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Didier Henrion1,2,3, Jean-Bernard Lasserre1,2,4

February 2, 2012

Abstract

Following a polynomial approach, many robust fixed-order controller design
problems can be formulated as optimization problems whose set of feasible solutions
is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility
sets are typically nonconvex. Given a parametrized PMI set, we provide a hierar-
chy of linear matrix inequality (LMI) problems whose optimal solutions generate
inner approximations modelled by a single polynomial superlevel set. Those inner
approximations converge in a well-defined analytic sense to the nonconvex original
feasible set, with asymptotically vanishing conservatism. One may also impose the
hierarchy of inner approximations to be nested or convex. In the latter case they
do not converge any more to the feasible set, but they can be used in a convex
optimization framework at the price of some conservatism. Finally, we show that
the specific geometry of nonconvex polynomial stability regions can be exploited to
improve convergence of the hierarchy of inner approximations.

Keywords: polynomial matrix inequality, linear matrix inequality, robust optimization,
robust fixed-order controller design, moments, positive polynomials.

1 Introduction

Linear system stability can be formulated semialgebraically in the space of coefficients
of the characteristic polynomial. The region of stability is generally nonconvex in this
space, and this is a major obstacle when solving fixed-order and/or robust controller
design problems. Using the Hermite stability criterion, these problems can be formulated
as parametrized polynomial matrix inequalities (PMIs) where parameters account for
uncertainties and the decision variables are controller coefficients. Recent results on real
algebraic geometry and generalized problems of moments can be used to build up a
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Prague, Czech Republic
4Institut de Mathématiques de Toulouse, Université de Toulouse; UPS; F-31062 Toulouse, France.

1



hierarchy of convex linear matrix inequality (LMI) outer approximations of the region
of stability, with asymptotic convergence to its convex hull, see e.g. [6] for a software
implementation and examples, and see [7] for an application to PMI problems arising
from static output feedback design.

If outer approximations of nonconvex semialgebraic sets can be readily constructed with
these LMI relaxations, inner approximations are much harder to obtain. However, for
controller design purposes, inner approximations are essential since they correspond to
sufficient conditions and hence guarantees of stability or robust stability. In the robust
systems control literature, convex inner approximations of the stability region have been
proposed in the form of polytopes [14], ellipsoids [4] or more general LMI regions [5, 9]
derived from polynomial positivity conditions. Interval analysis can also be used in this
context, see e.g. [18].

In this paper we provide a numerical scheme for approximating from inside the feasible
set P ⊂ Rn of a parametrized PMI P (x, u) � 0 (for some matrix polynomial P ), that is,
the set of points x such that P (x, u) � 0 for all values of the parameter u in some specified
domain U ⊂ Rp (assumed to be a basic compact semialgebraic set1). This includes as a
special case the approximation of the stability region (and the robust stability region) of
linear systems. The particular case where P (x, u) is affine in x covers parametrized LMIs
with many applications in robust control, as surveyed e.g. in [15].

Given a compact set B ⊂ R
n containing P, this numerical scheme consists of building

up a sequence of inner approximations Gd ⊂ P ⊂ B, d ∈ N, which fulfils two essential
conditions:

1. The approximation converges in a well-defined analytic sense ;

2. Each set Gd is defined in a simple manner, as a superlevel set of a single polynomial.
In our mind, this feature is essential for a successful implementation in practical
applications.

More precisely, we provide a hierarchy of inner approximations (Gd) of P, where each
Gd = {x ∈ B : gd(x) ≥ 0} is a basic semi-algebraic set for some polynomial gd of degree d.
The vector of coefficients of the polynomial gd is an optimal solution of an LMI problem.
When d increases, the convergence of (Gd) to P is very strong. Indeed, the Lebesgue
volume of Gd converges to the Lebesgue volume of P. In fact, on any (a priori fixed)
compact set B, the sequence (gd) converges for the L1-norm on B to the function x 7→
λmin(x) = minu∈U λmin(x, u) where λmin(x, u) is the minimum eigenvalue of the matrix-
polynomial P (x, u) associated with the PMI. Consequently, gd → λmin in (Lebesgue)
measure on B, and gdk → λmin almost everywhere and almost uniformly on B, for a
subsequence (gdk). In addition, if one defines the piecewise polynomial ḡd := maxk≤d gk,
then ḡd → λmin almost everywhere, almost uniformly and in (Lebesgue) measure on B.

In addition, we can easily enforce that the inner approximations (Gd) are nested and/or
convex. Of course, for the latter convex approximations, convergence to P is lost if P is

1A basic semialgebraic set is a set defined by intersecting a finite number of polynomial superlevel
sets.
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not convex. However, on the other hand, having a convex inner approximation of P may
reveal to be very useful, e.g., for optimization purposes.

On the practical and computational sides, the quality of the approximation of P depends
heavily on the chosen set B ⊃ P on which to make the approximation of the function
λmin. The smaller B, the better the approximation. In particular, it is worth emphasizing
that when the set P to approximate is the stability or robust stability region of a linear
system, then its particular geometry can be exploited to construct a tight bounding set
B. Therefore, a good approximation of P is obtained significantly faster than with an
arbitrary set B containing P.

Finally, let us insist that the main goal of the paper is to show that it is possible to
provide a tight and explicit inner approximation with no quantifier, of nonconvex feasible
sets described with quantifiers. Then this new feasible set can be used for optimization
purposes and we are facing two cases:

• the convex case: if f and −g are convex polynomials, B = {x ∈ Rn : ‖x‖∞ ≤ 1}
and G = {x ∈ B : g(x) ≥ 0} then the optimization problem minx f(x) s.t. x ∈
G is polynomially solvable. Indeed, functions f(x), g(x), ‖x‖∞ are polynomially
computable, of polynomial growth, and the feasible set is polynomially bounded.
Then polynomial solvability of the problem follows from [3, Theorem 5.3.1].

• the nonconvex case: if −g is not convex then notice that firstly we still have an
optimization problem with no quantifier, a nontrivial improvement. Secondly we
are now faced with an polynomial optimization problem with a single polynomial
constraint and possibly bound constraints x ∈ B. One may then apply the hierarchy
of convex LMI relaxations described in [11, Chapter 5]. Of course, in general,
polynomial optimization is NP-hard. However, if the size of the problem is relatively
small and the degree of g is small, practice seems to reveal that the problem is
solved exactly with few relaxations in many cases, see [11, §5.3.3]. In addition, if
some structured sparsity in the data is present then one may even solve problems of
potentially large size by using an appropriate sparse version of these LMI relaxations
as described in [17], see also [11, §4.6].

The outline of the paper is as follows. In Section 2 we formally state the problem to be
solved. In Section 3 we describe our hierarchy of inner approximations. In Section 4, we
show that the specific geometry of the stability region can be exploited, as illustrated on
several standard problems of robust control. The final section collects technical results
and the proofs.

2 Problem statement

Let R[x] denote the ring or real polynomials in the variables x = (x1, . . . , xn), and let R[x]d
be the vector space of real polynomials of degree at most d. Similarly, let Σ[x] ⊂ R[x]
denote the convex cone of real polynomials that are sums of squares (SOS) of polynomials,
and Σ[x]d ⊂ Σ[x] its subcone of SOS polynomials of degree at most 2d. Denote by Sm the

3



space of m×m real symmetric matrices. For a given matrix A ∈ S
m, the notation A � 0

means that A is positive semidefinite, i.e., all its eigenvalues are real and nonnegative.

Let P : R[x, u] → S
m be a matrix polynomial, i.e. a matrix whose entries are scalar

multivariate polynomials of the vector indeterminates x and u. Then

P := {x ∈ R
n : ∀u ∈ U, P (x, u) � 0} (1)

defines a parametrized polynomial matrix inequality (PMI) set, where x ∈ Rn is a vector
of decision variables, u ∈ Rp is a vector of uncertain parameters belonging to a compact
semialgebraic set

U := {u ∈ R
p : ai(u) ≥ 0, i = 1, . . . , na} (2)

described by given polynomials ai(u) ∈ R[u], and P (x, u) is a given symmetric polynomial
matrix of size m. As U is compact, without loss of generality we assume that for some
i = i∗, ai∗(u) = R2 − uTu, where R is sufficiently large.

We also assume that P is bounded and that we are given a compact set B ⊃ P with
explicitly known moments y = (yα), α ∈ Nn, of the Lebesgue measure on B, i.e.

yα :=

∫

B

xαdx (3)

where xα :=
∏n

i=1 x
αi

i . Typical choices for B are a box or a ball. To fix ideas, let

B := {x ∈ R
n : bj(x) ≥ 0, j = 1, . . . , nb}

for some polynomials bj ∈ R[x]. Again, with no loss of generality, we may and will assume
that for some j = j∗, bj∗(x) = R2 − xTx, where R is sufficiently large. Finally, denote by
volA the Lebesgue volume of any Borel set A ⊂ B.

We are now ready to state our polynomial inner approximation problem.

Problem 1 (Inner Approximations) Given set P, build up a sequence of basic closed
semialgebraic sets Gd = {x ∈ B : gd(x) ≥ 0}, for some gd ∈ R[x], such that

Gd ⊆ P, d = 1, 2, . . . and lim
d→∞

volGd = volP.

In addition, we may want the sequence of inner approximations to satisfy additional
nesting or convexity conditions.

Problem 2 (Nested Inner Approximations) Solve Problem 1 with the additional
constraint

Gd ⊆ Gd+1 ⊆ P, d = 1, 2, . . .

Problem 3 (Convex Inner Approximations) Given set P, build up a sequence of
nested basic closed convex semialgebraic sets Gd = {x ∈ B : gd(x) ≥ 0}, for some
gd ∈ R[x], such that

Gd ⊆ Gd+1 ⊆ P, d = 1, 2, . . .
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3 A hierarchy of semialgebraic inner approximations

Given a polynomial matrix P (x, u) which defines the set P in (1), polynomials ai ∈ R[u]
which define the uncertain set U in (2), let V = {v ∈ Rm : vTv = 1} denote the Euclidean
unit sphere of Rm and let λmin : B → R be the function:

x 7→ λmin(x) = min
u∈U

min
v∈V

vTP (x, u)v (4)

as the robust minimum eigenvalue function of P (x, u). Function λmin is continuous but
not necessarily differentiable. It allows to define set P alternatively as the superlevel set

P = {x ∈ R
n : λmin(x) ≥ 0}.

3.1 Primal SOS SDP problems

Let a0 ∈ R[u] be the constant polynomial 1. Let 2d0 ≥ max(2+degP,maxi degai,maxj degbj),
and consider the hierarchy of convex optimization problems indexed by the parameter
d ∈ N, d ≥ d0:

ρd =

∫

B

λmin(x) dx − min
g,r,s,t

∫

B

g(x) dx

s.t. vTP (x, u)v − g(x) = r(x, u, v)(1− vTv)

+
na∑

i=0

si(x, u, v)ai(u) +

nb∑

j=1

tj(x, u, v)bj(x) ∀(x, u, v)

(5)

where decision variables are coefficients of polynomials g ∈ R[x]2d, r ∈ R[x, u, v]2dr and
coefficients of SOS polynomials si ∈ Σ[x, u, v]dsi , i = 0, 1, . . . , na, and tj ∈ Σ[x, u, v]dtj ,
j = 1, . . . , nb. Note in particular that the degrees of the polynomials should be such that
dr ≥ d − 1, dsi ≥ d − ⌈(deg ai)/2⌉ and dtj ≥ d − ⌈(deg bj)/2⌉. Since higher degree terms
may cancel, the degrees can be chosen strictly greater than these lower bounds. However,
in the experiments described later on in the paper, we systematically chose the lowest
possible degrees.

For each d ∈ N fixed, the associated optimization problem (5) is a semidefinite pro-
gramming (SDP) problem. Indeed, stating that the two polynomials in both sides of the
equation in (5) are identical translates into linear equalities between the coefficients of
polynomials g, r, (si), (tj) and stating that some of them are SOS translates into semidef-
initeness of appropriate symmetric matrices. For more details, the interested reader is
referred to e.g. [11, Chapter 2].

3.2 Dual moment SDP problems

To define the dual to SDP problem (5) we must introduce some notations.

With a sequence y = (yα), α ∈ N
n, let Ly : R[x] → R be the linear functional

f (=
∑

α

fα x
α) 7→ Ly(f) =

∑

α

fα yα, f ∈ R[x].
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With d ∈ N, the moment matrix of order d associated with y is the real symmetric matrix
Md(y) with rows and columns indexed in Nn

d , and defined by

Md(y)(α, β) := Ly(x
α+β) = yα+β, ∀α, β ∈ N

n
d . (6)

A sequence y = (yα) has a representing measure if there exists a finite Borel measure µ
on Rn, such that yα =

∫
xαdµ for every α ∈ Nn.

With y as above and h ∈ R[x], the localizing matrix of order d associated with y and h
is the real symmetric matrix Md(h y) with rows and columns indexed by Nn

d , and whose
entry (α, β) is given by

Md(y)(h y)(α, β) := Ly(h(x) x
α+β) =

∑

γ

hγ yα+β+γ, ∀α, β ∈ N
n
d . (7)

With these notations, the dual to SDP problem (5) is given by:

ρ∗d =

∫

B

λmin(x)dx − min
y

Ly(v
TP (x, u)v)

s.t. Md(y) � 0, Md−1((1− vTv) y) = 0
Md−dai

(ai y) � 0, i = 0, 1, . . . , na

Md−dbj
(bj y) � 0, j = 1, . . . , nb

Ly(x
α) =

∫

B
xα dx, ∀α ∈ Nn

2d

(8)

where y ∈ N
n+p+m
2d .

3.3 Convergence

Before stating our main results, let us recall some standard notions of functional analysis.
Let g : B → R be a function of x, and let (gd) denote a sequence of functions of x
indexed by d ∈ N. Lebesgue space L1(B) is the Banach space of integrable functions on
B equipped with the norm

‖g‖1 =

∫

B

|g|dx.

Regarding sequence (gd), we use the following notions of convergence in B when d → ∞:

• gd → g in L1 norm means lim
d→∞

‖g − gd‖1 = 0;

• gd → g in Lebesgue measure means that for every ε > 0,

lim
d→∞

vol{x : |g(x)− gd(x)| ≥ ε} = 0;

• gd → g almost everywhere means that limd→∞ gd(x) = g(x) pointwise except possi-
bly for x ∈ A ⊂ B with volA = 0;

• gd → g almost uniformly means that for every given ε > 0, there is a set A ⊂ B
such that volA < ε and gd → g uniformly on B \A;
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• finally, with the notation gd ↑ g we mean that gd → g while satisfying gd(x) ≤
gd+1(x) for all d.

For more details on these related notions of convergence, see [1, §2.5].

Lemma 1 For every d ≥ d0, SDP problem (5) has an optimal solution gd ∈ R[x]2d and

ρd =

∫

B

(λmin(x)− gd(x)) dx = ‖λmin − gd‖1. (9)

A detailed proof of Lemma 1 can be found in §6.1. In particular we prove that there is no
duality gap between SOS SDP problem (5) and moment SDP problem (8), i.e. ρd = ρ∗d.

For every d ≥ d0, let ḡd : B → R be the piecewise polynomial

x 7→ ḡd(x) := max
d0≤k≤d

gk(x). (10)

We are now in position to prove our main result.

Theorem 1 Let gd ∈ R[x]2d be an optimal solution of SDP problem (5) and consider the
associated sequence (gd) ⊂ L1(B) for d ≥ d0. Then:

(a) gd → λmin in L1 norm and in Lebesgue measure;

(b) ḡd ↑ λmin almost everywhere, almost uniformly and in Lebesgue measure.

A detailed proof of Theorem 1 can be found in §6.2. It relies on the Stone-Weierstrass
theorem, Putinar’s Positivstellensatz, Lebesgue’s dominated convergence theorem and
Egorov’s theorem.

3.4 Polynomial and piecewise polynomial inner approximations

Corollary 1 For every d ≥ d0, let gd ∈ R[x]2d be an optimal solution of SDP problem
(5), let ḡd be the piecewise polynomial defined in (10), and let

Gd := {x ∈ B : gd(x) ≥ 0}, Ḡd := {x ∈ B : ḡd(x) ≥ 0}. (11)

Then

Gd ⊂ P ∀ d ≥ d0 and lim
d→∞

vol(P \Gd) = 0. (12)

Ḡd0 ⊆ · · · ⊆ Ḡd ⊆ · · · ⊂ P and lim
d→∞

vol(P \ Ḡd) = 0. (13)

That is, sequence (Gd) solves Problem 1 and sequence (Ḡd) solves Problem 2 if piecewise
polynomials are allowed.

A proof can be found in §6.3.
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3.5 Nested polynomial inner approximations

We now consider Problem 2 where gd is constrained to be a polynomial instead of a
piecewise polynomial. We need to slightly modify SDP problem (5). Suppose that at step
d− 1 in the hierarchy we have already obtained an optimal solution gd−1 ∈ R[x]2d−2, such
that gd−1 ≥ gd0 on B, for all d0 ≤ d − 1. At step d we now solve SDP problem (5) with
the additional constraint

g(x)− gd−1(x) = c0(x) +

nb∑

j=1

cj(x)bj(x), ∀x (14)

with unknown SOS polynomials c0 ∈ Σ[x]d and cj ∈ Σ[x]d−dbj
.

Corollary 2 Let gd ∈ R[x]2d be an optimal solution of SDP problem (5) with the addi-
tional constraint (14) and let Gd be as in (11) for d ≥ d0. Then the sequence (Gd) solves
Problem 2.

For a proof see §6.4.

3.6 Convex nested polynomial inner approximations

Finally, for g ∈ R[x]2d, denote by ∇2g(x) the Hessian matrix of g at x, and consider SDP
problem (5) with the additional constraint

vT∇2g(x)v = c0(x, v) +

nb∑

j=1

cj(x, v)bj(x) + cnb+1(x, v)(1− vTv), (15)

for some SOS polynomials c0 ∈ Σ[x, v]d, cj ∈ Σ[x, v]d−dbj
and cnb+1 ∈ Σ[x, v]d−1.

Corollary 3 Let g ∈ R[x]2d be an optimal solution of SDP problem (5) with the additional
constraint (15) and let Gd be as in (11) for d ≥ d0. Then the sequence (Gd) solves Problem
3.

The proof follows along the same lines as the proof of Corollary 2.

3.7 Example

Consider the nonconvex planar PMI set

P = {x ∈ R
2 : P (x) =

[
1− 16x1x2 x1

x1 1− x2
1 − x2

2

]

� 0}

which is Example II-E in [7] scaled to fit within the unit box

B = {x ∈ R
2 : ‖x‖∞ ≤ 1}
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Figure 1: Degree two (left) and four (right) inner approximations (light gray) of PMI set
(dark gray) embedded in unit box (dashed).

whose moments (3) are readily given by

yα =
4

(α1 + 1)(α2 + 1)
.

On Figure 1 we represent the degree two and degree four solutions to SDP problem (5),
modelled by YALMIP 3 and solved by SeDuMi 1.3 under a Matlab environment. We see
in particular that the degree four polynomial superlevel set G2 is somewhat smaller than
expected. This is due to the fact that the objective function in problem (5) is the integral
of g(x) over the whole box B, not only over PMI set P. There is a significant role played
by the components of the integral on complement set B\P, and this deteriorates the inner
approximation.

This issue can be addressed partly by embedding P in a tighter set B, for example here
the unit disk

B = {x ∈ R
2 : ‖x‖2 ≤ 1}

whose moments (3) are given by

yα =
Γ(α1+1

2
)Γ(α2+1

2
)

Γ(2 + α1+α2

2
)

where Γ is the gamma function such that Γ(k) = (k− 1)! for integer k. See [12, Theorem
3.1] for the general expression2 of moments of the unit disk in Rn.

On Figure 2 we represent the degree two and degree four solutions to SDP problem (5).
Comparing with Figure 1, we see that the approximations embedded in the unit disk are

2Note however that there is an incorrect factor 2−n in the right handside of equation (3.3) in [12].
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Figure 2: Degree two (left) and four (right) inner approximations (light gray) of PMI set
(dark gray) embedded in unit disk (dashed).
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Figure 3: Degree six (left) and eight (right) inner approximations (light gray) of PMI set
(dark gray) embedded in unit disk (dashed).

much tighter than the approximations embedded in the unit box. Finally, on Figure 3
we represent the tighter degree six and degree eight inner approximations within the unit
disk.
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4 Geometry of control problems

As explained in the introduction, inner approximations of the stability regions are essen-
tial for fixed-order controller design. The PMI regions arising from parametric stability
conditions have a specific geometry that can be exploited to improve the convergence
of the hierarchy of inner approximations. In this section, we first recall Hermite’s PMI
formulation of (discrete-time) stability conditions. Then we recall that the PMI stability
region is the image of a unit box through a multi-affine mapping, which allows to derive
explicit expressions for the moments of the full-dimensional stability region, as well as
tight polytopic outer approximations of low-dimensional affine sections of the stability re-
gion. Numerical examples illustrate these techniques for fixed-order nominal and robustly
stabilizing controller design.

4.1 Hermite’s PMI

Derived by the French mathematician Charles Hermite in 1854, the Hermite matrix cri-
terion is a symmetric version of the Routh-Hurwitz criterion for assessing stability of
a polynomial. Originally it was derived for locating the roots of a polynomial in the
open upper half of the complex plane, but with a fractional transform it can be readily
transposed to the open unit disk and discrete-time stability. The criterion says that a
polynomial x(z) = zn + x1z

n−1 + · · ·+ xn−1z + xn has all its roots in the open unit disk
if and only if its Hermite matrix P (x) = T T

1 (x)T1(x) − T T
2 (x)T2(x) is positive definite,

where

T1(x) =








1 x1 x2

0 1 x1

0 0 1
. . .








T2(x) =








xn xn−1 xn−2

0 xn xn−1

0 0 xn

. . .








are n-by-n upper-right triangular Toeplitz matrices, see e.g. the entrywise formulas of
[2, Theorem 3.13] or the construction explained in [4]. The Hermite matrix is n-by-n,
symmetric and quadratic in coefficients x = (x1, x2, . . . , xn), so that the interior of the
PMI set

P = {x ∈ R
n : P (x) � 0}

is the parametric stability domain which is bounded, connected but nonconvex for n ≥ 3.
Optimal controller design amounts to optimizing over semialgebraic set P.

4.2 Multiaffine mapping of the unit box

As explained e.g. in [14] or [16, §3.5] and references therein, stability domain P can also be
constructed as the image of the unit box (in the space of so-called reflection coefficients)
through a multiaffine mapping. More explicitly P = f(K) where K = {k ∈ Rn : ‖k‖∞ ≤
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1} and multiaffine mapping f : Rn → R
n is defined by

f(k) =





0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













1 0 0 k3
0 1 k3 0
0 k3 1 0
k3 0 0 1
0 0 0 0















1 0 k2
0 1 + k2 0
k2 0 1
0 0 0











1 k1
k1 1
0 0





[
1
0

]

=





k2k3 + k1(1 + k2)
k2 + k1k3(1 + k2)

k3





in the case n = 3. The general expression of f for other values of n is not given here for
space reasons, but it follows readily from the construction outlined above.

Using this mapping we can obtain moments (3) of B = P analytically:

yα =

∫

P

xαdx =

∫

K

(k2k3 + k1(1 + k2))
α1(k2 + k1k3(1 + k2))

α2kα3

3 det∇f(k)dk (16)

where det∇f(k) = (1 + k2)(1 − k2
3) is the determinant of the Jacobian of f , in the case

n = 3. For space reasons we do not give here the explicit value of yα as a function of α,
but it can be obtained by integration by parts.

Finally, let us mention a well-known geometric property of P: its convex hull is a polytope
whose vertices correspond to the n + 1 polynomials with roots equal to −1 or +1. For
example, when n = 3, we have

convP = conv{(−3, 3,−1), (−1,−1, 1), (1,−1,−1), (3, 3, 1)}. (17)

4.3 Third degree stability region

Consider the problem of approximating from the inside the nonconvex stability region P
of a discrete-time third degree polynomial z 7→ z3 + x1z

2 + x2z + x3. An ellipsoidal inner
approximation was proposed in [4]. The Hermite polynomial matrix defining P as in (1)
is given by

P (x) =





1− x2
3 x1 − x2x3 x2 − x1x3

x1 − x2x3 1 + x2
1 − x2

2 − x2
3 x1 − x2x3

x2 − x1x3 x1 − x2x3 1− x2
3



 .

The boundary of P consists of two triangles and a hyperbolic paraboloid. The convex hull
of P is the simplex described in (17). We have analytic expressions (16) for the moments
(3) of B = P.

On Figures 4, 5 and 6 we respectively represent the degree two, four and six inner ap-
proximations of P, scaled within the unit box for visualization purposes. We observe that
the degree six approximation is very tight, thanks to the availability of the moments of
the Lebesgue measure on P.
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Figure 4: Two views of a degree two inner approximation (red) of nonconvex third-degree
stability region (gray).

Figure 5: Two views of a degree four inner approximation (red) of nonconvex third-degree
stability region (gray).

13



Figure 6: Two views of a degree six inner approximation (red) of nonconvex third-degree
stability region (gray).

4.4 Fixed-order controller design

Consider the linear discrete-time system with characteristic polynomial z 7→ z4 − (2x1 +
x2)z

3 + 2x1z + x2 depending affinely on two real design parameters x1 and x2. It follows
from Hermite’s stability criterion that this polynomial has its roots in the open unit disk
if and only if

P (x) =






1− x22 −2x1 − x2 − 2x1x2 0 2x1 + 2x1x2 + x22
−2x1 − x2 − 2x1x2 1 + 4x1x2 −2x1 − x2 − 2x1x2 0

0 −2x1 − x2 − 2x1x2 1 + 4x1x2 −2x1 − x2 − 2x1x2
2x1 + 2x1x2 + x22 0 −2x1 − x2 − 2x1x2 1− x22






is positive definite. As recalled in (4.2), the convex hull of the four-dimensional sta-
bility domain of a degree four polynomial is the simplex with vertices (−4, 6,−4, 1),
(−2, 0, 2,−1), (0,−2, 0, 1), (2, 0,−2,−1), (4, 6, 4, 1) corresponding to the five polynomials
with zeros equal to −1 or +1. Using elementary linear algebra, we find out that the
image of this simplex through the affine mapping (−(2x1 + x2), 0, 2x1, x2) parametrized
by x ∈ R2 is the two-dimensional simplex

B = conv{(−
1

4
, 1), (

7

8
,−

1

2
), (−

5

8
,−

1

2
)}.

The (closure of the) stability region P = {x ∈ R2 : P (x) � 0} is therefore included in B,
whose moments (3) are readily obtained e.g. by the explicit formulas of [10].
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Figure 7: Degree two (left) and four (right) inner approximations (light gray) of PMI
stability region (dark gray) embedded in simplex (dashed).
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Figure 8: Degree six (left) and eight (right) inner approximations (light gray) of PMI
stability region (dark gray) embedded in simplex (dashed).

On Figures 7 and 8 we represent the degree two, four, six and eight inner approximations
to P, corresponding to stability regions for the linear system. We observe that the ap-
proximations become tight rather quickly. This is due to the fact that B is a good outer
approximation of P with known moments. Tighter outer approximations B would result
in tighter inner approximations of P, but then the moments of B can be hard to compute,
see [8].

4.5 Robust controller design

Now consider the uncertain polynomial z 7→ x2 + u + 2x1z − (2x1 + x2)z
3 + z4 with

u ∈ U = {u ∈ R : u2 ≤ 1
16
} with uncertain Hermite matrix P (x, u) and the corresponding

parametrized PMI stability region P in (1). Let us use the same bounding set B as in
§4.4.
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Figure 9: Degree two (left) and four (right) inner approximations (light gray) of robust
PMI stability region (dark gray) embedded in simplex (dashed).

On Figure 9 we represent the degree two and degree four inner approximations to P,
corresponding to robust stability regions for the linear system. Comparing with Figure
7 we see that the approximations are smaller, and in particular they do not touch the
stability boundary to cope with the robustness requirements.

5 Conclusion

We have constructed a hierarchy of inner approximations of feasible sets defined by
parametrized or uncertain polynomial matrix inequalities (PMI). Each inner approxi-
mation is computed by solving a convex linear matrix inequality (LMI) problem. The
hierarchy converges in a well-defined analytic sense, so that conservatism of the approx-
imation is guaranteed to vanish asymptotically. In addition, the inner approximations
are simple polynomial or piecewise-polynomial superlevel sets, so that optimization over
these sets is significantly simpler than optimization over the original parametrized PMI
set. In particular, we remove the possibly complicated dependence of the problem data
on the uncertain parameters.

One may also impose the hierarchy of inner approximations to be nested. Finally, one may
also impose the inner approximations to be convex. In this latter case they do not converge
any more to the feasible set but, on the other hand, optimization over the parametrized
PMI set can be reformulated as a convex polynomial optimization problem (of course at
the price of some conservatism). Ideally, beyond convexity, we may also want the inner
convex approximation to be semidefinite representable (as an explicit affine projection
of an affine section of the SDP cone), and deriving such a representation may be an
interesting research direction.

The tradeoff to be found is between tightness of the inner approximation and degree of
the defining polynomials. In the context of robust control design, a satisfactory inner
approximation can be possibly computed off-line, and then used afterwards on-line in a
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feedback control setup.

Our methodology is valid for general parametrized PMI problems. However, in the case of
parametrized PMI problems coming from fixed-order robust controller design problems,
geometric insight can be exploited to improve convergence of the hierarchy. The key
information is the knowledge of the moments of the Lebesgue measure on a compact
set which tightly contains the parametrized PMI set we want to approximate from the
inside. In turns out that for robust control problems this knowledge is available easily, as
illustrated in the paper by several examples.

The main limitation of the approach lies in the ability of solving primal moment and dual
polynomial sum-of-squares LMI problems. State-of-the-art general-purpose semidefinite
programming solvers can currently address problems of relatively moderate dimensions,
but problem structure and data sparsity can be exploited for larger problems.
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6 Appendix

6.1 Proof of Lemma 1

Proof: The dual of polynomial SOS SDP problem (5) is moment SDP problem (8).
Slater’s condition cannot hold for (8) because V has empty interior in Rm. However it
turns out that Slater’s condition holds for an equivalent version of SDP problem (8), i.e.,
the latter has a strictly feasible solution ŷ. Indeed, let J ⊂ R[v] be the ideal generated by
the polynomial v 7→ θ(v) := 1−vTv so that the real variety VR(J) := {v ∈ Rm : θ(v) = 0}
associated with J is just the unit sphere V. It turns out that the real radical3 of J is J
itself, that is, I(VR(J)) = J (where for S ⊂ R

m, I(S) denotes the vanishing ideal). And
after embedding J in R[x, u, v], we still have I(VR(J)) = J .

Let H := {(α, β, γ) ∈ N
n × N

p × N
m : γm ≤ 1}, and let Hd := {(α, β, γ) ∈ H :

∑

i αi +
∑

j βj +
∑

ℓ γℓ ≤ d}. The monomials (xαuβvγ), (α, β, γ) ∈ H , form a basis of the

quotient space R[x, u, v]/J . Moreover, for every (α, β, γ) ∈ N
n+p+m
d ,

xαuβvγ =
∑

(a,b,c)∈Hd

pabc x
aubvc + h(x, u, v)

︸ ︷︷ ︸

∈R[x,u,v]d−2

(1− vTv),

for some real coefficients (pabc), and some h ∈ R[x, u, v]d−2. This is because every time one
sees a monomial xaubvc with cm ≥ 2, one uses v2m = 1−

∑

j 6=m v2j to reduce this monomial

3V is Zariski dense in VC(J) (= {v ∈ C
n : θ(v) = 0}) so that I(VR(J)) = I(VC(J)). But θ being

irreducible, J is a prime ideal and so I(VC(J)) = J .
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modulo θ = (1− vTv). For instance

xaubvc11 · · · v
cm−1

m−1 v
3
m = xaubvc11 · · · v

cm−1

m−1 vm × v2m
︸︷︷︸

=−θ+(1−
∑

j 6=m v2j )

= xaubvc11 · · · v
cm−1

m−1 vm −
∑

j 6=m

xaubvc11 · · · v
cj+2
j · · · v

cm−1

m−1 vm

−xaubvc11 · · · v
cm−1

m−1 vm
︸ ︷︷ ︸

∈R[x,u,v]d−2

θ(v),

etc. Therefore, for every (α, β, γ), (α′, β ′, γ′) ∈ Hd,

xα+α′

uβ+β′

vγ+γ′

=
∑

(a,b,c)∈H2d

pabc x
aubvc + h(x, u, v)

︸ ︷︷ ︸

∈R[x,u,v]2d−2

(1− vTv), (18)

for some real coefficients (pabc), and some h ∈ R[x, u, v]2d−2.

So because of the constraints Md−1((1 − vTv) y) = 0, the semidefinite program (8) is
equivalent to the semidefinite program:

ρ∗d =

∫

B

λmin(x)dx − min
y

Ly(v
TP (x, u)v)

s.t. M̂d(y) � 0, Md−1((1− vTv) y) = 0

M̂d−dai
(ai y) � 0, i = 0, 1, . . . , na

M̂d−dbj
(bj y) � 0, j = 1, . . . , nb

Ly(x
α) =

∫

B
xα dx, ∀α ∈ Nn

2d

(19)

where the smaller moment matrix M̂d(y) is the submatrix of Md(y) obtained by looking
only at rows and columns indexed in the monomial basis (xαyβvγ), (α, β, γ) ∈ Hd, in-
stead of Nn+p+m

d . Similarly, the smaller localizing matrix M̂d−dai
(ai y) is the submatrix

of Md−dai
(ai y) obtained by looking only at rows and columns indexed in the monomial

basis (xαyβvγ), (α, β, γ) ∈ Hd−dai
, instead of Nn+p+m

d−dai
; and similarly for M̂d−dbj

(bj y).

Indeed, in view of (18) and using Md((1− vTv) y) = 0, every column of Md(y) associated
with (α, β, γ) ∈ Nn+p+m is a linear combination of columns associated with (α′, β ′, γ′) ∈
Hd. And similary for Md−dai

(ai y) and Md−dbj
(bj y). Hence, Md(y) � 0 ⇔ M̂d(y) � 0,

and

Md−dai
(ai y) � 0 ⇔ M̂d−dai

(ai y) � 0; Md−dbj
(bj y) � 0 ⇔ M̂d−dbj

(bj y) � 0,

for all i = 1, . . . , na, j = 1, . . . , nb.

Next, let ŷ be the sequence of moments of the (product) measure µ uniformly distributed
on B×U×V, and scaled so that for all (α, β, γ) ∈ N

n+p+m
2d

ŷαβγ =

∫

B×U×V

xα uβvγ dµ(x, u, v) =
1

volU×V

∫

B

∫

U

∫

V

xα uβvγ dx du dλ(v)
︸ ︷︷ ︸

dµ(x,u,v)
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(with λ the rotation invariant measure on V). Therefore, for every α ∈ N
n
2d,

ŷα00 = Ly(x
α) =

∫

B×U×V

xα dµ(x, u, v) =

∫

B

xαdx.

Moreover, Md−1((1−vTv) y) = 0 for every d and importantly, M̂d(ŷ) ≻ 0, M̂d−dai
(ai ŷ) ≻ 0

and M̂d−dbj
(bj ŷ) ≻ 0. To see why, suppose for instance that hTM̂d(ŷ)h = 0 for some vector

h 6= 0. This means that for some non trivial polynomial h ∈ R[x, u, v]/J of degree d,

hTM̂d(ŷ)h =

∫

B×U×V

h2 dµ = 0,

that is, h(x, u, v) = 0 for µ-almost all (x, u, v) ∈ B × U × V, and so h(x, u, v) = 0 for
all (x, u, v) ∈ B×U×V because h is continuous. But as B ×U has nonempty interior
in Rn × Rp, then necessarily h ∈ I(VR(J)) (= J) – see Lemma 2 in section 6.5 – which
contradicts 0 6= h ∈ R[x, u, v]/J . Therefore ŷ is a strictly feasible solution of (19) and so
Slater’s condition holds for (19).

Denote by Σ̂[x, u, v]d the space of polynomials of degree at most 2d, that are SOS of
polynomials in R[x, u, v]/J . As ŷ is a strictly feasible solution of the semidefinite program
(19), by a standard result of convex optimization, there is no duality gap between (19)
and its dual

ρ′d =

∫

B

λmin(x) dx − min
g,r,s,t

∫

B

g(x) dx

s.t. vTP (x, u)v − g(x) = r(x, u, v)(1− vTv)

+

na∑

i=0

si(x, u, v)ai(u) +

nb∑

j=1

tj(x, u, v)bj(x) ∀(x, u, v)

(20)
where now the decision variables are coefficients of polynomials g ∈ R[x]2d, r ∈ R[x, u, v]2dr ,
and coefficients of SOS polynomials si ∈ Σ̂[x, u, v]dai , i = 0, 1, . . . , na, and tj ∈ Σ̂[x, u, v]dbj ,

j = 1, . . . , nb. That is, ρ′d = ρ∗d and so ρd = ρ∗d because ρ′d ≤ ρd ≤ ρ∗d. If ρ′d < ∞ then
(20) is guaranteed to have an optimal solution (g∗, r∗, s∗, t∗). But observe that such an
optimal solution (g∗, r∗, s∗, t∗) is also feasible in (5), and so having value ρ′d = ρd = ρ∗d,
(g∗, r∗, s∗, t∗) is also an optimal solution of (5).

It remains to prove that ρd is bounded. For any feasible solution y of (5), y0 ≤ volB, and

Ly(x
2d
i ) ≤ R2dyd0 ; Ly(u

2d
j ) ≤ R2dyd0 ; Ly(v

2d
k ) ≤ yd0, (21)

for all i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , m. This follows from Md−dai∗
(ai∗ y) � 0,

Md−dbj∗
(bj∗ y) � 0 and Md−1((1 − vTv) y) = 0, where ai∗(x) = R2 − xTx and bj∗(x) =

R2 − uTu; see the comments after (2) and (3). Then by [13, Lemma 4.3], one obtains
|yα| ≤ R2d(volB)d, for all α ∈ N

n
2d, which shows that the feasible set of (8) is compact.

Hence (8) has an optimal solution and ρd is finite; therefore its dual (5) also has an optimal
solution, the desired result. �
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6.2 Proof of Theorem 1

Proof: (a) Let K := B ×U ×V ⊂ R
n+p+m and consider the infinite-dimensional opti-

mization problem

ρ = min
µ∈M(K)

∫

K

vTP (x, u)v dµ(x, u, v)

s.t.

∫

K

xαdµ =

∫

B

xα dx, α ∈ N
n

(22)

where M(K) is the space of finite Borel measures on K. Problem (22) has an opti-
mal solution µ∗ ∈ M(K). Indeed, ρ ≥

∫

B
λmin(x)dx because for every (x, u, v) ∈ K,

vTP (x, u)v ≥ λmin(x); and so for every feasible solution µ ∈ M(K),

∫

K

vTP (x, u, v)v dµ(x, u, v) ≥

∫

K

λmin(x) dµ(x, u, v) =

∫

B

λmin(x) dx

because
∫

K
xαdµ =

∫

B
xαdx for all α ∈ N and hence the marginal of µ on Rn is the

Lebesgue measure on B. On the other hand, observe that for every x ∈ B, λmin(x) =
vTx P (x, ux)vx for some (ux, vx) ∈ U×V. Therefore, let µ∗ ∈ M(K) be the Borel measure
concentrated on (x, ux, vx) for all x ∈ B, i.e.

µ∗(B′ ×U′ ×V′) :=

∫

B′∩U′

1U′×V′(ux, vx) dx, ∀(B′,U′,V′) ∈ B(B)×B(U)×B(V)

where x 7→ 1B(x) denotes the indicator function of set B and B(B) denotes the Borel
σ-algebra of subsets of B. Then µ∗ is feasible for problem (22) with value

∫

K

vTP (x, u)v dµ∗(x, u, v) =

∫

B

λmin(x) dx

which proves that ρ =
∫

B
λmin(x) dx.

Next, λmin being continuous on compact set B, by the Stone-Weierstrass theorem [1,
§A7.5], for every ε > 0 there exists a polynomial hε ∈ R[x] such that

sup
x∈B

|λmin(x)− hε(x)| <
ε

2
.

Hence the polynomial pε := hε−ε satisfies λmin−pε > 0 on B and so vTP (x, u)v−pε > 0
on B×U×V. By Putinar’s Positivstellensatz, see e.g [11, Section 2.5], there exists SOS
polynomials rε ∈ R[x, u, v], and siε, tjε ∈ Σ[x, u, v] such that equation (5) is satisfied.
Hence for d sufficiently large, say d ≥ dε, (pε, rε, siε, tjε) is a feasible solution of (5) with
associated value ∫

B

(λmin(x)− pε(x)) dx ≤
3ε

2

∫

B

dx.

Hence 0 ≤ ρd ≤ 3ε
2

∫

B
dx whenever d ≥ dε where ρd is defined in (9). As ε > 0 was

arbitrary, we obtain the desired result

lim
d→∞

ρd = 0.
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Observe that since gd ≤ λmin for all d,

ρd =

∫

B

(λmin(x)− gd(x)) dx =

∫

B

|λmin(x)− gd(x)| dx

so that the convergence ρd → 0 is just the convergence gd → λmin for the L1 norm on B.
Finally the convergence gd → λmin in Lebesgue measure on B follows from [1, Theorem
2.5.1].

(b) For each x ∈ B, fixed and arbitrary, the sequence (ḡd) is monotone nondecreasing and
bounded above by λmin. Therefore there exists g∗ : B → R such that for every x ∈ B,
ḡd(x) ↑ g∗(x) ≤ λmin(x) as d → ∞. Since ḡd ≥ ḡ0 and

∫

B
ḡ0dx > −∞, by Lebesgue’s

Dominated Convergence Theorem [1, §1.6.9]

∫

B

g∗(x)dx = lim
d→∞

∫

B

ḡd(x)dx =

∫

B

λmin(x)dx,

and so from g∗(x) ≤ λmin(x) we deduce that g∗(x) = λmin(x) for almost all x ∈ B.
Combining the latter with ḡd ↑ g∗, we obtain that ḡd → λmin almost everywhere in B.
But then since the Lebesgue measure is finite on B, by Egorov’s theorem [1, Theorem
2.5.5], ḡd → λmin almost uniformly in B. Finally, convergence in Lebesgue measure on B
also follows from [1, Theorem 2.5.2]. �

6.3 Proof of Corollary 1

Proof: By Theorem 1, limd→∞ ‖λmin − gd‖1 = 0. Therefore, by [1, Theorem 2.5.1] the
sequence (gd) converges to λmin in Lebesgue measure, i.e. for every ε > 0,

lim
d→∞

vol{x : |λmin(x)− gd(x)| ≥ ε} = 0. (23)

Let ε > 0 be fixed, arbitrary, and let Pε := {x ∈ B : λmin(x) ≥ ε}, so that limε→0 volPε =
volP. By (23), limd→∞ vol(Pε ∩ {x ∈ B : gd(x) < 0}) = 0. Next, for all d ∈ N,

volPε = vol(Pε ∩ {x ∈ B : gd(x) < 0}) + vol(Pε ∩ {x ∈ B : gd(x) ≥ 0}).

Therefore, taking the limit as d → ∞ yields

volPε = lim
d→∞

vol(Pε ∩ {x ∈ B : gd(x) < 0})
︸ ︷︷ ︸

=0 by (23)

+ lim
d→∞

vol(Pε ∩ {x ∈ B : gd(x) ≥ 0}
︸ ︷︷ ︸

=Gd

)

= lim
d→∞

vol(Pε ∩Gd) ≤ lim
d→∞

volGd.

As ε > 0 was arbitrary and Gd ⊂ P, we obtain the desired result (12). The proof of (13)
is similar. �
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6.4 Proof of Corollary 2

Proof: Let 0 < ε < 1
3
be fixed, arbitrary. As in the proof of Theorem 1, for every k ∈ N

there exists a polynomial hk ∈ R[x] such that supx∈B |λmin(x) − hk(x)| < εk. Hence for
all x ∈ B and all k ≥ 1,

λmin(x)−3εk < hk(x)−2εk < λmin(x)−εk < λmin(x)−3εk+1 < hk+1(x)−2εk+1 < λmin(x)−εk+1

and so the polynomial x 7→ pk(x) := hk(x)− 2εk satisfies pk+1(x) > pk(x) and λmin(x) >
pk(x) for all x ∈ B. Again, by Putinar’s Positivstellensatz, see e.g [11, Section 2.5], pk is
feasible for (5) with the additional constraint (14), provided that d is sufficiently large,
and with associated value

∫

B

|λmin(x)− pk(x)|dx =

∫

B

(λmin(x)− pk(x))dx < 3εk
∫

B

dx → 0 as k → ∞.

�

6.5 An auxiliary result for the proof of Lemma 1

Remember that J ⊂ R[v] is the ideal generated by 1− vTv and the real radical I(VR(J))
of J is J itself. And when J is embedded in R[x, u, v] (with same name of simplicity) we
also have I(VR(J)) = J .

Lemma 2 If f ∈ R[x, u, v]d is such that f(x, u, v) = 0 for all (x, u, v) ∈ B×U×V then
f ∈ J .

Proof: Write
f(x, u, v) =

∑

α∈Nm
d

gα(x, u) v
α,

for some polynomials (gα) ⊂ R[x, u]d, α ∈ Nm
d . Next, let (x0, u0) ∈ B × U be fixed, so

that v 7→ f(x0, u0, v) = 0 for all v ∈ V. Therefore, as a polynomial of R[v], it vanishes on
V = VR(J) and as I(VR(J)) = J , v 7→ f(x0, u0, v) ∈ J , that is,

f(x0, u0, v) =
∑

α∈Nm
d

gα(x0, u0) v
α = (1− vTv) θx0,v0(v), (24)

for some polynomial v 7→ θx0,v0(v) ∈ R[v]d. The coefficients (θx0,u0

α ) of the polynomial
θx0,u0(v) =

∑

α θ
x0,u0

α vα are linear in the coefficients (gβ(x0, u0)), β ∈ Nm
d , of f . Indeed

one may reduce each monomial vα using v2m = 1 −
∑

i 6=m v2i , until there is no monomial

vβm with β > 1. For instance,

vα1

1 · · · v
αm−1

m−1 v2m = vα1

1 · · · v
αm−1

m−1 (vTv − 1) + vα1

1 · · · v
αm−1

m−1 −
∑

j 6=m

vα1

1 · · · v
αj+2
j · · · v

αm−1

m−1 ,

and

vα1

1 · · · v
αm−1

m−1 v3m = vα1

1 · · · v
αm−1

m−1 vm(v
Tv−1)+vα1

1 · · · v
αm−1

m−1 vm−
∑

j 6=m

vα1

1 · · · v
αj+2
j · · · v

αm−1

m−1 vm,

22



etc., to finally obtain

vα = pα(v)(1− vTv) + rα, ∀α ∈ N
m
d ,

for some pα ∈ R[v]|α|−2 and rα ∈ R[v]/J . Therefore, summing up over all α ∈ N
m
d yields:

f(x0, u0, v) =
∑

α∈Nm
d

gα(x0, u0) v
α

= (vTv − 1)
∑

α∈Nm
d

gα(x0, u0) pα(v)

︸ ︷︷ ︸

h(x0,u0,v)

+
∑

α∈Nm
d

gα(x0, u0) rα(v)

︸ ︷︷ ︸

= 0 as v 7→ f(x0, u0, v) ∈ J

= (vTv − 1) h(x0, u0, v), ∀v ∈ R
m, (25)

for some h ∈ R[x, u, v]. But since (25) holds for every (x, u) ∈ B×U, we obtain

f(x, u, v) = (vTv − 1) h(x0, u0, v), ∀(x, u, v) ∈ B×U× R
m,

and as B×U× Rm has nonempty interior,

f(x, u, v) = (vTv − 1) h(x0, u0, v), ∀(x, u, v) ∈ R
n × R

p × R
m,

i.e., f = (vTv − 1)h, which proves the desired result that f ∈ J . �
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