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Inner approximations for polynomial matrix
inequalities and robust stability regions

Didier Henrion1,2,3, Jean-Bernard Lasserre1,2,4

April 26, 2011

Abstract

Following a polynomial approach, many robust fixed-order controller design
problems can be formulated as optimization problems whose set of feasible solutions
is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility
sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy
of linear matrix inequality (LMI) problems whose optimal solutions generate inner
approximations modelled by a single polynomial sublevel set. Those inner approx-
imations converge in a strong analytic sense to the nonconvex original feasible set,
with asymptotically vanishing conservatism. One may also impose the hierarchy of
inner approximations to be nested or convex. In the latter case they do not converge
any more to the feasible set, but they can be used in a convex optimization frame-
work at the price of some conservatism. Finally, we show that the specific geometry
of nonconvex polynomial stability regions can be exploited to improve convergence
of the hierarchy of inner approximations.

Keywords: polynomial matrix inequality, linear matrix inequality, robust optimization,
robust fixed-order controller design, moments, positive polynomials.

1 Introduction

Linear system stability can be formulated semialgebraically in the space of coefficients
of the characteristic polynomial. The region of stability is generally nonconvex in this
space, and this is a major obstacle when solving fixed-order and/or robust controller
design problems. Using the Hermite stability criterion, these problems can be formulated
as parametrized polynomial matrix inequalities (PMIs) where parameters account for
uncertainties and the decision variables are controller coefficients. Recent results on real
algebraic geometry and generalized problems of moments can be used to build up a
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hierarchy of convex linear matrix inequality (LMI) outer approximations of the region
of stability, with asymptotic convergence to its convex hull, see e.g. [5] for a software
implementation and examples, and see [6] for an application to PMI problems arising
from static output feedback design.

If outer approximations of nonconvex semialgebraic sets can be readily constructed with
these LMI relaxations, inner approximations are much harder to obtain. However, for
controller design purposes, inner approximations are essential since they correspond to
sufficient conditions and hence guarantees of stability or robust stability. In the robust
systems control literature, convex inner approximations of the stability region have been
proposed in the form of polytopes [13], ellipsoids [3] or more general LMI regions [4, 8]
derived from polynomial positivity conditions.

In this paper we provide a numerical scheme for approximating from inside the feasible
set P ⊂ Rn of a parametrized PMI P (x, u) � 0 (for some matrix polynomial P ), that is,
the set of points x such that P (x, u) � 0 for all values of the parameter u in some specified
domain U ⊂ Rp (assumed to be a basic compact semialgebraic set). This includes as a
special case the approximation of the stability region (and the robust stability region) of
linear systems. The particular case where P (x, u) is affine in x covers parametrized LMIs
with many applications in robust control, as surveyed e.g. in [14].

Given a compact set B ⊂ Rn containing P, this numerical scheme consists of building
up a sequence of inner approximations Gd ⊂ P ⊂ B, d ∈ N, which fulfils two essential
conditions:

1. The approximation is in a strong analytic sense (hence efficient);

2. Each set Gd is defined in a simple manner, as a level set of a single polynomial.
In our mind, this feature is essential for a successful implementation in practical
applications.

More precisely, we provide a hierarchy of inner approximations (Gd) of P, where each
Gd = {x ∈ B : gd(x) ≥ 0} is a basic semi-algebraic set for some polynomial gd of degree d.
The vector of coefficients of the polynomial gd is an optimal solution of an LMI problem.
When d increases, the convergence of (Gd) to P is very strong. Indeed, the Lebesgue
volume of Gd converges to the Lebesgue volume of P. In fact, on any (a priori fixed)
compact set B, the sequence (gd) converges for the L1-norm on B to the function x 7→
λmin(x) = minu∈U λmin(x, u) where λmin(x, u) is the minimum eigenvalue of the matrix-
polynomial P (x, u) associated with the PMI. Consequently, gd → λmin in (Lebesgue)
measure on B, and gdk → λmin almost everywhere and almost uniformly on B, for a
subsequence (gdk). In addition, if one defines the piecewise polynomial ḡd := maxk≤d gk,
then ḡd → λmin almost everywhere almost uniformly and in (Lebesgue) measure on B.

Finally, we can easily enforce that the inner approximations (Gd) are nested and/or
convex. Of course, for the latter convex approximations, convergence to P is lost if P is
not convex. However, on the other hand, having a convex inner approximation of P may
reveal to be very useful, e.g., for optimization purposes.

On the practical and computational sides, the quality of the approximation of P depends
heavily on the chosen set B ⊃ P on which to make the approximation of the function
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λmin. The smaller B, the better the approximation. In particular, it is worth emphasizing
that when the set P to approximate is the stability or robust stability region of a linear
system, then its particular geometry can be exploited to construct a tight bounding set
B. Therefore, a good approximation of P is obtained significantly faster than with an
arbitrary set B containing P.

The outline of the paper is as follows. In Section 2 we formally state the problem to be
solved. In Section 3 we describe our hierarchy of inner approximations. In Section 4, we
show that the specific geometry of the stability region can be exploited, as illustrated on
several standard problems of robust control. The final section collects technical results
and the proofs.

2 Problem statement

Let R[x] denote the ring or real polynomials in the variables x = (x1, . . . , xn), and let R[x]d
be the vector space of real polynomials of degree at most d. Similarly, let Σ[x] ⊂ R[x]
denote the convex cone of real polynomials that are sums of squares (SOS) of polynomials,
and Σ[x]d ⊂ Σ[x] its subcone of SOS polynomials of degree at most 2d. Denote by Sm the
space of m×m real symmetric matrices. For a given matrix A ∈ S

m, the notation A � 0
means that A is positive semidefinite, i.e., all its eigenvalues are real and nonnegative.

Let P : R[x, u] → Sm be a matrix polynomial, i.e. a matrix whose entries are scalar
multivariate polynomials of the vector indeterminates x and u. Then

P := {x ∈ R
n : ∀u ∈ U, P (x, u) � 0} (1)

defines a parametrized polynomial matrix inequality (PMI) set, where x ∈ Rn is a vector
of decision variables, u ∈ R

p is a vector of uncertain parameters belonging to a compact
semialgebraic set

U := {u ∈ R
p : ai(u) ≥ 0, i = 1, . . . , na} (2)

described by given polynomials ai(u) ∈ R[u], and P (x, u) is a given symmetric polynomial
matrix of size m. As U is compact, without loss of generality we assume that for some
i = i∗, ai∗(u) = M2 − uTu, where M is sufficiently large.

We also assume that P is bounded and that we are given a compact set B ⊃ P with
explicitly known moments y = (yα), α ∈ Nn, of the Lebesgue measure on B, i.e.

yα :=

∫

B

xαdx (3)

where xα :=
∏n

i=1 x
αi

i . Typical choices for B are a box or a ball. To fix ideas, let

B := {x ∈ R
n : bj(x) ≥ 0, j = 1, . . . , nb}

for some polynomials bj ∈ R[x]. Again, with no loss of generality, we may and will assume
that for some j = j∗, bj∗(x) = M2 − xTx, where M is sufficiently large. Finally, denote
by volA the Lebesgue volume of any Borel set A ⊂ B.

We are now ready to state our polynomial inner approximation problem.
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Problem 1 (Inner Approximations) Given set P, build up a sequence of basic closed
semialgebraic sets Gd = {x ∈ B : gd(x) ≥ 0}, for some gd ∈ R[x], such that

Gd ⊆ P and lim
d→∞

volGd = volP.

In addition, we may want the sequence of inner approximations to satisfy additional
nesting or convexity conditions.

Problem 2 (Nested Inner Approximations) Solve Problem 1 with the additional
constraint

Gd ⊆ Gd+1 ⊆ P, d = 1, 2, . . .

Problem 3 (Convex Inner Approximations) Given set P, build up a sequence of
nested basic closed convex semialgebraic sets Gd = {x ∈ B : gd(x) ≥ 0}, for some
gd ∈ R[x], such that

Gd ⊆ Gd+1 ⊆ P, d = 1, 2, . . .

3 A hierarchy of semialgebraic inner approximations

Given a polynomial matrix P (x, u) which defines the set P in (1), polynomials hi ∈ R[u]
which define the uncertain set U in (2), let V = {v ∈ Rm : vTv ≤ 1} denote the unit
Euclidean ball of Rm and let λmin : B → R be the function:

x 7→ λmin(x) = min
u∈U

min
v∈V

vTP (x, u)v (4)

as the robust minimum eigenvalue function of P (x, u). Function λmin is algebraic, con-
tinuous, but not necessarily differentiable. It allows to define set P alternatively as the
sublevel set

P = {x ∈ R
n : λmin(x) ≥ 0}.

Let a0 ∈ R[u] be the constant polynomial 1, dai := ⌈(deg ai)/2⌉, i = 0, 1, . . . , na and
dbj := ⌈(deg bj)/2⌉, j = 1, . . . , nb. Let 2d0 ≥ max(2 + degP,maxi degai,maxj degbj), and
consider the hierarchy of convex optimization problems indexed by the parameter d ∈ N,
d ≥ d0:

ρd = min
g,r,s,t

∫

B

(λmin(x)− g(x)) dx

s.t. vTP (x, u)v − g(x) = r(x, u, v)(1− vTv)

+

na∑

i=0

si(x, u, v)ai(u) +

nb∑

j=1

tj(x, u, v)bj(x) ∀(x, u, v)

(5)

where decision variables are coefficients of polynomials g ∈ R[x]2d, and coefficients of SOS
polynomials r ∈ Σ[x, u, v]d−1, si ∈ Σ[x, u, v]d−dai

, and tj ∈ Σ[x, u, v]d−dbj
.
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For each d ∈ N fixed, the associated optimization problem (5) is a semidefinite pro-
gramming (SDP) problem. Indeed, stating that the two polynomials in both sides of the
equation in (5) are identical translates into linear equalities between the coefficients of
polynomials g, r, (si), (tj) and stating that some of them are SOS translates into semidef-
initeness of appropriate symmetric matrices. For more details, the interested reader is
referred to e.g. [10, Chapter 2].

Before stating our main results, let us recall some standard notions of functional analysis.
Let g : B → R be a function of x, and let (gd) denote a sequence of functions of x
indexed by d ∈ N. Lebesgue space L1(B) is the Banach space of integrable functions on
B equipped with the norm

‖g‖1 =

∫

B

|g|dx.

Regarding sequence (gd), we use the following notions of convergence in B when d → ∞:

• gd → g in L1 norm means lim
d→∞

‖g − gd‖1 = 0;

• gd → g in Lebesgue measure means that for every ε > 0,

lim
d→∞

vol{x : |g(x)− gd(x)| ≥ ε} = 0;

• gd → g almost everywhere means that limd→∞ gd(x) = g(x) pointwise except possi-
bly for x ∈ A ⊂ B with volA = 0;

• gd → g almost uniformly means that given ε > 0, there is a set A ⊂ B such that
volA < ε and gd → g uniformly on B \A;

• finally, with the notation gd ↑ g we mean that gd → g while satisfying gd(x) ≤
gd+1(x) for all d.

For more details on these related notions of convergence, see [1, §2.5].

Lemma 1 For every d ≥ d0, SDP problem (5) has an optimal solution gd ∈ R[x]2d and

ρd =

∫

B

(λmin(x)− gd(x)) dx = ‖λmin − gd‖1. (6)

A detailed proof of Lemma 1 can be found in §6.2.

For every d ≥ d0, let ḡd : B → R be the piecewise polynomial

x 7→ ḡd(x) := max
d0≤k≤d

gk(x). (7)

We are now in position to prove our main result.

Theorem 1 Let gd ∈ R[x]2d be an optimal solution of SDP problem (5) and consider the
associated sequence (gd) ⊂ L1(B) for d ≥ d0. Then:

(a) gd → λmin in L1 norm and in Lebesgue measure.

(b) ḡd ↑ λmin almost everywhere, almost uniformly and in Lebesgue measure.

A proof can be found in §6.3.
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3.1 Polynomial and piecewise polynomial inner approximations

Corollary 1 For every d ≥ d0, let gd ∈ R[x]2d be an optimal solution of SDP problem
(5), let ḡd be the piecewise polynomial defined in (7), and let

Gd := {x ∈ B : gd(x) ≥ 0}, Ḡd := {x ∈ B : ḡd(x) ≥ 0}. (8)

Then

Gd ⊂ P ∀ d ≥ d0 and lim
d→∞

vol(P \Gd) = 0. (9)

Ḡd0 ⊆ Ḡ1 ⊆ · · · ⊆ Ḡd ⊆ · · · ⊂ P and lim
d→∞

vol(P \ Ḡd) = 0. (10)

That is, sequence (Gd) solves Problem 1 and sequence (Ḡd) solves Problem 2 if piecewise
polynomials are allowed.

A proof can be found in §6.4.

3.2 Nested polynomial inner approximations

We now consider Problem 2 where gd is constrained to be a polynomial instead of a
piecewise polynomial. We need to slightly modify SDP problem (5). Suppose that at step
d− 1 in the hierarchy we have already obtained an optimal solution gd−1 ∈ R[x]2d−2, such
that gd−1 ≥ gd0 on B, for all d0 ≤ d − 1. At step d we now solve SDP problem (5) with
the additional constraint

g(x)− gd−1(x) = c0(x) +

nb∑

j=1

cj(x)bj(x), ∀x (11)

with unknown SOS polynomials c0 ∈ Σ[x]d and cj ∈ Σ[x]d−dbj
.

Corollary 2 Let gd ∈ R[x]2d be an optimal solution of SDP problem (5) with the addi-
tional constraint (11) and let Gd be as in (8) for d ≥ d0. Then the sequence (Gd) solves
Problem 2.

For a proof see §6.5.

3.3 Convex nested polynomial inner approximations

Finally, for g ∈ R[x]2d, denote by ∇2g(x) the Hessian matrix of g at x, and consider SDP
problem (5) with the additional constraint

vT∇2g(x)v = c0(x, v) +

nb∑

j=1

cj(x, v)bj(x) + cnb+1(x, v)(1− vTv), (12)

for some SOS polynomials c0 ∈ Σ[x, v]d, cj ∈ Σ[x, v]d−dbj
and cnb+1 ∈ Σ[x, v]d−1.

6



Corollary 3 Let g ∈ R[x]2d be an optimal solution of SDP problem (5) with the additional
constraint (12) and let Gd be as in (8) for d ≥ d0. Then the sequence (Gd) solves Problem
3.

The proof follows along the same lines as the proof of Corollary 2.

3.4 Example

Consider the nonconvex planar PMI set

P = {x ∈ R
2 : P (x) =

[
1− 16x1x2 x1

x1 1− x2
1 − x2

2

]

� 0}

which is Example II-E in [6] scaled to fit within the unit box

B = {x ∈ R
2 : ‖x‖∞ ≤ 1}

whose moments (3) are readily given by

yα =
4

(α1 + 1)(α2 + 1)
.
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Figure 1: Degree two (left) and four (right) inner approximations (light gray) of PMI set
(dark gray) embedded in unit box (dashed).

On Figure 1 we represent the degree two and degree four solutions to SDP problem (5),
modelled by YALMIP 3 and solved by SeDuMi 1.3 under a Matlab environment. We see
in particular that the degree four polynomial sublevel set G2 is somewhat smaller than
expected. This is due to the fact that the objective function in problem (5) is the integral
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of g(x) over the whole box B, not only over PMI set P. There is a significant role played
by the components of the integral on complement set B\P, and this deteriorates the inner
approximation.

This issue can be address partly by embedding P in a tighter set B, for example here the
unit disk

B = {x ∈ R
2 : ‖x‖2 ≤ 1}

whose moments (3) are given by

yα =
Γ(α1+1

2
)Γ(α2+1

2
)

Γ(2 + α1+α2

2
)

where Γ is the gamma function such that Γ(k) = (k− 1)! for integer k. See [11, Theorem
3.1] for the general expression1 of moments of the unit disk in Rn.
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Figure 2: Degree two (left) and four (right) inner approximations (light gray) of PMI set
(dark gray) embedded in unit disk (dashed).

On Figure 2 we represent the degree two and degree four solutions to SDP problem (5).
Comparing with Figure 1, we see that the approximations embedded in the unit disk are
much tighter than the approximations embedded in the unit box. Finally, on Figure 3
we represent the tighter degree six and degree eight inner approximations within the unit
disk.

4 Geometry of control problems

As explained in the introduction, inner approximations of the stability regions are essen-
tial for fixed-order controller design. The PMI regions arising from parametric stability

1Note however that there is an incorrect factor 2−n in the right handside of equation (3.3) in [11].
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Figure 3: Degree six (left) and eight (right) inner approximations (light gray) of PMI set
(dark gray) embedded in unit disk (dashed).

conditions have a specific geometry that can be exploited to improve the convergence
of the hierarchy of inner approximations. In this section, we first recall Hermite’s PMI
formulation of (discrete-time) stability conditions. Then we recall that the PMI stability
region is the image of a unit box through a multi-affine mapping, which allows to derive
explicit expressions for the moments of the full-dimensional stability region, as well as
tight polytopic outer approximations of low-dimensional affine sections of the stability re-
gion. Numerical examples illustrate these techniques for fixed-order nominal and robustly
stabilizing controller design.

4.1 Hermite’s PMI

Derived by the French mathematician Charles Hermite in 1854, the Hermite matrix cri-
terion is a symmetric version of the Routh-Hurwitz criterion for assessing stability of
a polynomial. Originally it was derived for locating the roots of a polynomial in the
open upper half of the complex plane, but with a fractional transform it can be readily
transposed to the open unit disk and discrete-time stability. The criterion says that a
polynomial x(z) = zn + x1z

n−1 + · · ·+ xn−1z + xn has all its roots in the open unit disk
if and only if its Hermite matrix P (x) = T T

1 (x)T1(x) − T T
2 (x)T2(x) is positive definite,

where

T1(x) =








1 x1 x2

0 1 x1

0 0 1
. . .








T2(x) =








xn xn−1 xn−2

0 xn xn−1

0 0 xn

. . .








are n-by-n upper-right triangular Toeplitz matrices, see e.g. the entrywise formulas of
[2, Theorem 3.13] or the construction explained in [3]. The Hermite matrix is n-by-n,
symmetric and quadratic in coefficients x = (x1, x2, . . . , xn), so that the interior of the

9



PMI set
P = {x ∈ R

n : P (x) � 0}

is the parametric stability domain which is bounded, connected but nonconvex for n ≥ 3.
Optimal controller design amounts to optimizing over semialgebraic set P.

4.2 Multiaffine mapping of the unit box

As explained e.g. in [13] or [15, §3.5] and references therein, stability domain P can also be
constructed as the image of the unit box (in the space of so-called reflection coefficients)
through a multiaffine mapping. More explicitly P = f(K) where K = {k ∈ Rn : ‖k‖∞ ≤
1} and multiaffine mapping f : Rn → Rn is defined by

f(k) =





0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













1 0 0 k3
0 1 k3 0
0 k3 1 0
k3 0 0 1
0 0 0 0















1 0 k2
0 1 + k2 0
k2 0 1
0 0 0











1 k1
k1 1
0 0





[
1
0

]

=





k2k3 + k1(1 + k2)
k2 + k1k3(1 + k2)

k3





in the case n = 3. The general expression of f for other values of n is not given here for
space reasons, but it follows readily from the construction outlined above.

Using this mapping we can obtain moments (3) of B = P analytically:

yα =

∫

P

dx =

∫

K

(k2k3 + k1(1 + k2))
α1(k2 + k1k3(1 + k2))

α2kα3

3 det∇f(k)dk (13)

where det∇f(k) = (1 + k2)(1 − k2
3) is the determinant of the Jacobian of f , in the case

n = 3. For space reasons we do not give here the explicit value of yα as a function of α,
but it can be obtained by integration by parts.

Finally, let us mention a well-known geometric property of P: its convex hull is a polytope
whose vertices correspond to the n + 1 polynomials with roots equal to −1 or +1. For
example, when n = 3, we have

convP = conv{(−3, 3,−1), (−1,−1, 1), (1,−1,−1), (3, 3, 1)}. (14)

4.3 Third degree stability region

Consider the problem of approximating from the inside the nonconvex stability region P
of a discrete-time third degree polynomial z 7→ z3 + x1z

2 + x2z + x3. An ellipsoidal inner
approximation was proposed in [3]. The Hermite polynomial matrix defining P as in (1)
is given by

P (x) =





1− x2
3 x1 − x2x3 x2 − x1x3

x1 − x2x3 1 + x2
1 − x2

2 − x2
3 x1 − x2x3

x2 − x1x3 x1 − x2x3 1− x2
3



 .
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Figure 4: Two views of a degree two inner approximation (red) of nonconvex third-degree
stability region (gray).

Figure 5: Two views of a degree four inner approximation (red) of nonconvex third-degree
stability region (gray).

11



Figure 6: Two views of a degree six inner approximation (red) of nonconvex third-degree
stability region (gray).

The boundary of P consists of two triangles and a hyperbolic paraboloid. The convex hull
of P is the simplex described in (14). We have analytic expressions (13) for the moments
(3) of B = P.

On Figures 4, 5 and 6 we respectively represent the degree two, four and six inner ap-
proximations of P, scaled within the unit box for visualization purposes. We observe that
the degree six approximation is very tight, thanks to the availability of the moments of
the Lebesgue measure on P.

4.4 Fixed-order controller design

Consider the linear discrete-time system with characteristic polynomial z 7→ z4 − (2x1 +
x2)z

3 + 2x1z + x2 depending affinely on two real design parameters x1 and x2. It follows
from Hermite’s stability criterion that this polynomial has its roots in the open unit disk
if and only if

P (x) =






1− x
2
2 −2x1 − x2 − 2x1x2 0 2x1 + 2x1x2 + x

2
2

−2x1 − x2 − 2x1x2 1 + 4x1x2 −2x1 − x2 − 2x1x2 0
0 −2x1 − x2 − 2x1x2 1 + 4x1x2 −2x1 − x2 − 2x1x2

2x1 + 2x1x2 + x
2
2 0 −2x1 − x2 − 2x1x2 1− x

2
2






is positive definite. As recalled in (4.2), the convex hull of the four-dimensional sta-
bility domain of a degree four polynomial is the simplex with vertices (−4, 6,−4, 1),
(−2, 0, 2,−1), (0,−2, 0, 1), (2, 0,−2,−1), (4, 6, 4, 1) corresponding to the five polynomials
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with zeros equal to −1 or +1. Using elementary linear algebra, we find out that the
image of this simplex through the affine mapping (−(2x1 + x2), 0, 2x1, x2) parametrized
by x ∈ R2 is the two-dimensional simplex

B = conv{(−
1

4
, 1), (

7

8
,−

1

2
), (−

5

8
,−

1

2
)}.

The (closure of the) stability region P = {x ∈ R2 : P (x) � 0} is therefore included in B,
whose moments (3) are readily obtained e.g. by the explicit formulas of [9].
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Figure 7: Degree two (left) and four (right) inner approximations (light gray) of PMI
stability region (dark gray) embedded in simplex (dashed).
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Figure 8: Degree six (left) and eight (right) inner approximations (light gray) of PMI
stability region (dark gray) embedded in simplex (dashed).

On Figures 7 and 8 we represent the degree two, four, six and eight inner approximations
to P, corresponding to stability regions for the linear system. We observe that the ap-
proximations become tight rather quickly. This is due to the fact that B is a good outer
approximation of P with known moments. Tighter outer approximations B would result
in tighter inner approximations of P, but then the moments of B can be hard to compute,
see [7].
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Figure 9: Degree two (left) and four (right) inner approximations (light gray) of robust
PMI stability region (dark gray) embedded in simplex (dashed).

4.5 Robust controller design

Now consider the uncertain polynomial z 7→ x2 + u + 2x1z − (2x1 + x2)z
3 + z4 with

u ∈ U = {u ∈ R : u2 ≤ 1
16
} with uncertain Hermite matrix P (x, u) and the corresponding

parametrized PMI stability region P in (1). Let us use the same bounding set B as in
§4.4.

On Figure 9 we represent the degree two and degree four inner approximations to P,
corresponding to robust stability regions for the linear system. Comparing with Figure
7 we see that the approximations are smaller, and in particular they do not touch the
stability boundary to cope with the robustness requirements.

5 Conclusion

We have constructed a hierarchy of inner approximations of feasible sets defined by
parametrized or uncertain polynomial matrix inequalities (PMI). Each inner approxi-
mation is computed by solving a convex linear matrix inequality (LMI) problem. The
hierarchy converges in a strong analytic sense, so that conservatism of the approximation
is guaranteed to vanish asymptotically. In addition, the inner approximations are simple
polynomial or piecewise-polynomial sublevel sets, so that optimization over these sets is
significantly simpler than optimization over the original parametrized PMI set. One may
also impose the hierarchy of inner approximations to be nested. Finally, one may also
impose the inner approximations to be convex. In this latter case they do not converge
any more to the feasible set but, on the other hand, optimization over the parametrized
PMI set can be reformulated as a convex polynomial optimization problem (of course at
the price of some conservatism).

The tradeoff to be found is between tightness of the inner approximation and degree of
the defining polynomials. A satisfactory inner approximation can be possibly computed
off-line, and then used afterwards on-line in a feedback control setup.
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Our methodology is valid for general parametrized PMI problems. However, in the case of
parametrized PMI problems coming from fixed-order robust controller design problems,
geometric insight can be exploited to improve convergence of the hierarchy. The key
information is the knowledge of the moments of the Lebesgue measure on a compact
set which tightly contains the parametrized PMI set we want to approximate from the
inside. In turns out that for robust control problems this knowledge is available easily, as
illustrated in the paper by several examples.

The main limitation of the approach lies in the ability of solving primal moment and dual
polynomial sum-of-squares LMI problems. State-of-the-art general-purpose semidefinite
programming solvers can currently address problems of relatively moderate dimensions,
but problem structure and data sparsity can be exploited for larger problems.
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6 Appendix

6.1 Moment and localizing matrices

With a sequence y = (yα), α ∈ Nn, let Ly : R[x] → R be the linear functional

f (=
∑

α

fα x
α) 7→ Ly(f) =

∑

α

fα yα, f ∈ R[x].

With d ∈ N, the moment matrix of order d associated with y is the real symmetric matrix
Md(y) with rows and columns indexed in Nn

d , and defined by

Md(y)(α, β) := Ly(x
α+β) = yα+β, ∀α, β ∈ N

n
d . (15)

A sequence y = (yα) has a representing measure if there exists a finite Borel measure µ
on R

n, such that yα =
∫
xαdµ for every α ∈ N

n.

With y as above and h ∈ R[x], the localizing matrix of order d associated with y and h
is the real symmetric matrix Md(h y) with rows and columns indexed by N

n
d , and whose

entry (α, β) is given by

Md(y)(h y)(α, β) := Ly(h(x) x
α+β) =

∑

γ

hγ yα+β+γ, ∀α, β ∈ N
n
d . (16)
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6.2 Proof of Lemma 1

Proof: The dual of polynomial SOS SDP problem (5) is the moment SDP problem

ρ∗d =

∫

B

λmin(x)dx − min
y

Ly(v
TP (x, u)v)

s.t. Md(y) � 0, Md−1(r y) � 0
Md−dai

(ai y) � 0, i = 0, 1, . . . , na

Md−dbj
(bj y) � 0, j = 1, . . . , nb

Ly(x
α) =

∫

B
xα dx, ∀α ∈ Nn

2d

(17)

where y ∈ N
n+p+m
2d . It turns out that Slater’s condition holds for SDP problem (17),

i.e., it has a strictly feasible solution ŷ. Indeed, let ŷ be the sequence of moments of the
Lebesgue measure µ on B×U×V, and scaled so that for all (α, β, γ) ∈ N

n+p+m
2d

ŷαβγ =

∫

B×U×V

xα uβvγ dµ(x, u, v) =
1

volU×V

∫

B

∫

U

∫

V

xα uβvγ dx du dv
︸ ︷︷ ︸

dµ(x,u,v)

.

Therefore, for every α ∈ N
n
2d

ŷα00 = Ly(x
α) =

∫

B×U×V

xα dµ(x, u, v) =

∫

B

xαdx.

As B × U × V has nonempty interior, it follows that Md(ŷ) ≻ 0, Md−1(r ŷ) ≻ 0,
Md−dai

(ai ŷ) ≻ 0 and Md−dbj
(bj ŷ) ≻ 0. Therefore, ŷ is a strictly feasible solution of

(17). Hence by a standard result of convex optimization, there is no duality gap between
(5) and its dual (17), i.e. ρd = ρ∗d. If ρd < ∞ then (5) is guaranteed to have an optimal
solution.

We next prove that ρd is bounded. For any feasible solution y of (5), y0 ≤ volB, and

Ly(x
2d
i ) ≤ M2dyd0 ; Ly(u

2d
j ) ≤ M2dyd0 ; Ly(v

2d
k ) ≤ yd0, (18)

for all i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , m. This follows from Md−dai∗
(ai∗ y) � 0,

Md−dbj∗
(bj∗ y) � 0 and Md−1(r y) � 0, where ai∗(x) = M2 − xTx, bj∗(x) = M2 − uTu,

and r(v) = 1 − vTv, see the comments after (2) and (3). Then by [12, Lemma 4.3], one
obtains |yα| ≤ M2d(volB)d, for all α ∈ N

n
2d, which shows that the feasible set of (17) is

compact. Hence (17) has an optimal solution and ρd is finite; therefore its dual (5) also
has an optimal solution, the desired result. �

6.3 Proof of Theorem 1

Proof: (a) Let K := B ×U ×V ⊂ Rn+p+m and consider the infinite-dimensional opti-
mization problem

ρ = min
µ∈M(K)

∫

K

vTP (x, u)v dµ(x, u, v)

s.t.

∫

K

xαdµ =

∫

B

xα dx, α ∈ N
n

(19)
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where M(K) is the space of finite Borel measures on K. Problem (19) has an opti-
mal solution µ∗ ∈ M(K). Indeed, ρ ≥

∫

B
λmin(x)dx because for every (x, u, v) ∈ K,

vTP (x, u)v ≥ λmin(x); and so for every feasible solution µ ∈ M(K),
∫

K

vTP (x, u, v)v dµ(x, u, v) ≥

∫

K

λmin(x) dµ(x, u, v) =

∫

B

λmin(x) dx

because
∫

K
xαdµ =

∫

B
xαdx for all x ∈ B. On the other hand, observe that for every

x ∈ B, λmin(x) = vTxP (x, ux)vx for some (ux, vx) ∈ U×V. Therefore, let µ∗ ∈ M(K) be
the Borel measure concentrated on (x, ux, vx) for all x ∈ B, i.e.

µ∗(A×B×C) :=

∫

A∩B

1B×C(ux, vx) dx, ∀(A,B,C) ∈ B(Rn)× B(Rp)×B(Rm)

where x 7→ 1A(x) denotes the indicator function of set A and B(Rn) denotes the Borel
σ-algebra of subsets of Rn. Then µ∗ is feasible for problem (19) with value

∫

K

vTP (x, u)v dµ∗(x, u, v) =

∫

B

λmin(x) dx

which proves that ρ =
∫

B
λmin(x) dx.

Next, λmin being continuous on compact set B, by the Stone-Weierstrass theorem [1,
§A7.5], for every ε > 0 there exists a polynomial hε ∈ R[x] such that

sup
x∈B

|λmin(x)− hε(x)| <
ε

2
.

Hence the polynomial pε := hε−ε satisfies λmin−pε > 0 on B and so vTP (x, u)v−pε > 0
on B × U × V. By Putinar’s Positivstellensatz, see e.g [10, Section 2.5], there exists
SOS polynomials rε, siε, tjε ∈ Σ[x, u, v] such that equation (5) is satisfied. Hence for d
sufficiently large, say d ≥ dε, (pε, rε, siε, tjε) is a feasible solution of (5) with associated
value ∫

B

(λmin(x)− pε(x)) dx ≤
3ε

2

∫

B

dx.

Hence 0 ≤ ρd ≤ 3ε
2

∫

B
dx whenever d ≥ dε where ρd is defined in (6). As ε > 0 was

arbitrary, we obtain the desired result

lim
d→∞

ρd = 0.

Observe that since gd ≤ λmin for all d,

ρd =

∫

B

(λmin(x)− gd(x)) dx =

∫

B

|λmin(x)− gd(x)| dx

so that the convergence ρd → 0 is just the convergence gd → λmin for the L1 norm on B.
Finally the convergence gd → λmin in Lebesgue measure on B follows from [1, Theorem
2.5.1].

(b) For each x ∈ B, fixed and arbitrary, the sequence (ḡd) is monotone nondecreasing and
bounded above by λmin. Therefore there exists g∗ : B → R such that for every x ∈ B,
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ḡd(x) ↑ g∗(x) ≤ λmin(x) as d → ∞. By Lebesgue’s Dominated Convergence Theorem [1,
§1.6.9] ∫

B

g∗(x)dx = lim
d→∞

∫

B

ḡd(x)dx =

∫

B

λmin(x)dx,

and so from g∗(x) ≤ λmin(x) we deduce that g∗(x) = λmin(x) for almost all x ∈ B.
Combining the latter with ḡd ↑ g∗, we obtain that ḡd → λmin almost everywhere in B.
But then since the Lebesgue measure is finite on B, by Egoroff’s theorem [1, Theorem
2.5.5], ḡd → λmin almost uniformly in B. Finally, convergence in Lebesgue measure on B
also follows from [1, Theorem 2.5.2]. �

6.4 Proof of Corollary 1

Proof: By Theorem 1, limd→∞ ‖λmin − gd‖1 = 0. Therefore, by [1, Theorem 2.5.1] the
sequence (gd) converges to λmin in Lebesgue measure, i.e. for every ε > 0,

lim
d→∞

vol{x : |λmin(x)− gd(x)| ≥ ε} = 0. (20)

Let ε > 0 be fixed, arbitrary, and let Pε := {x ∈ B : λmin(x) ≥ ε}, so that limε→0 volPε =
volP. By (20), limd→∞ vol(Pε ∩ {x ∈ B : gd(x) < 0}) = 0. Next, for all d ∈ N,

volPε = vol(Pε ∩ {x ∈ B : gd(x) < 0}) + vol(Pε ∩ {x ∈ B : gd(x) ≥ 0}).

Therefore, taking the limit as d → ∞ yields

volPε = lim
d→∞

vol(Pε ∩ {x ∈ B : gd(x) < 0})
︸ ︷︷ ︸

=0 by (20)

+ lim
d→∞

vol(Pε ∩ {x ∈ B : gd(x) ≥ 0}
︸ ︷︷ ︸

=Gd

)

= lim
d→∞

vol(Pε ∩Gd) ≤ lim
d→∞

volGd.

As ε > 0 was arbitrary and Gd ⊂ P, we obtain the desired result (9). The proof of (10)
is similar. �

6.5 Proof of Corollary 2

Proof: Let 0 < ε < 1
3
be fixed, arbitrary. As in the proof of Theorem 1, for every k ∈ N

there exists a polynomial hk ∈ R[x] such that supx∈B |λmin(x) − hk(x)| < εk. Hence for
all x ∈ B and all k ≥ 1,

λmin(x)−3εk < hk(x)−2εk < λmin(x)−εk < λmin(x)−3εk+1 < hk+1(x)−2εk+1 < λmin(x)−εk+1

and so the polynomial x 7→ pk(x) := hk(x)− 2εk satisfies pk+1(x) > pk(x) and λmin(x) >
pk(x) for all x ∈ B. Again, by Putinar’s Positivstellensatz, see e.g [10, Section 2.5], pk is
feasible for (5) with the additional constraint (11), provided that d is sufficiently large,
and with associated value

∫

B

|λmin(x)− pk(x)|dx =

∫

B

(λmin(x)− pk(x))dx < 3εk
∫

B

dx → 0 as k → ∞.

�

18



References

[1] R. Ash. Real analysis and probability. Academic Press, Boston, USA, 1972.

[2] S. Barnett. Polynomials and linear control systems. Marcel Dekker, New York, USA,
1983.

[3] D. Henrion, D. Peaucelle, D. Arzelier, M. Šebek. Ellipsoidal approximation of the
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