the or-
bit of x0 and verifies (we denote by ϕ′

r and ϕ′
ℓ the right and left derivative of ϕ):

∀k ∈ Z, ϕ′
r(xk) = βrk +

1
βr

k−1

− 2 = βℓk +
1

βℓ

k−1

− 2 = ϕ′
ℓ(xk). Hence ϕ is differentiable.

Roughly speaking, the left and right derivatives of h at xk and xk−1 are balanced in
the formula that gives ϕ. This idea that the irregularities of h and h−1 are balanced
in the formula that gives ϕ was the one that used M. Herman in [9] to construct his
Denjoy counterexample for a C2 symplectic twist map.

If we choose carefully h, we will see that ϕ is in fact C1. Let us point out that
things are not as simple as they seem to be, and the choice of the sequences (βℓk) and
(βrk) is a delicate process as we will explain in the next section.

2 Proof of theorem 1

2.1 Generalities about twist maps and other topics

Notations. • T = R/Z is the circle.
• A = T× R is the annulus and an element of A is denoted by (θ, r).
• A is endowed with its usual symplectic form, ω = dθ ∧ dr and its usual Riemannian
metric.
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• π : T× R → T is the first projection and π̃ : R2 → R its lift.
• if α ∈ T, Rα : T → T is the rotation defined by Rα(θ) = θ + α.

Definition. A C1 diffeomorphism f : A → A of the annulus that is isotopic to identity
is a positive twist map (resp. negative twist map) if, for any given lift f̃ : R2 → R2

and for every θ̃ ∈ R, the maps r 7→ π̃ ◦ f̃(θ̃, r) is an increasing (resp decreasing)
diffeomorphisms. A twist map may be positive or negative.

Then the maps fϕ that we defined at the end of the introduction are positive
symplectic twist maps.

Definition. Let γ : T → R be a continuous map. We say that γ is C1 at θ ∈ T is
there exists a number γ′(θ) ∈ R such that, for every sequences (θ1n) and (θ2n) of points
of T that converge to θ such that θ1n 6= θ2n, then:

lim
n→∞

γ(θ1n)− γ(θ2n)

θ1n − θ2n
= γ′(θ)

where we denote by θ1n−θ2n the unique number that represents θ1n−θ2n and that belongs
to ]− 1

2 ,
1
2 ].

If we assume that γ is differentiable at every point of T, then this notion of C1

coincides with the usual one (the derivative is continuous at the considered point).

2.2 Denjoy counter-example

Following [9] p. 94, we define a Denjoy counter-example in the following way.
We assume that α /∈ Q/Z , δ > 0 and that C >> 1. Then we introduce:

ℓk =
aC

(|k|+ C)(log(|k|+ C))1+δ

where aC is chosen such that
∑

k∈Z

ℓk = 1. We use a C∞ function η : R → R such that

η ≥ 0, support(η) ⊂ [14 ,
3
4 ] and

∫ 1
0 η(t)dt = 1. We define ηk by : ηk(t) = η

(

t
ℓk

)

. Then

we have:
∫ 1
0 ηk(t)dt = ℓk. Moreover, there exist two constants C1, C2, that depend

only on η, such that :

C1 ≤ |ηk| ≤ C2;
C1

ℓk
≤ |η′k| ≤

C2

ℓk
.

We assume now that C >> 1 is great enough so that:

∀k ∈ Z,

∣

∣

∣

∣

ℓk+1

ℓk
− 1

∣

∣

∣

∣

C2 < 1.
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Then the map gk : [0, ℓk] → [0, ℓk+1] defined by gk(x) =
∫ x

0

(

1 +
(

ℓk+1

ℓk
− 1

)

ηk(t)
)

dt

is a C∞ diffeomorphism such that gk(ℓk) = ℓk+1.
There exists a Cantor subset K ⊂ T that has zero Lebesgue measure and that is

such that the connected components of T\K, denoted by (Ik)k∈Z, are on T in the same
order as the sequence (kα) and such that length(Ik) = ℓk.
Let us recall what is the semi-conjugation j : T → T of the Denjoy counter-example to
the rotation Rα. Il x ∈ {kα; k ∈ Z}, then we define : j−1(x) =

∫ x

0 dµ(t) where µ is the

probability measure µ =
∑

k∈Z

ℓkδkα, δkα being the Dirac mass at kα. Then j : T → T

is a continuous map with degree 1 that preserves the order on T and that is such that
j(Ik) = kα.
Then there is a C1 diffeomorphism g : T → T that fix K, is such that K is the unique
minimal subset for g, has for rotation number ρ(g) = α, verifies j ◦g = Rα ◦j. If k ∈ Z,
we introduce the notation: g|Ik = gk; then we have: gk(Ik) = Ik+1. Following [9] again,

we can assume that: g′k = g′|Ik =
(

1 +
(

ℓk+1

ℓk
− 1

)

ηk

)

◦ R−λk
where Rλk

(Ik) = [0, ℓk]

and that gk : Ik → Ik+1 is defined by : gk = Rλk+1
◦ hk ◦R−λk

.
Let us point out two facts that will be useful: lim

|k|→∞
‖g′k − 1‖ = 0 and:

∀θ ∈ K, g′(θ) = 1.

2.3 Modification of the Denjoy counter-example g

We choose x0 ∈ I0 and we consider its orbit (xk)k∈Z = (gk(x0))k∈Z.
Then we will build a perturbation h of g such that g|K = h|K and ∀k ∈ Z, h(xk) =
g(xk) = xk+1.

Notations.

• for all k ∈ Z, we have: Ik =]ak, bk[, Lk =]ak, xk] and Rk = [xk, bk[;

• χ : R → R is defined by: χ = g̃ + g̃−1 − 2IdR;

• for all k ∈ Z, we denote: αk = g′(xk) and mk = 2 + χ′(xk).

Because of the definition of χ, we have then: ∀k ∈ Z, αk +
1

αk−1
= mk.

Notations. For every parameter m ∈ R, let Φm :]0,+∞[→] −∞,m[ be defined by :
Φm(t) = m− 1

t
.

Let us notice that every function Φm is an increasing diffeomorphism. Moreover:

• ifm < 2, then Φm has no fixed points and : ∀t,Φm(t) < t and lim
n→+∞

Φn
m(t) = −∞;

• if m = 2, 1 is the only fixed point of Φm. Moreover: if t > 1, then 1 < Φm(t) < t
and lim

n→+∞
Φn
m(t) = 1; if t < 1, then Φm(t) < t and lim

n→+∞
Φn
m(t) = −∞;
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• if m > 2, Φm has two fixed points, p− < p+; if t > p+, then p+ < Φm(t) <
t and lim

n→+∞
Φn
m(t) = p+; if p− < t < p+, then p− < t < Φm(t) < p+ and

lim
n→+∞

Φn
m(t) = p+; if t < p−, then Φm(t) < t and lim

n→+∞
Φn
m(t) = −∞.

We have: ∀k ∈ Z, αk = Φmk
(αk−1).

Let us now choose βL0 > α0 and βR0 > α0 (each of them is then denoted by β0). As
every Φm is increasing and defined on ]0,+∞[, we can define (βn)n≥0 in the following
way: βn+1 = Φmn

(βn). Then ∀n ≥ 0, βn > αn > 0.

Lemma 1. We have: lim
n→+∞

βn = 1.

Proof Let us recall that: lim
n→+∞

αn = 1. We deduce that lim inf
n→+∞

βn ≥ 1 and that

lim
n→+∞

mn = 2.

Let us fix ε > 0; then there exists N > 0 such that: ∀n ≥ N,mn ≤ 2 + ε. Then, for
all n ≥ N , we have: βn+1 = Φmn+1

(βn) = Φ2+ε(βn) − (2 + ε − mn+1) < Φ2+ε(βn).
Using the fact that Φ2+ε is increasing, we easily deduce: ∀n ≥ 0, βN+n ≤ Φn

2+ε(βN ).
We know that (Φn

2+ε(βN ))n∈N has a limit, and because lim inf
n→+∞

βn ≥ 1 this limit cannot

be smaller than 1. Hence lim
n→+∞

Φn
2+ε(βn) = p+(ε) if we denote the greatest fixed point

of Φ2+ε by p+(ε). We deduce that lim sup
n→+∞

βn ≤ p+(ε). We have: p+(ε) =
2+ε+

√
ε(4+ε)

2 ,

hence: lim
ε→0+

p+(ε) = 1.

Finally, we have proved that lim sup
n→+∞

βn ≤ 1. As lim inf
n→+∞

βn ≥ 1, we deduce the lemma.

In a similar way, we choose 0 < βL−1 < α−1 and 0 < βR−1 < α−1 and we denote each
of them by β−1. As every Φ−1

m is increasing and defined on ] −∞,m[, we can define
(βk)k≤−1 by βk−1 = (Φmk

)−1 (βk). Then : ∀k ≤ −1, βk ≤ αk.

Lemma 2. We have: lim
k→−∞

βk = 1.

The proof of this lemma is similar to the one of lemma 1. Now, we can assume:

• βR0 6= βL0 ;

• βL0 + 1
βL
−1

= βR0 + 1
βR
−1

.

Then we denote this last quantity by m̃0 = βL0 + 1
βL
−1

= βR0 + 1
βR
−1

. Because β0 > α0

and β−1 < α−1, we necessarily have: m̃0 > m0.
Now (βLk ) (resp. (β

R
k )) is a good candidate to be the left (resp. right) derivative of

h along the orbit (xk).
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Proposition 1. There exists an orientation preserving homeomorphism h : T → T

such that:

• h|K = g|K and ∀k ∈ Z, h(xk) = g(xk);

• h and h−1 are C1 at every point of T but the orbit of x0;

• h and h−1 have some right and left derivative at every point xk of the orbit of x0,
and h′R(xk) = βRk , h

′
L(xk) = βLk . Moreover, h|Rk

and h|Lk
are C1.

Remark. If proposition 1 is true, then theorem 1 is proved: if h = IdT + ψ and
ϕ = g̃ + g̃−1 − 2IdR, then the graph of ψ is invariant by fϕ and the dynamic of fϕ
restricted to this graph is the one of a Denjoy counter-example with α as rotation
number. Moreover, ψ is non-differentiable along the orbit of x0 but ϕ is C1. Indeed, as
g and g−1 are, ϕ is C1 at every point of T but the orbit of x0. Moreover, the restriction
of ϕ to each interval Lk =]ak, xk] or Rk = [xk, bk[ is C

1. To prove that ϕ is C1, we
then just have to prove that the right and left derivatives are equal along the orbit of
x0. We have:

• if k 6= 0, ϕ′
L(xk) = βLk + 1

βL

k−1

− 2 = mk − 2 = βRk + 1
βR

k−1

− 2 = ϕ′
R(xk);

• if k = 0, ϕ′
L(x0) = βL0 + 1

βL
−1

− 2 = m̃0 − 2 = βR0 + 1
βR
−1

− 2 = ϕ′
R(x0).

Hence ϕ is C1.

Let us now prove proposition 1. We modify g, or rather its derivative, in each
interval Lk and Rk in the following way. Let us notice that: lim

|k|→+∞
|g′|[ak ,bk] − 1| = 0;

lim
|k|→+∞

βLk = lim
|k|→+∞

βRk = 1; g′|K = 1.

Then on each interval Lk =]ak, xk], we replace g
′ by a continuous function δk :]ak, xk] →

R∗
+ such that:

1. δk(xk) = βLk ;

2. δk coincide with g′ in a neighborhood of ak;

3.
∫ xk

ak
δk =

∫ xk

ak
g′ = g̃(xk)− g̃(ak);

4. ∀t ∈ Lk, |δk(t)− 1| ≤ max{|g|Lk
− 1|, |βLk − 1|}+ 1

1+|k| .

To build δk, we just have to replace g′ between xk − εk and xk by some affine function
and then to modify slightly g′ elsewhere in Lk to rectify the value of the integral. If
εk is small enough, than the change in the integral is very small and we have the last
inequality (but of course the slope of the affine function can be very great, so the
perturbation of g that we build in not small in C2 topology).
We then define h|Lk

by:

∀t ∈ [ak, xk], h(t) = g(ak) +

∫ t

ak

δk(s)ds.
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We proceed in similar way to define h|Rk
and we obtain similar properties. Moreover,

we ask: h|K = g|K .
Then h is continuous. By construction, its restriction to every interval Ik is contin-

uous. Moreover, we have lim
|k|→+∞

|h|Ik − g(ak)| = 0 (because of point 4 and the fact that

lim
|k|→∞

length(Ik) = 0). We deduce that h is continuous at every point of K. Moreover,

h is orientation preserving and injective by construction. Hence h is an orientation
preserving homeomorphism of T.

Moreover, h|K = g|K by construction and ∀k ∈ Z, h(xk) = g(xk) by point 3.
By construction, h|Rk

and h|Lk
are C1 (and then the same is true for h−1), h′R(xk) =

βRk and h′L(xk) = βLk .
Let us now prove that h is differentiable at every point of K and that h′|K = 1.

We consider y ∈ K and a sequence (yn) that converge to y and that is such that:

∀n, yn 6= y. We want to prove that lim
n→+∞

h(yn)− h(y)

yn − y
= 1. Considering eventually

different cases, we can assume that (yn) tends to y from above. Then there are two
cases:

• either y = ak for some k. Then we have the conclusion by point 2;

• or y is accumulated from above by a sequence (akn)n∈N that are left ends of
intervals Ijk .

Because g is C1 and g′|K = 1, for every ε > 0 there exists η > 0 such that for every

z ∈ [y, y + η[, then |g′(z) − 1| < ε. Let us assume that n is big enough such that
yn ∈ [y, y + η[. There are three cases:

• yn ∈ K. Then there exists z ∈ [y, y + η[ such that:

∣

∣

∣

∣

h(yn)− h(y)

yn − y
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

g(yn)− g(y)

yn − y
− 1

∣

∣

∣

∣

=
∣

∣g′(z)− 1
∣

∣ < ε;

• yn ∈ Lk for some k. Then there exist z, z′ ∈ [y, y + η[ such that:

h(yn)− h(y)

yn − y
=
h(yn)− h(ak) + g(ak)− g(y)

yn − y
=
yn − ak
yn − y

h′(z) +
ak − y

yn − y
g′(z′).

• yn ∈ Rk for some k. Then there exist z, z′ ∈ [y, y + η[ such that:

h(yn)− h(y)

yn − y
=
h(yn)− h(xk) + g(xk)− g(y)

yn − y
=
yn − xk
yn − y

h′(z) +
xk − y

yn − y
g′(z′).

Because g is C1 and because of point 4, if η is small enough, then h′(z) and g′(z′)
are close enough to 1, and their barycentre is close to 1 two.
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Hence we have prove that h is derivable along K and that h′|K = 1.

Because g is C1 and g′|K = 1, because of point 4, h is C1 on K and h′|K = 1.
Then h satisfies all the conclusions of proposition 1.
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