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Abstract. Mathematical logic is a discipline used in sciences and humanities with different point of
view. Although in tertiary level computer science education it has a solid place, it does not hold also
for secondary level education. We present a heterogeneous study both theoretical based and empir-
ically based which points out the key role of logic in computer science, computer science education
and knowledge representation. We focus on the key contrast of semantics and syntax, the resolu-
tion principle as a leading inference technique (giving also interesting non-clausal generalization
of the rule). Further we discuss the possibilities of inclusion the non-classical (many-valued) logics
in education together with the original generalization of the non-clausal resolution rule into fuzzy
logic. The last part describes partial results of the research concerning the secondary education in
the Czech Republic especially in the mathematical logic field. The generalization of the presented
ideas entails the article.
Keywords: computer science education, mathematical logic.

Introduction and Motivation

Logic is a well-established branch, in comparison with the other theoretical computer
science disciplines, with deep tradition and its roots could be found in ancient history.
Although the questions that logic encountered in the past were different, we could for-
mulate some common issues namely the effort to simulate the human reasoning by ex-
act (symbolic) way. Although a mathematician rather uses logic as a tool for expressing
and proving properties of mathematical objects, for a computer scientist logic is a full
member of theoretical computer science. Its main task is to provide formal (symbolic)
framework for knowledge representation and deduction (Lukasová, 2003). As it is com-
mon in computer science, we also try to find effective algorithms solving this task. The
symbolic approach means the ability to express the knowledge by “symbols” and it could
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be perceived as a concurrent approach to the connectionistic one. We would like to pro-
vide the reader with some issues concerning logic and especially automated deduction
in computer science education (CSE). The problem of automated deduction is the key
role of logic in computer science. We will focus not only to the tertiary level of educa-
tion, but also to the upper secondary level of education. Formal deduction forms a key
issue concerning mathematical and computer science aspects of logic teaching. The main
focus on the secondary level education is given to the logical semantics and the formal
aspect is usually overlooked (Lukasová, 2003). We are trying at present to establish more
mathematical topics into computer science education (CSE). Our main current interest is
closely related with teaching formal methods of deduction on secondary level and tertiary
level education. The experiment for such a teaching has been prepared and it will contain
topics described in (Habiballa et al., 2006). The methodology is inspired by our previous
works (Habiballa, 2003; Habiballa, 2004). It is based especially on two formal methods –
tableau method (Fitting, 1996) and the wide-used resolution principle (Bachmair, 2001).

Logic and Knowledge Representation in CSE

The classical (two-valued) logic is a formalism known for many years. We are able to
communicate by the natural language and further we process this knowledge and de-
duce conclusions. The natural language is unfortunately too complex to be effectively
processed by a machine. That’s why logic provides a tool of expressing the knowledge
in a relatively narrow class of symbols. On the other hand logic brings methods for the
automated (algorithmical) solution of deduction.

On the secondary level education the classical logic is typically taught in the frame of
mathematics. The lessons contain the propositional logic with semantically oriented ex-
planation and basics of predicate logic. The main intent is mathematically focused with
the accent to usage of the logic as a tool for establishing mathematical theories. The for-
mal aspect of logic is suppressed, but such an approach is not suitable for CSE. Logic in
computer science has a solid place and it provides an important theoretical background
for applied disciplines like database technology, algorithmization etc. Its leading role in
knowledge representation has even more significant impact. We should be aware of the
fact that these key applications of logic use its formal (syntactical) aspects too. Both of
these sides are reasons to consider the formal logic in secondary level education. We
recommend the reader to study very interesting research performed in Israel concerning
theoretical computer science education in secondary (high) school (Gal-Ezer and Harel,
1999; Armoni, 2004). The research is based on the experimental education consisting
of several themes that we are used to encounter only on university level education in
computer science. We would like to state especially the CM (computational model) unit
providing students with theoretical model of computation like finite automata, push-down
automata or Turing’s machines and further the second paradigm module providing basics
of logic programming. When we hear some voices requiring even the algorithmization
teaching to be reduced on secondary level or theoretical computer science to be reduced
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on tertiary level, it seems to be revolutionary project held by Israeli CSE researchers with
positive results (Armoni, 2004). We would like to show that also logic (and especially its
formal aspects) should have its place in secondary level curricula. But the recommenda-
tions mentioned could be even used for tertiary level education especially in introductory
courses.

Syntax vs. Semantics – Key Problem

The key problem concerning right teaching of classical logic concerns to the essential
need to explain the students the difference between syntax and semantics. The standard
lesson focuses on the explanation of the logical connectives interpretation. Such an ap-
proach could satisfy the needs of mathematical education but could be hardly satisfying
for CSE. We will present this issue by a simple example of deduction. Note that this type
of logical tasks is perceived as suitable since abstract exercises are not motivating in con-
trast to these ones describing “real-life” situations. We will use only propositional logic
in this example since its expressive power is sufficient for such a simple deduction and
the simplicity has the didactic advantage.

EXAMPLE 1 (knowledge representation part). We would like to prove the knowledge
about a court trial. We have three suspects – A, B, C and we know the following obser-
vations:

1. There are no other persons related with this case.
2. A never works alone.
3. C is not guilty.

We will use atomic propositions for the fact that A is guilty (A), B is guilty (B) and C

is guilty (C). The first observation could be expressed by disjunction of the every atomic
proposition. The second one could be symbolically represented by implication with A as
antecedent and disjunction of B and C as consequent. The third one is simply a negation
of C.

1. A ∨ B ∨ C, 2. A → (B ∨ C), 3. ¬C.

The symbolic representation of the knowledge is only a half solution of the deduction
problem. Before we follow the next step, we will formulate the specific notions to be
taught in the logic lessons. At first the notions of satisfiability, validity and inconsistency
should be explained and consequently the key notion of logical consequence should be
well presented. These notions are mostly reduced to the notion of the tautology, which is
not so important as the problem of consequence (the deduction bases on consequence).
We follow with the semantical (unsuitable) solution.

EXAMPLE 2 (semantical solution part). If we work with semantics (interpretation) we
should simply use the table method to prove (find) conclusion (logical consequence) of



78 H. Habiballa, T. Kmet’

Table 1

Semantic solution of deduction

A B C A ∨ B ∨ C A → (B ∨ C) ¬C A ¬A B ¬B

0 0 0 0 1 1 0 1 0 1

0 0 1 1 1 0 0 1 0 1

0 1 0 1 1 1 * 0 / 1 * 1 * 0 /

0 1 1 1 1 0 0 1 1 0

1 0 0 1 0 1 1 0 0 1

1 0 1 1 1 0 1 0 0 1

1 1 0 1 1 1 * 1 * 0 / 1 * 0 /

1 1 1 1 1 0 1 0 1 0

premises. We find the models of the premises and compare the behavior of potential
conclusions (A,¬A, B,¬B). The suspect C is not guilty as it is stated in the third obser-
vation (Table 1).

From the interpretation table we can observe that there are two models of the premises
(marked with *). We mark potential conclusions with the symbol *, where it is also true
and we mark it with the symbol / if it is false. It is clear that right logical consequence
should be true in all models of premises. The table semantically proves that the proposi-
tion B is guilty is consequence, but we cannot infer any conclusion about A.

Above presented example shows a semantical way to prove the consequence. It is very
important to concentrate the attention of students on the complexity of such an approach.
In this case we have to create all possible interpretations of premises, which depends on
the number of atomic propositions. Although semantically oriented table method is an al-
gorithm deciding the problem of logical consequence, its time complexity is exponential
w.r.t. the number of atomic propositions. It means if we will solve the similar court trial
with 10 suspects we have to create about 1000 interpretations, for 20 suspects we will
create over one million interpretations and so on. It is clear that even for a computer such
a method is very hard and practically unusable.

Therefore it is very important to introduce formal logical methods in teaching. Formal
(syntactical) methods in contrast with semantical ones do not require any interpretation
of formulae. Instead of interpretation they work with the sound rules handling formulae
only like symbols without any sense. These methods should keep the properties of sound-
ness and completeness (these notions also to be explained). Several formal methods are
known from the tertiary level education, but we recommend using two of them. The first
one is the tableau method that is based on decomposition of an inconsistent formula into
tree with closed branches. The method is relatively simple and straightforward. The sec-
ond method – resolution principle – is interesting from another point of view. Many of
practically successful applications of automated deduction are based on this principle,
e.g., logic programming (PROLOG) or symbolic based expert systems. Formal methods
can be also divided into direct and indirect methods. The first ones lead from premises
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directly into logical consequence. The second ones use the fact, that the set of premises
and the negated logical consequence is inconsistent and that’s why we will conclude
a contradiction (false formula). Indirect methods are more favorable for automated de-
duction since the objective of the process is the same for every logical consequence. It
provides a possibility to find effective heuristics and algorithms reducing the complexity
of the proving mechanism. The resolution principle in its clausal form works with clauses
(disjunctive formulae with literals). It can be expressed in the following form.

Resolution Principle

C1 ∨ x C2 ∨ ¬x

C1 ∨ C2
, (1)

where C1, C2 are parts of clauses and x is a resolving atom.

EXAMPLE 3 (formal solution part). When trying to use the resolution principle for pro-
ving, we have to transform all premises into clauses. It could be simply done by the
rewrite rules.

1. A ∨ B ∨ C 2. A → (B ∨ C) 3. ¬C

Premises 1. and 3. are clauses, but premise 2. is transformed into disjunction.
1. A∨B ∨C (axiom), 2. ¬A∨B ∨C (axiom), 3. ¬C (axiom), then we can construct

a direct proof with some common simplification rewrite rules (e.g., if a clause contains
occurrence of the same literal we may remove all redundant occurrences).

4. (resolution on A in 1. a 2.): (B ∨ C) ∨ (B ∨ C) ⇒ B ∨ C.
5. (resolution on C in 4. a 3. – formula 3. completely resolved): B.

We formally proved that B is guilty. Of course we can also show indirect proof (and
we recommend it in teaching). The main advantage of formal methods should be ex-
plained to students – these methods have the complexity depending on the structure of a
formula (which is more sensible for practical usage).

Automated Deduction Implementations in Teaching

We give the reader an interesting link to the implementation of the above-presented ideas.
Libuse Pavliskova has developed very useful application and didactic material in the
frame of her teacher studies (Pavlisková, 2003), which can be used for secondary and
tertiary education. It presents semantical and formal methods for deduction together with
its automatization through computer software. An important advantage is also the pres-
ence of motivating solved examples like the court trial (Fig. 1).

Traditional Clausal Form Resolution in Education

The resolution principle (rule) is a well known and probably the most used deductive
(inference) approach to automated deduction in practice (logic programming, expert sys-
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Fig. 1. Application “Logical deduction”.

tems, clausal form logic etc.). The rule in its clausal form works with clauses (disjunctive
formulae with literals).

Standard view of resolution principle has several educational problems:

1. The requirement of clausal form transformation (it requires conjunctive normal
form transformation in propositional logic and furthermore in non-propositional
case it needs skolemization).

2. No direct semantical explication of soundness (it requires usage of some seman-
tically oriented proof method).

3. Transformation brings significant structure loss (one information-keeping
structure – a formula – is decomposed into several clauses).

Non-clausal resolution (mixture of syntax and semantics)
Resolution principle could be also generalized for the usage with general propositional
logic formulae (not only clauses).

General resolution – propositional version

F [G] F ′[G]
F [G/⊥] ∨ F ′[G/T ]

, (2)
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where the propositional logic formulae F and F ′ are the premises of inference and G is
an occurrence of a subformula of both F and F ′. The expression F [G/⊥] ∨ F ′[G/T ] is
the resolvent of the premises on G. Every occurrence of G is replaced by false symbol in
the first formula and by true symbol in the second one. It is called F the positive, F ′ the
negative premise, G the resolved subformula.

EXAMPLE 4 (general resolution with equivalence).
1. a ↔ b ∧ ¬d (axiom).
2. a (axiom).
3. b ∨ d → e (axiom).
4. ⊥ ∨ [T ↔ b ∧ ¬d] (resolved from (2), (1) on a) ⇒ b ∧ ¬d.
5. ⊥ ∧ ¬d ∨ T ∨ d → e (resolved from (4), (3) on b) ⇒ e.

Such a rule has several educational advantages in contrast to clausal form resolution:

1. Soundness of the general resolution is straight-forward and could be explicated to
students in direct form.

2. The structure of original formulae is preserved.
3. The general resolution rule does not require any transformation of formulae. It

means no other explication of these non-trivial procedures is needed.
4. There are possibilities to extend the rule for many valued logics (many-valued for-

malism based on standard residuated lattices or MV-algebras is sufficiently simple
to be presented to students).

Many-Valued (Fuzzy) Logics in Education

We have addressed another interesting topic related with the teaching mathematical logic
and deduction. The secondary level education rarely touches the presence of non-classical
logics both in theoretical level and real-life. We often hear the notion “fuzzy logic” in re-
lation with wide-used electrical appliances like washing machines. Of course this notion
in the lay perception will not lead directly to the logical deduction. But this example
could lead to the intuitive teaching of many-valued (fuzzy) logics. The two-valued (clas-
sical) logic is based on two truth values – true and false. Such an approach is not fully
convincing for modelling of human thinking. People often use concepts that cannot be
expressed only by full true or false. For example the concept of contented person could
not be described by two logical values. We are contented in some degree. The most used
approach for modelling of vagueness – fuzzy mathematics – use this intuitive tool as a
many-valued interpretation. Fuzzy mathematics works with a fuzzy set that is based on
membership degree to be a complex structure instead of the poor set {0,1} (non-member,
member of a set). The fuzzy logic uses this principle of interpretation to be also com-
plex structures (e.g., where interpretation of a formula is classical two valued case – false
(0), true (1); in fuzzy logic there is a possibility to interpret a formula by a member of
complex structure mostly by the interval of real or rational numbers [0,1]). Then we can
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express the contented person by some rational number (degree) (e.g., perfectly contented
person in 1, almost perfectly contented person in 0.9, etc.). It allows us to model real-life
a situation in soft way and that is why fuzzy logic is closely related with soft computing
disciplines (evolutionary algorithms, neural networks, fuzzy modeling etc.).

Even we can come to believe that fuzzy logic is very simple formalism, we should be
aware that the correct usage of fuzzy logics need to work proved structures as truth de-
grees. We usually work with standard algebras – structures with not only truth-value sets
but also with fixed operators (conjunction, disjunction, implication) as functions. There
are several such algebras with different properties (e.g., Gödel algebra, Goguen algebra,
Łukasewicz algebra). Fuzzy logics are generalizations of classical logic and therefore it
is not surprising that not all laws and properties are preserved like in two-valued case.
When using these algebras as truth value sets we call resulting logics by appropriate
name (e.g., Gödel propositional logic). When trying to perform formal deduction we of-
ten use Łukasewicz logic since it has several “nice” properties like holding law of double
negation.

We will assume Łukasewicz algebra to be:

L Ł =
〈
[0, 1],∧,∨,⊗,→, 0, 1

〉
,

where [0, 1] is the interval of reals between 0 and 1, which are the smallest and greatest
elements respectively. Basic and additional operations are defined as follows:

a ⊗ b = 0 ∨ (a + b − 1), a → b = 1 ∧ (1 − a + b),

a ⊕ b = 1 ∧ (a + b), ¬a = 1 − a.

Then we bound the new (fuzzy) logical connectives with the operators of the algebra. The
interpretation of Lukasiewicz conjunction is bound with the operator ⊗, interpretation of
Lukasiewicz disjunction is bound with the operator ⊕, interpretation of implication is
bound with the operator → and the negation is bound with ¬. The following sample
calculations in Łukasewicz algebra show also a little bit unreal behavior of its certain
operators (Łukasewicz conjunction and disjunction). Nevertheless other operators have
reasonable interpretation (implication and negation). As stated above the main reason
why choose Łukasewicz algebra is that several essential laws comparable to two-valued
logic are preserved.

EXAMPLE 5 (Łukasewicz algebra).
a = 0.5, b = 0.5 ⇒ a⊗ b = 0∨ (0.5 + 0.5− 1) = 0 (in the logical meaning it states

two “half” true propositions in conjunction lead to no truth at all).
a = 0.5, b = 0.6 ⇒ a → b = 1 ∧ (1 − 0.5 + 0.6) = 1 (if consequent has the

interpretation greater or equal than antecedent then the implication is fully true).
a = 0.5, b = 0.3 ⇒ a → b = 1 ∧ (1 − 0.5 + 0.3) = 0.8 (if consequent has the

interpretation less than antecedent then implication is less than 1).
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Graded fuzzy propositional calculus
Novák (1999) assigns grade to every axiom, in which the formula is valid. It will be
written as

a/A,

where A is a formula and a is a syntactic evaluation. We will need to introduce several
notions from fuzzy logic, in order to present the fuzzy graded calculus.

Inference rule
An n-ary inference rule r in the graded logical system is a scheme

R:
a1/A1, . . . , an/An

revl(a1, . . . , an)/rsyn(A1, . . . , An)
, (3)

using which the evaluated formulas a1/A1, . . . , an/An are assigned the evaluated for-
mula revl(a1, . . . , an)/rsyn(A1, . . . , An). The syntactic operation rsyn is a partial n-
ary operation on FJ and the evaluation operation revl is an n-ary lower semicontinous
operation on L (i.e., it preserves arbitrary suprema in all variables).

Evaluated proof, refutational proof and refutation degree
An evaluated formal proof of a formula A from the fuzzy set X\mathrel ⊂∼ FJ is a
finite sequence of evaluated formulas

w := a0/A0, a1/A1, . . . , an/An, (4)

such that An := A and for each i � n, either there exists an m-ary inference rule r such
that

ai/Ai := revl(ai1, . . . , aim)/rsyn(Ai1, . . . , Aim), i1, . . . , im < n

or

ai/Ai := X(Ai)/Ai.

We will denote the value of the evaluated proof by V al(w) = an, which is the value of
the last member in (4).

EXAMPLE 6 (many-valued logics). For educational purposes we can start with the sim-
ple but illustrative “sorites paradox”. The well-known paradox shows the weakness of
two-valued logic. We can model (using predicate logic) the situation stated in the follow-
ing two sentences:

1. The heap without a stone is small. 2. If a heap with n stones is small then this heap
with one added stone is also small.

When using the classical logic we can model this situation by two formulae (with the
predicate):
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1. small heap(0), 2. small heap(n) → small heap(n + 1).
It is clear that by these two formulae we will prove that every heap (with any number

of stones) is small, which is nonsense (paradox following from two-valued truth).
Using Lukasiewicz predicate logic (generalization of classical predicate logic) we are

able to model formulae with truth degree from interval [0,1]:
1. small heap(0) – true in the degree 1,
2. small heap(n) → small heap(n + 1) – true in the degree 0.999.
Formula 2. (implication) is in contrast with classical logic holding not fully but only

in the degree 0.999. This fact allows us to avoid the paradox. Due to the degree 0.999
every application of the implication will lead to the inference of the fact that heap with
one added stone is small in the degree decreased by 0.001. If we would like to prove the
formula small_heap(1000) (heap with 1000 stones is small) we follow the following se-
quence (I means interpretation of the implication according to the operator in previously
defined algebra):

I(small heap(0)) = 1, then we will use that in equation,
0.999 = I(1 ∧ 1 − 1 + small heap(1)) ⇒ I(small heap(1)) = 0.999
0.999 = I(1 ∧ 1 − 0.999 + small heap(2)) = 0.001 + I(small heap(2))
⇒ I(small heap(2)) = 0.998
. . .

I(small heap(1000)) = 0.
It means that we proved a heap with 1000 stones is not small in any degree higher

that 0.

Fuzzy logic has also another interesting applications (used in industry, decision-
making, etc.) based in linguistic expressions. The idea of these expressions lies in the
formalization of natural language expressions that we often use in real-life like “some-
thing is very small”, “something is rather big”. We can model such expressions by fuzzy
sets and use them in linguistic variables included in “IF – THEN” type complex formu-
lae. These formulae can form large knowledge bases that can be used to control various
processes, to decide hard problems according to the formulations of IF – THEN rules
given by experts. For example we can model the process of car driving:

IF traffic lights changed to yellow AND car speed is small AND distance from cross-
ing is small THEN press down brake by medium power.

IF traffic lights changed to yellow AND car speed is medium AND distance from
crossing is very small THEN press down accelerator by big power.

There are a lot of such real applications for example Linguistic Fuzzy Logic Con-
troller designed on University of Ostrava. Such popular examples of fuzzy logic usage
may be used in education also on secondary level.

The authors have proposed also generalization of the general resolution rule for
Lukasiewicz Predicate Logic with evaluated syntax and such an approach is also appli-
cable to mathematical and computer science education (Habiballa, 2005). The rule could
be with simplification stated as follows (of course we should also define the most general
unifier, other notions for refutational proofs in fuzzy logic).
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General Resolution for Fuzzy Propositional Logic

rGR:
a/F [G1, . . . , Gk], b/F ′[G′

1, . . . , G
′
n]

a ⊗ b/F [G/⊥]∇F ′[G/T ]
,

where F and F ′ are premises and G resolved subformula and ⊗ is the Lukasiewicz
multiplication.

EXAMPLE 7 (evaluated proof in fuzzy propositional logic using resolution).
1. a ↔ b ∧ ¬d/1 (axiom with evaluation degree 1).
2. a/0.7 (axiom with evaluation degree 0.7).
3. b ∨ d → e/0.75 (axiom with evaluation degree 0.75).
4. ⊥ ∨ [T ↔ b ∧ ¬d]/0.7 ⊗ 1 (resolved from (2), (1) on a) ⇒ b ∧ ¬d/0.7.
5. ⊥ ∧ ¬d ∨ T ∨ d → e/0.7 ⊗ 0.75 (resolved from (4), (3) on b) ⇒ e/0.45.

Automated Non-Clausal Resolution Implementations in Teaching

The authors has already developed also a tool for automated theorem proving based on
general resolution (Fig. 2) (Fuzzy Predicate Logic Generalized Deductive system) – en-
riched application for classical logic [6]. The application could be used for presentation
of the rule and also several inference strategies developed especially for this formalism.

Fig. 2. Fuzzy Predicate Logic GEneralized Deductive System.
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The future extensions consist of presentation of the tree of resolution proof visualization,
improvement of object-oriented implementation, free distribution of the package and also
some “real-life” applications.

Current State of Logic Education in Czech Republic

We have already presented the theoretic principles of effective teaching of logic together
with interesting generalisation of the resolution principle gaining from syntactic-semantic
properties. At the end we would like to shortly summarize the results of a research con-
cerning the current state of high school education. It was performed through a web ques-
tionnaire sent to all secondary schools in the Czech Republic. The research concerning
the actual content of teaching computer science was established on University of Ostrava
in 2003. We have used the research instrument of on-line questionnaire. Link to this ques-
tionnaire was sent to 863 secondary level schools in the Czech Republic (according to the
database of Institute for Information in Education of the Czech Republic); total amount
of available responses was 132 from the entire Czech Republic. Although the research
has wider focus we present only the results concerning the logic education.

Fig. 3 shows the structure of institutions that responded to the questionnaire.
The general secondary schools are the institutions primarily preparing for tertiary

level education (mainly university studies). Other schools in the sample include mainly
technical schools with various study programmes (electrical, chemical, telecommunica-
tion etc.) preparing for direct fulfillment in practice. Trade schools educate the secondary
level professionals in economic field and other vocational schools include rather the hu-
manities (pedagogical, social-juridical, nursing).

We will analyze only the results for general secondary schools (total number of 55)
since these schools form the most consistent and the most frequent type of secondary
schools in the research. We should observe that relatively high amount of schools teach
at least the basics of propositional logic, which typically concern to semantics (symbols
are bound with its interpretation).

Fig. 3. Secondary schools structure in the research (GYM – general secondary schools, SPS – technical schools,
OA – trade schools, SOS – vocational schools, Other – training schools).
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Table 2

Basic principles

Basic Principles Teaching Logic on Secondary Schools

Issue Number (Percentage) of Schools

Proposition and truth value 42 (76%)

Propositional logic symbols 40 (73%)

Equivalence of formulae 30 (56%)

Then we can distinct the second sort of topics taught at lower level. Student are taught
the key formula properties, but still in semantic level.

Table 3

Advanced semantics

Advanced Semantic Notions

Issue Number (Percentage) of Schools

Boolean functions 26 (47%)

Satisfiability, tautology, contradiction 23 (42%)

Further we follow with topics that have syntactic basis.

Table 4

Syntax

Syntactic Notions

Issue Number (Percentage) of Schools

Propositional Formula Construction 22 (40%)

Normal Forms 17 (31%)

All these sorts have relatively high extent in schools, but the topics addressed in the
first part of the article are taught at very low level (formal deduction and methods).

We should observe not surprising results, which show that the teaching of key top-
ics of logic from computer scientist’s point of view is at very low level in secondary
school system in the Czech Republic. The principal notion of deduction is taught only at
2 schools from 55, even deduction forms the leading role in the usage of logic in practical
“real-life” application (logic programming, expert systems based on logical knowledge
representation). So wide used resolution principle, that is the most expanded method im-
plemented in deductive inference systems, is taught only in one school. All these topics
(as we tried to show in brief previous examples) can be explicated in relatively intuitive



88 H. Habiballa, T. Kmet’

Table 5

Formal deduction

Formal Deduction and Methods

Issue Number (Percentage) of Schools

Tableau method 6 (11%)

Syntactic trees 4 (7%)

Decidability and satisfiability 3 (5%)

Deduction 2 (4%)

Formula complexity 2 (4%)

Resolution principle 1 (4%)

Non-classical logics 1 (2%)

Fig. 4. Logic in general secondary schools (number of schools).

manner (free of formalization known from tertiary level education). There is also impor-
tant fact that 77% of teaching logic has place in the frame of mathematical education (47
of 58, counting occurrences in all grades in one school).

Conclusions

We have presented a brief survey into the possibilities and advantages of computer sci-
ence based education mathematical logic. These ideas are part of the research performed
on University of Ostrava trying to improve secondary education in the Czech Republic.
We have already published several papers in the national didactic journals and proceed-
ings, which described in detail topics, have to be included into the secondary educa-
tion. Israeli CSE researchers already successfully implement some of the similar ideas
in the Second Paradigm module of the high-school curricula that include theoretical and
practical teaching of deductive systems through logic programming (Gal-Ezer and Harel,
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1999). Our approach should emphasize theoretical learning of the inference method prin-
ciples, including non-clausal resolution and also give a short introduction into the theory
and application of the many-valued logics.

We follow these principles:

– teaching of mathematical logic should be performed not only in the frame of ma-
thematical education, but also in the frame of computer science education; such
education should have interdisciplinary aspect to be effective (it means mathemat-
ics and computer science have to cooperate);

– mathematical education should inhere the basics – language, semantics, connec-
tives, interpretation, tautologies;

– computer science education should give advancement - syntax vs. semantics,
knowledge representation, problem tasks from “real-life”, deduction, formal de-
duction and methods, resolution, many-valued logics;

– we should use existing ICT tools to make the learning interesting for students (logic
programming, visual inference engines with prepared examples).
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Matematinė logika ir dedukcija informatikos kurse

Hashim HABIBALLA, Tibor KMET’

Matematinė logika ↪ivairiais būdais naudojama gamtos ir humanitariniuose moksluose. Infor-
matikos mokymas labai svarbus aukštajame moksle, tačiau vidurinėje pakopoje taip nėra. Straips-
nyje pateikiamas ↪ivairiarūšis teorinis ir empirinis tyrimas, kuris atkreipia dėmes↪i ↪i logikos svarb ↪a
informatikoje, informatikos mokyme ir žini ↪u atvaizdavime. Straipsnyje aptariami semantikos ir
sintaksės klausimai, problem ↪u sprendimo principas kaip išvad ↪u konstravimo būdas (pateikiant

↪idomius taisykli ↪u apibendrinimo būdus). Taip pat aptariama galimybė ↪itraukti neklasikin ↪e (daugia-
reikšm ↪e) logik ↪a ↪i mokym ↪a. Paskutinėje dalyje pateikiami daliniai tyrimai, atlikti Čekijos Res-
publikos viduriniame lavinime, būtent, matematinės logikos srityje. Straipsnyje itin pabrėžiamas
pateikt ↪u idėj ↪u apibendrinimas.


