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Abstract. In this paper, we show how to analyze bifurcation and limit
cycles for biological systems by using an algebraic approach based on tri-
angular decomposition, Gröbner bases, discriminant varieties, real solu-
tion classification, and quantifier elimination by partial CAD. The analy-
sis of bifurcation and limit cycles for a concrete two-dimensional system,
the self-assembling micelle system with chemical sinks, is presented in
detail. It is proved that this system may have a focus of order 3, from
which three limit cycles can be constructed by small perturbation. The
applicability of our approach is further illustrated by the construction
of limit cycles for a two-dimensional Kolmogorov prey-predator system
and a three-dimensional Lotka–Volterra system.

1 Introduction

Many physical and biological phenomena may be modeled mathematically by
dynamical systems. For most nonlinear dynamical systems, it is difficult to find
their exact analytical solutions (if such solutions exist at all). Therefore, to under-
stand the phenomenon described by a complex dynamical system, it is necessary
to study its behaviors such as stability, bifurcation, and limit cycles qualitatively.
The qualitative analysis of such behaviors is a highly nontrivial task and for bi-
ological systems it is often performed experimentally by means of numerical
simulation and visualization (see, e.g., [2]). Dynamical systems usually involve
parameters and their behaviors may change dramatically as the parameters vary.
Symbolic and algebraic computation provides powerful tools for rigorous quali-
tative analysis of dynamical systems with parameters.

We are concerned with biological phenomena that may be modeled by au-
tonomous systems of ordinary differential equations of the form

dx1

dt
= p1(λ, x1, . . . , xn), . . . . . . ,

dxn

dt
= pn(λ, x1, . . . , xn), (1.1)

where p1, . . . , pn are polynomials (or rational functions) in λ and x1, . . . , xn

with real coefficients and λ = λ1, . . . , λm are real parameters independent of the
derivation variable t. As usual, each xi is a function of t.
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For biological systems of the form (1.1) with p1, . . . , pn being rational func-
tions, it has been demonstrated in [15, 16, 23, 24] how their steady states can
be detected and how the stability of the steady states can be analyzed by us-
ing symbolic and algebraic computation. The technique of linearization used for
stability analysis there may fail at bifurcation points because near such points
the behavior of system (1.1) may differ qualitatively from that of its linearized
system and bifurcation may occur (see [10, 14, 29]). Even for autonomous sys-
tems there may be many different bifurcating situations, whose study requires
sophisticated mathematical methods and effective computational tools. Among
them there is one important situation, called Hopf bifurcation (or Andronov–
Hopf bifurcation). In this situation, the Jacobian matrix of system (1.1) has a
pair of purely imaginary eigenvalues but no other eigenvalue with zero real part.
Hopf bifurcation leads to the birth of limit cycles from a steady state of the dy-
namical system, when the steady state changes its stability via the movements
of the imaginary eigenvalues away from the imaginary axis.

The behavior of limit cycles (i.e., isolated periodic orbits) has been observed
in many physical and biological systems. The study of limit cycles is a subject of
active research and of great interest in pure mathematics for more than a cen-
tury. Determining the existence and the exact number of limit cycles is a difficult
problem even for planar autonomous polynomial differential systems. This prob-
lem is closely related to the longstanding 16th problem of D. Hilbert [8, 18, 20, 28,
29]. The analysis of bifurcation and limit cycles is not only a challenging problem
in the qualitative theory of dynamical systems, but also of practical value now
for our understanding of the qualitative behaviors of biological systems.

In this paper, we analyze bifurcation and construct limit cycles for a con-
crete two-dimensional (planar) system, the self-assembling micelle system with
chemical sinks [2], by using an algebraic approach based on triangular decom-
position [21, 25], Gröbner bases [3, 9], discriminant varieties [11], real solution
classification [27], and quantifier elimination by partial CAD [6]. The stability
and bifurcation for this biological system have been analyzed initially in [16],
where our general algebraic approach is described in generality. Here we show
that this system may have a focus of order 3, from which three limit cycles can be
constructed by small perturbation. The applicability of our approach is further
illustrated by the construction of limit cycles for a Kolmogorov prey-predator
system and a Lotka–Volterra system. The paper is structured as follows. In the
following section, we explain how bifurcation and limit cycles for planar au-
tonomous systems may be analyzed by using algebraic methods. The analysis
of bifurcation and the construction of limit cycles for the self-assembling micelle
system with chemical sinks are presented in detail in Section 3. Section 4 con-
tains the results of analysis of bifurcation and limit cycles for the two-dimensional
cubic Kolmogorov prey-predator system and the competitive three-dimensional
Lotka–Volterra system. The paper concludes with a few remarks in Section 5.

Prior to the algebraic analysis of bifurcation investigated by the authors
[16], other relevant work has been done by El Kahoui and Weber [7] who applied
quantifier elimination [6] to Hopf bifurcation analysis, by Lu and others in [12,



3

13] where limit cycles for a class of biological systems are analyzed by using
similar algebraic approaches, and by other researchers in the purely mathemati-
cal context of bifurcation and limit cycles (see, e.g., [8, 18, 19]). Hopf bifurcation
analyzed in the mathematical context is usually for systems in the canonical
form with the origin as their steady state. The biological systems with param-
eters that we need to analyze are not given in such a form. Transformation of
the systems to the canonical form results in complicated expressions and the
introduction of new variables and thus increases the computational complexity
for the subsequent algebraic analysis considerably.

2 Bifurcation Analysis for Two-dimensional Systems

In this section, we consider the case of Hopf bifurcation for n = 2 in which limit
cycles may bifurcate. In this case, the characteristic polynomial of the Jacobian
matrix of system (1.1) at a steady state has a pair of purely imaginary roots and
the differential system is known as of center-focus type.

Let n = 2, the variables x1 and x2 be renamed x and y, (x̄, ȳ) be a steady
state of system (1.1), and J̄ be the Jacobian matrix

[
a(λ, x, y) b(λ, x, y)
c(λ, x, y) d(λ, x, y)

]

of (1.1) at (x̄, ȳ). Then the characteristic polynomial of J̄ has a pair of purely
imaginary roots only if (x̄, ȳ) satisfies the conditions

a + d = 0, −a2 − bc > 0. (2.1)

The problems of deciding whether the steady states of system (1.1) without
parameters satisfy the conditions (2.1) and determining the conditions on the
parameters λ (when they are present) for the steady states of (1.1) to satisfy
(2.1) may be solved by using algebraic methods based on quantifier elimination
[6], real solution classification [27], and discriminant varieties [11].

Now assume that the conditions (2.1) are satisfied. We want to analyze the
bifurcation and limit cycles for system (1.1) with n = 2. In the literature there are
several methods for studying this problem [8], e.g., by using Poincaré–Birkhott
normal forms, Liapunov constants, succession functions, averaging, and intrinsic
harmonic balancing. To deal with the problem, we make a linear transformation

x = −1
c
Y − a

cδ
X + x̄, y = −1

δ
X + ȳ, t =

τ

δ
, (2.2)

where δ =
√−a2 − bc. Then system (1.1) with n = 2 is transformed into the

following canonical form

dX

dτ
= Y + P (λ, δ, x̄, ȳ, X, Y ),

dY

dτ
= −X + Q(λ, δ, x̄, ȳ, X, Y ), (2.3)

where P and Q are polynomials in Q(λ, δ)[x̄, ȳ, X, Y ] and Q denotes the field of
rational numbers.
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According to Liapunov’s theorem [14, 29], if one can construct an analytic
function L(X, Y ) ∈ Q(λ, δ)[x̄, ȳ, X, Y ], called a Liapunov function, such that
L(X, Y ) is positive in the neighborhood of a steady state and the differential of
L(X, Y ) along the integral curve of the differential system is definite, then the
stability of the steady state can be determined by the sign of the differential. In
[20], Wang described a procedure based on the classical method of J. H. Poincaré
for constructing such a function for (2.3). Using this procedure, one can compute
so-called Liapunov constants (or focal values) v3, v5, . . . , v2j+1, . . . in λ, δ, x̄, ȳ
such that the differential L(X, Y ) along the integral curve of (2.3) is of the form

dL(X, Y )
dτ

= v3Y
4 + v5Y

6 + · · ·+ v2j+1Y
2j+2 + · · · .

Then the stability of the steady state (0, 0) for system (2.3) and thus (x̄, ȳ) for
system (1.1) is determined by the sign of dL/dτ and therefore by the sign of
the first nonzero Liapunov constant v2k+1. Namely, we have the following simple
criteria.

Theorem 1 ([20, 29]). For any given parametric values λ̄ of λ and steady state
(x̄, ȳ) = (x̄1, x̄2) of system (1.1) with n = 2,

(a) if there is an integer k ≥ 1 such that v3 = · · · = v2k−1 = 0 but v2k+1 6= 0, then
(x̄, ȳ) is unstable when v2k+1 > 0, and asymptotically stable when v2k+1 < 0;

(b) if v2j+1 = 0 for all j = 1, 2, . . ., then (x̄, ȳ) is stable of center type, but not
asymptotically stable.

In case (a), the steady state (x̄, ȳ) of system (1.1) is said to be a focus of
order k. In case (b), (x̄, ȳ) is said to be a center of (1.1). By Theorem 1 (a), the
problem of determining the stability of a focus is reduced to that of determining
the signs of the Liapunov constants and thus may be solved by using the algebraic
methods mentioned above.

It is possible to construct limit cycles in the neighborhood of a focus (so-called
small-amplitude limit cycles) by perturbation. According to the fundamental
theorem on bifurcation and limit cycles [1, p. 239], if the steady state (0, 0) of
(2.3) is a focus of order k, then by perturbing (2.3), k small-amplitude limit
cycles near (0, 0) may bifurcate. To construct such limit cycles, one needs to find
the real solutions of v3 = · · · = v2k−1 = 0, v2k+1 6= 0. This may be done by
a combination of the methods and software tools of triangular decomposition,
Gröbner bases, and real solving. When a real solution is found, one may perturb
the system so that the Liapunov constants of the perturbed system have alternate
signs, i.e., vivi+2 < 0 for i = 3, . . . , 2k + 1 in the neighborhood of (0, 0). Then k
(and at most k) small-amplitude limit cycles may be created from the focus.

Determining necessary and sufficient conditions for (0, 0) to be a center from
the computed Liapunov constants is a tougher issue because the conditions in
Theorem 1 (b) are given by infinitely many equalities (in a finite number of vari-
ables). It may be tackled by using algebraic computation (as shown in the exten-
sive literature on the derivation of center conditions, see, e.g., [22, Sect. 10.3])
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together with some sophisticated mathematical techniques. The main difficulty
in deriving center conditions and searching for differential systems having foci
of high order from Liapunov constants comes from the large polynomials that
cannot be effectively managed even on a powerful computer.

3 Bifurcation and Limit Cycles for Self-assembling
Micelle Systems with Chemical Sinks

Consider the following dissipative dynamical system studied in [2, 16]:

dx

dt
= µ− xy2 − x(r + α) = p,

dy

dt
= rx + xy2 − ηy = q. (3.1)

The rate coefficients α and η represent combined quantities that include a com-
mon flow-rate component as well as separate chemical sink-rates for each species,
and µ and r are intrinsic parameters.

We want to derive conditions for system (3.1) to be of center-focus type and
for its foci to be stable and to construct small-amplitude limit cycles by means
of bifurcation analysis.

3.1 Bifurcation Analysis

To determine the conditions under which system (3.1) is of center-focus, we first
compute the purely lexicographical (plex) Gröbner basis of {p, q} with y ≺ x:
the basis consists of two polynomials

g1 = ηy3 − µy2 + rηy + αηy − rµ, g2 = αx + ηy − µ.

The system g1 = 0, g2 = 0 has real solutions for any parametric values of µ, r,
and α 6= 0, η 6= 0. Therefore, for αη 6= 0 system (3.1) always has steady states.
Let αη 6= 0 and ȳ = w be a real root of g1. Then x̄ = (µ− ηw)/α is a real root
of g2. The Jacobian matrix of (3.1) at (x̄, ȳ) is

[
a b
c d

]
=


−(w2 + r + α) − 2 w(µ−ηw)

α

r + w2 2 w(µ−ηw)
α − η


 .

System (3.1) becomes of center-focus type when

f1 = αw2 + 2 ηw2 − 2 µw + rα + αη + α2 = −(a + d)α = 0,

f = (α− η)w2 − rη + rα + α2 = a2 + bc + (a + d)(r + w2) < 0.

Note that
f2 = g1|y=w = ηw3 − µw2 + rηw + αηw − rµ = 0.

From f1 = f2 = 0, f < 0 and by using the Maple package DISCOVERER (devel-
oped by B. Xia, see http://www.is.pku.edu.cn/˜xbc/software.html) or DV (de-
veloped by G. Moroz and F. Rouillier, see http://fgbrs.lip6.fr/Software/DV/),
one can obtain conditions (CF) in the parameters η, µ, r, α for (3.1) to be of
center-focus type, under which limit cycles may bifurcate from (x̄, ȳ). The con-
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ditions (CF) are quite complicated and we do not produce them here. It may
also be proved easily (e.g., by using DISCOVERER) that, if η = α, then there
are no real values of µ, r, α 6= 0 that satisfy (CF). This confirms the conclusion
in [2] that Hopf bifurcations are absent and (CF) hold only for non-physical
values of α in this case. However, there do exist real values of µ, r, η, α such that
0 6= η 6= α 6= 0 and (CF) hold, as we will see clearly below.

Under the conditions (CF), system (3.1) may be transformed by (2.2) into
the following canonical form

dX

dτ
= Y +

δ

α
Q,

dY

dτ
= −X + Q, (3.2)

corresponding to (2.3), where δ =
√−f and

Q =
γ

(r + w2)δ3
X2 − 2 αw

(r + w2)δ2
XY − α(r + α + w2)

(r + w2)δ4
X3 +

α

(r + w2)δ3
X2Y,

γ = 2 αw3 + ηw3 − µw2 + 2 α2w + 2 rαw + rηw − rµ.
(3.3)

The Liapunov constants of (3.2) may be computed by the function miscel[licon]

from the Epsilon library [22] (see http://www-calfor.lip6.fr/˜wang/epsilon). The
first Liapunov constant is

v3 =
α

3 (r + w2)δ3
− r + α + w2

(r + w2)δ3
− 2 αwγ

3 (r + w2)2δ5
+

2 wγ

3 α(r + w2)2δ3

+
2 γ2

3 α(r + w2)2δ5
,

whose numerator v̄3, when expanded, has 34 terms. The numerators v̄5, . . . , v̄13 of
the subsequent 5 Liapunov constants v5, . . . , v13 consist of 384, 1969, 6616, 17504,
39467 terms and are of total degrees 18, 28, 38, 48, 58 in the variables η, r, α, w, δ, µ,
respectively.

Let us first take η = 1 as in [2]. We want to determine real values of r, α
and µ such that a + d = 0, a2 + bc < 0, v3 = v5 = 0 but v7 6= 0, so that
the steady state (0, 0) of (3.2) is a focus of order 3. For this purpose, we first
compute the plex Gröbner basis G of {f1, f2, δ

2 + f, v̄3, v̄5} under the variable
order r ≺ α ≺ w ≺ δ ≺ µ using the Groebner package in Maple. It is found that
the first polynomial in G may be factorized as

α r7(4 r + 1)2(24 r − 1)2(16 r2 − 24 r + 1) h, (3.4)

where
h = 1474560 r7 − 3997696 r6 + 4549632 r5 − 4503808 r4

− 4966528 r3 − 928256 r2 − 24396 r + 2025.

Since all the physical parameters are required to be positive, we can assume that
αδ 6= 0 and r > 0, so the factors α, r, 4 r + 1 in (3.4) need not be considered.
Let z be a new indeterminate and fix the order for the variables as r ≺ α ≺
w ≺ δ ≺ µ ≺ z. The reduced plex Gröbner bases of both G ∪ {24 r− 1, zαδ − 1}
and G ∪ {16 r2 − 24 r + 1, zαδ − 1} are equal to {1}, so the factors 24 r − 1 and
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16 r2−24 r+1 need not be considered either. The technique used here to exclude
the case αδ = 0 by introducing z and adding the equation zαδ − 1 is standard
and known as Rabinowich’s trick.

Now compute the plex Gröbner basis G∗ of G ∪ {h, zαδ − 1} with respect
to the above variable order: G∗ consists of 6 polynomials, of which the first is
h. The set of zeros of G∗ covers all the zeros (r̄, ᾱ, µ̄, w̄, δ̄) of G with r̄ > 0 and
ᾱδ̄ 6= 0. Isolating the real zeros of G∗ using the Maple package RS (developed
by F. Rouillier, see http://fgbrs.lip6.fr/˜roullier/Software/RS/), we find that G∗
has 8 real zeros. Among these zeros there is one and only one (r̄, ᾱ, µ̄, w̄, δ̄) for
which r̄, ᾱ, µ̄, w̄, δ̄ are all positive. For this positive zero, we have

r̄ ≈ 0.033247029312587, ᾱ ≈ 0.347417369934422,

µ̄ ≈ 1.165669793409291, w̄ ≈ 0.702121202169318.
(3.5)

It may be easily verified by using RS that the real zero (r̄, ᾱ, µ̄, w̄) satisfies f < 0,
and that for η = 1 and (r, α, µ) = (r̄, ᾱ, µ̄), v3 = 0, v5 = 0 and v7 < 0. Therefore,
the steady state

(x̄, ȳ) =
(

µ̄− w̄

ᾱ
, w̄

)
≈ (1.334270049098212, 0.702121202169318) (3.6)

is an asymptotically stable focus of order 3 and thus three limit cycles may
bifurcate from (x̄, ȳ) for system (3.1) with small perturbation.

Theorem 2. For η = 1, there is one and only one set of positive values r̄, ᾱ, µ̄
as shown in (3.5) for the parameters r, α, µ such that system (3.1) has a focus
of order 3. This focus is located at (x̄, ȳ) = ((µ̄− w̄)/ᾱ, w̄) and is asymptotically
stable, where w̄ is as in (3.5).

In the next subsection, we will show how to construct a perturbed polynomial
differential system of (3.2) that has three small-amplitude limit cycles near (0, 0).

3.2 Construction of Limit Cycles

To construct small-amplitude limit cycles, let us consider the following perturbed
system of (3.2):

dX

dτ
= λX + Y +

δ

α
Q1,

dY

dτ
= −X + λY + Q2, (3.7)

where

Q1 =
γ

(r + w2)δ3
X2 − 2 αw

(r + w2)δ2
XY − α(r + α + w2)

(r + w2)δ4
X3

+
[

α

(r + w2)δ3
+ ω

]
X2Y,

Q2 =
γ

(r + w2)δ3
X2 − 2 αw

(r + w2)δ2
XY −

[
α(r + α + w2)

(r + w2)δ4
+ ξ

]
X3

+
[

α

(r + w2)δ3
+ θ

]
X2Y,
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and γ is as in (3.3). The first three Liapunov constants of (3.7) computed by the
Epsilon function miscel[licon] are as follows:

v3|λ=0 =
θ

3
+

Γ1

3 αδ5(r + w2)2
,

where Γ1 consists of 34 terms and is of total degree 8 in the variables r, α, w, δ, µ;

v5|λ=0, θ=0 =
Γ2ω + Γ3ξ + Γ4

45 α3δ11(r + w2)4
,

where Γ2, Γ3, Γ4 consist of 62, 62, 384 terms and are of total degrees 15, 15, 12
in r, α, w, δ, µ, respectively;

v7|λ=0, θ=0, ω=0 =
Γ5ξ

2 + Γ6ξ + Γ7

1890 α5δ17(r + w2)6
,

where Γ5, Γ6, Γ7 consist of 90, 581, 1969 terms and are of total degrees 25, 22, 19
in r, α, w, δ, µ, respectively.

Obviously, if λ = θ = 0, then v3 = 0, so Γ1 = 0. Thus we may use Γ1 to
reduce the numerator v̄5 of v5|λ=0, θ=0 to obtain a remainder R5 (which consists
of 80 terms and is of total degree 20 in r, α, w, δ, µ, ω, ξ) such that v̄5 = U5Γ1+R5

for some U5. Similarly, we can use Γ1 to reduce the numerator of v7|λ=0, θ=0, ω=0

to get a remainder R7, which consists of 348 terms and is of total degree 20 in
r, α, w, δ, µ, ξ.

Note that r > 0, α > 0, δ > 0, w > 0, µ > 0 and Γ1 vanishes at any zero of
G∗. So one can choose −1 ¿ θ < 0, such that v3 < 0. Next, we determine the
condition on ω and ξ such that G∗ = 0 and R5 > 0. Using the DV package, we
compute a minimal discriminant variety ∆1(ω, ξ) of G∗ = 0, R5 6= 0. By means of
partial CAD, we can obtain 18 cells of the two-dimensional real space R2 of ω, ξ
decomposed by ∆1 = 0. Choosing one sample point in each cell and computing
the sign of R5 at each sample point, we find that under the assumption r > 0,
α > 0, δ > 0, w > 0, µ > 0, |ξ| < 1, if ω < 3/32, then R5 > 0. Finally, we
determine the condition on ξ such that G∗ = 0 and R7 < 0. Using the DV
package, we compute a minimal discriminant variety ∆2(ξ) of G∗ = 0, R7 6= 0:
∆2 has 10 real zeros ξ1 < · · · < ξ10, which divide the real space R of ξ into 11
intervals. We choose one sample point in each interval, compute the sign of R7

at each sample point, and thus find that, under the assumption r > 0, α > 0,
δ > 0, w > 0, µ > 0, if ξ3 < ξ < ξ10, then R7 < 0, where

ξ3 ∈
[
−2845043675

4294967296
,−22760349399

34359738368

]
, ξ10 ∈

[
2379513075
67108864

,
19036104601
536870912

]
.

Therefore, if we choose sufficiently small values for the perturbation variables
successively such that

0 < λ ¿ −θ ¿ |ω| ¿ |ξ| ¿ 3/32, (3.8)

then the Liapunov constants of (3.7) have alternate signs, i.e.,

v1 = λ > 0, v3 < 0, v5 > 0, v7 < 0.

In this case, the stability of the focus (x̄, ȳ) of (3.7) turns over three times



9

and thus three limit cycles in a small neighborhood of (x̄, ȳ) can bifurcate. The
creation of small-amplitude limit cycles by choosing sufficiently small values for
the perturbation variables to change the stability of a focus is a typical technique
in bifurcation theory (see [18], [28, pp. 214–215], and [29, pp. 272–273]).

Theorem 3. Three limit cycles may bifurcate in the neighborhood of (x̄, ȳ) for
system (3.1) with (η, r, α, µ) = (1, r̄, ᾱ, µ̄) and small perturbation, where x̄, ȳ, r̄,
ᾱ, µ̄ are as in (3.6) and (3.5). The perturbed differential system (3.7) of (3.2)
remains polynomial and the perturbation variables λ, θ, ω, ξ may take sufficiently
small values satisfying (3.8).

3.3 Conditions for the Existence of Foci

Condition for (3.1) to have a focus of order 3. It has been shown in
Section 3.1 that if η = 1, then system (3.1) may have a focus of order 3. Now we
want to derive the condition on η for system (3.1) to be of center-focus type and
have a (positive) focus of order 3. This can be done by deriving the condition
on η such that a + d = 0, a2 + bc < 0, v3 = v5 = 0, v7 6= 0, r > 0, α > 0,
µ > 0, w > 0. To do so, we compute a minimal discriminant variety V of f1 = 0,
f2 = 0, f + δ2 = 0, v̄3 = 0, v̄5 = 0, v̄7 6= 0, r 6= 0, α 6= 0, µ 6= 0, w 6= 0, δ 6= 0
(where v̄i is the numerator of vi for i = 3, 5, 7) using DV and check the signs of
the polynomials at the sample points of the cells of R decomposed by V . It is
then found that for any positive value of η, the semi-algebraic system a+ d = 0,
a2 + bc < 0, v3 = 0, v5 = 0, v7 6= 0, r > 0, α > 0, µ > 0, w > 0 has at least one
real solution for (r, α, µ, w).

Theorem 4. For any positive value of η, there exists at least one set of positive
values for the parameters r, α, µ such that system (3.1) is of center-focus type
and has a positive focus of order 3.

Absence of focus of order 4 for (3.1). Finally, we show that system (3.1)
does not have any focus of order greater than 3 and thus one cannot construct 4
small-amplitude limit cycles from a focus by perturbation. For this end, we do not
take any values for the parameters in (3.1). We want to decide whether there exist
real values of r, α, µ, η such that a+d = 0, a2 + bc < 0, and v3 = v5 = v7 = 0, so
that the steady state (0, 0) of (3.2) is a center or a focus of order greater than 3.

Assume that αδηr 6= 0. We compute the plex Gröbner basis G of {f1, f2, δ
2 +

f, v̄3, v̄5, v̄7, zαδηr − 1} under the variable order r ≺ α ≺ w ≺ δ ≺ µ ≺ η ≺
z using FGb, an efficient Gröbner basis package developed by Faugère (see
http://fgbrs.lip6.fr/jcf/Software/FGb): the basis is {1}. This implies that the
system a + d = 0, a2 + bc < 0, v3 = 0, v5 = 0, v7 = 0, r 6= 0, α 6= 0, η 6= 0 has no
solution for r, α, µ, η, so the following result is proved.

Theorem 5. There are no nonzero values for the parameters r, α, µ, η such that
system (3.1) is of center-focus type and has a center or a focus of order greater
than 3.

It follows from this theorem that for system (3.1) one cannot construct more
than 3 small-amplitude limit cycles near a focus by perturbation.
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4 Bifurcation and Limit Cycles for Kolmogorov
Prey-predator and Lotka–Volterra Systems

4.1 Cubic Kolmogorov Prey-predator System

To illustrate the applicability of our approach, in this subsection we discuss
briefly the analysis of another two-dimensional biological system, the cubic Kol-
mogorov prey-predator system constructed and analyzed by Lu and He in [12]
using similar algebraic methods. The system is of the form

dx

dt
= x (−2− a0 + a1 + a0x− 2 a1x + y + a1x

2 + xy),

dy

dt
= y (2 + a2 − x− y − 2 a2y + a2y

2).
(4.1)

This system has a positive steady state (x̄, ȳ) = (1, 1) and it becomes of center-
focus type when a0 = 0. Under the condition a0 = 0, system (4.1) may be
transformed by a simple linear transformation x = Y + X + 1, y = −X + 1 into
the following canonical form

dX

dt
= Y − a2X

2 −XY + a2X
3,

dY

dt
= −X − (2− a1 − a2)X2 + 2 a1XY + (1 + a1)Y 2 − (1− a1 + a2)X3

− (2− 3 a1)X2Y − (1− 3 a1)XY 2 + a1Y
3.

(4.2)
By computing the Liapunov constants v3, v5, v7 of (4.2) and isolating the real
zeros of {v3, v5}, we can determine (a1, a2) ≈ (0.08020305719, 0.2955574645)
such that v3 = v5 = 0 and v7 < 0; in this case the steady state (1, 1) is an
asymptotically stable focus of order 3.

We can perturb (4.2) by adding λX to the first equation and λY to the
second equation, and substituting a1 with a1 + ω and a2 with a2 + ξ. Then,
compute the Lipunov constants v3, v5, v7 of the perturbed system and use DV
to derive conditions on ξ and ω such that v3 < 0, v5 > 0, v7 < 0 as we have
done in Section 3.2. In this way, we find that, if the perturbation variables take
sufficiently small values such that

−0.001 < ξ ¿ ω ¿ −λ < 0,

then the Liapunov constants of the perturbed system have alternate signs, i.e.,

v1 = λ > 0, v3 < 0, v5 > 0, v7 < 0.

In this case, the stability of the focus (1, 1) turns over three times and thus three
limit cycles may bifurcate in a small neighborhood of (1, 1). This conclusion
confirms the result given in [12].

4.2 Bifurcation and Limit Cycles for High-dimensional Systems

Many biological systems are high-dimensional (e.g., of the form (1.1) with n >
2). The analysis of bifurcation and limit cycles for such systems is much more
difficult. Some theorems and methods such as the generalized Poincaré–Bendixon
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theorem and the describing function method may be applied for the analysis (see,
e.g., [17]), but they are applicable only to certain high-dimensional systems. The
methods of center manifold [4, 10] and Liapunov–Schmidt reduction [5] allow
one to reduce any system of dimension n > 2 to a planar system without losing
any significant aspect of the dynamic characters. These methods in combination
with the method for planar systems presented in Section 2 can be used for the
algebraic analysis of bifurcation and limit cycles for high-dimensional systems.
Here we use the method of center manifold, which is convenient for our treatment
of planar systems using Liapunov constants.

To perform reduction, we need the condition under which the Jacobian ma-
trix J of system (1.1) has a pair of purely imaginary eigenvalues and all the
other eigenvalues with negative real parts. Such a condition may be given in
terms of the Hurwitz determinants and the constant term of the characteristic
polynomial of J according to a simple criterion established by El Kahoui and
Weber [7]. The criterion was derived for an arbitrary univariate polynomial A
to have one pair of purely imaginary roots and all the other roots with neg-
ative real parts by linking the Hurwitz determinants ∆i of A to the principal
subresultant coefficients of A2 and A1, where A1(λ2) + λA2(λ2) = A(λ), and
by investigating the behavior of ∆i in the case where A has symmetric roots.
Under the condition determined by using El Kahoui and Weber’s criterion [7,
Theorem 3.6], we can transform system (1.1) to a system of special form and
then reduce the transformed system to a two-dimensional system of center-focus
type by using the center manifold theorem. We will see how the reduction pro-
ceeds from the example in the following subsection. Bifurcation and limit cycles
for the obtained two-dimensional system may be analyzed by using the method
explained in Section 2.

4.3 Competitive Three-dimensional Lotka–Volterra System

In this subsection, we use a competitive three-dimensional Lotka–Volterra system
(which models three mutually competing species) to illustrate the analysis of
bifurcation and limit cycles by using the center manifold theorem and algebraic
methods. The system has the form

dx1

dt
= x1 [(1− x1) + (1− x2) + (1− x3)],

dx2

dt
= x2 [(1− x1) + (1− x2) + 2 (1− x3)],

dx3

dt
= x3 [µ1 (1− x1) + µ2 (1− x2) + 3 (1− x3)],

(4.3)

where µ1 and µ2 are two real parameters. This system has been studied in [26,
13] (see also [17]) and it has a unique positive steady state (1, 1, 1).

By using the transformation x = x1−1, y = x2−1, z = x3−1 and rewriting
the transformed system of (4.3) in the vector form, we obtain

dx

dt
= DA x, (4.4)
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where

x =




x
y
z


 , D =




1 + x
1 + y

1 + z


 , A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

The Jacobian matrix of (4.3) at (1, 1, 1) is the same as A. It is not difficult to
prove that the characteristic polynomial of A has a negative real root and a pair
of purely imaginary roots if and only if

det(A) = (A11 + A22 + A33) tr(A) < 0, (4.5)

where
tr(A) = a11 + a22 + a33, A11 = a22a33 − a23a32,

A22 = a11a33 − a13a31, A33 = a22a11 − a12a21.

Condition (4.5) is equivalant to

10− 3 µ2 − 2 µ1 = 0, µ2 − µ1 < 0.

Under this condition and substituting 5− 3
2µ2 for µ1, we may construct a trans-

formation matrix T according to the method described in [13], and system (4.3)
may be transformed by the transformation Tx → x into the following form

dx

dt
= −3 (µ2 − 2)

2 (µ2 − 4)
x− 2 µ2 − 5

µ2 − 4
y + l1(x, y, z, µ2),

dy

dt
= − (µ2 − 10)(µ2 − 2)

4 (µ2 − 4)
x +

3 (µ2 − 2)
2 (µ2 − 4)

y + l2(x, y, z, µ2),

dz

dt
= −5 z + l3(x, y, z, µ2),

(4.6)

where li(x, y, z, µ2) are the terms nonlinear in x, y, z. Then by the center man-
ifold theorem [10, p. 152], we may analyze the bifurcation and limit cycles for
system (4.6) on a two-dimensional center manifold. The center manifold up to
approximation of order k can be described as

z = Ψ(x, y) =
k∑

i=2

i∑

j=0

cijx
i−jyj + h.o.t., (4.7)

where h.o.t. denotes the terms of higher order (> k). It follows that

dz

dt
=

∂Ψ

∂x

dx

dt
+

∂Ψ

∂y

dy

dt
. (4.8)

To compute for instance the first two Liapunov constants of the two-dimensional
system (to be determined), we need to consider the center manifold up to quartic
approximation. Substituting

dz

dt
= −5 z + l3(x, y, z, µ2) with z =

4∑

i=2

i∑

j=0

cijx
i−jyj

into (4.8) and comparing the coefficients of the two sides of the two equations in
x, y,dx/dt,dy/dt, we obtain a system of linear equations in cij (i = 2, . . . , 4, j =
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0, . . . , 2). Then cij may be found as rational functions c̄ij of µ2, which are quite
complicated (for example, the numerator and the denominator of c̄20 both consist
of 29 terms and are of degree 28 in µ2). Substituting z = Ψ(x, y)|cij=c̄ij into the
first two equations in (4.6) results in a two-dimensional system of center-focus
type. This system may be further transformed to the canonical form by the linear
transformation

x =
4 (µ2 − 4)

(µ2 − 10)(µ2 − 2)
Y − 6

(µ2 − 10) δ
X, y = −1

δ
X, t =

τ

δ
,

where δ =
√
−µ2/2 + 1. Then by using the Epsilon function miscel[licon], we

can compute the first two Liapunov constants v3 and v5 of the two-dimensional
system in the canonical form.3 The numerators v̄3, v̄5 of v3, v5 and the denomi-
nator of v5 consist of 44, 197 and 35 terms and are of total degrees 16, 39 and 45
in δ, µ2, respectively. Computation using RS shows that {v̄3, δ

2 + µ2/2− 1} has
7 isolated real zeros for (µ2, δ). Let the physical parameters µ2 and µ1 = 5− 3

2µ2

be assumed positive. Then there are two real values µ̄′2 and µ̄′′2 for µ2 such that
det(A) < 0, where

µ̄′2 ∈
[
12946800109
8589934592

,
25893600219
17179869184

]
= I, µ̄′′2 =

8
5
.

It is easy to verify by using RS that v̄3 = 0, v5 > 0 at µ̄′2, v3 < 0 at the right end
of I, and the denominator of v3 has no real root in I. Therefore, the steady state
(1, 1, 1) is unstable and one can perturb µ̄′2 slightly to µ̄∗2 for µ2 such that v3 < 0,
while v5 > 0 remains true, so that one limit cycle bifurcates. Next, perturb
5 − 3

2 µ̄∗2 slightly to µ̄∗1 for µ1 such that v3 < 0, v5 > 0 remain true, while the
real part of the two conjugate complex eigenvalues of the Jacobian matrix of the
two-dimensional system becomes positive. Then the second limit cycle bifurcates.
Our construction of two limit cycles here is similar to the constructions in [13].

For the other value µ̄′′2 = 8/5 of µ2, det(A) < 0 and v3 = v5 = 0, so the
steady state is likely to be a center (see [26]).

Analysis of bifurcation and limit cycles for high-dimensional systems by us-
ing the method of center manifold involves complicated calculations and the
produced planar systems are usually large, so the Liapunov constants become
very large and unmanageable. For example, to construct three small-amplitude
limit cycles for a three-dimensional Lotka–Volterra system one needs to com-
pute the first three Liapunov constants and thus the center manifold needs to
be approximated up to order 6. In this case, the computation of the Liapunov
constants of the produced planar system even becomes rather difficult.

3 Most of the computations discussed in this paper were performed step by step on a
laptop T2400 with 2 CPUs, 1.83 GHz and 987 MHz, and 2 GB RAM. Some of them
were verified by using different software tools. Each successful step of computation
usually takes no more than a few minutes. However, the computation of v5 here
requires nearly one hour.
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5 Concluding Remarks

In this paper, we have shown how to analyze bifurcation and limit cycles for two
biological systems of dimension 2 and another of dimension 3 using an algebraic
approach based on the methods of triangular decomposition, Gröbner bases,
discriminant varieties, real solution classification, and quantifier elimination by
partial CAD. Several efficient software packages including Epsilon, FGb, RS, DV,
and DISCOVERER in which some of these algebraic methods are implemented
have been used for the involved symbolic computations with semi-algebraic sys-
tems. The analysis of bifurcation and limit cycles is presented in detail for the
cubic self-assembling micelle system with chemical sinks and briefly for the cubic
Kolmogorov prey-predator system, both two-dimensional. It is proved that the
self-assembling micelle system may have a focus of order 3, from which three limit
cycles can be constructed by small perturbation, but this system cannot have
a focus of order greater than 3. Bifurcation analysis for the competitive Lotka–
Volterra system is carried out by using the method of center manifold that re-
duces the three-dimensional system to a two-dimensional one. Two limit cycles
are then constructed from the determined focus of order 2 by small perturbation.

The investigations described in this paper illustrate the applicability and
limitation of our algebraic approach for the analysis of bifurcation and limit
cycles for biological systems. This approach uses exact symbolic computation
and ensures that all the obtained results are mathematically rigorous. It is a
useful alternative to the experimental approach based on numerical simulation
and visualization.

Although the algebraic methods underlying our approach have been well de-
veloped and are powerful, it is well known that symbolic computations involved
in these methods are very heavy in general. How to improve the methods by
introducing new and specialized algebraic techniques, how to use them to an-
alyze bifurcation and limit cycles for high-dimensional biological systems more
effectively, and how to deal with biological systems of the form (1.1) with pi be-
ing rational or other functions are some of the questions that remain for future
research.
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