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Abstract. In this article, we focus on the analysis of discrete versions of the
Calderón problem in dimension d ≥ 3. In particular, our goal is to obtain stability
estimates for the discrete Calderón problems that hold uniformly with respect to
the discretization parameter. Our approach mimics the one in the continuous
setting. Namely, we shall prove discrete Carleman estimates for the discrete
Laplace operator. A main difference with the continuous ones is that there, the
Carleman parameters cannot be taken arbitrarily large, but should be smaller
than some frequency scale depending on the mesh size. Following the by-now
classical Complex Geometric Optics (CGO) approach, we can thus derive discrete
CGO solutions, but with limited range of parameters. As in the continuous case,
we then use these solutions to obtain uniform stability estimates for the discrete
Calderón problems.

Keywords Calderón problem, stability estimate, Carleman estimate, CGO solution,
discrete stability estimate

AMS classification scheme numbers: 65N21,49N45



Uniform stability estimates for the discrete Calderón problems 2

1. Introduction

The Calderón problem, or Electrical Impedance Tomography, amounts to retrieving
the potential q and the conductivity σ from the knowledge of the current-to-voltage
map on the boundary on a domain.

To be more precise, let Ω be a smooth bounded domain of R
d. Given a

conductivity σ and a potential q, we define the operator Λ[σ, q] : H1/2(∂Ω) →
H−1/2(∂Ω), the so-called Dirichlet-to-Neumann map, by

Λ[σ, q](g) = σ∇u[σ, q] · n|∂Ω,

where u[σ, q] solves the elliptic problem

div(σ∇u) + qu = 0 in Ω and u = g on ∂Ω. (1.1)

The Calderón problem is then the following: Given Λ[σ, q], can we find the
conductivity σ and the potential q? Of course, the first question to be solved is
the so-called uniqueness: is the map (σ, q) �→ Λ[σ, q] injective?

Note that here, the knowledge of the Dirichlet-to-Neumann map amounts to know
the answer of the system (1.1) to any boundary data g ∈ H1/2(∂Ω).

Before recalling the known results on the above Calderón problem, let us point
out the by-now well known fact that when σ is a scalar, the Liouville transform allows
us to rewrite the Calderón problem as follows: Given the map Λ[1, q] : H1/2(∂Ω) →
H−1/2(∂Ω), that is the map defined by

Λ[1, q](g) = ∂nu[q]|∂Ω,

where u[q] is the solution of

Δu + qu = 0 in Ω and u = g on ∂Ω, (1.2)

can we reconstruct q?
In the sequel, we shall focus on this very precise Calderón problem, based on the

Laplace operator in (1.2). Therefore, from now on, we shall denote Λ[1, q] by Λ[q]
without any confusion.

Of course, here again, the uniqueness is the first question to ask, that is the study
of the injectivity of the map Λ : q �→ Λ[q], and then the stability of the inverse, namely
trying to understand the modulus of continuity of the map Λ−1.

There is an extensive literature on the Calderón problem. First, some energy
considerations solve the problem of uniqueness of σ given Λ[σ, 0] if σ is supposed to
be scalar (isotropic) and piece-wise analytic, see [19].

For isotropic conductivities, a great deal of work has been spent in order to reduce
the regularity hypothesis on σ in order to guarantee the injectivity of the mapping
σ �→ Λ[σ, 0]. In dimension 2, using techniques of complex analysis, the conductivity is
needed to be L∞(Ω) only (see [2, 10]). In dimension d ≥ 3, using the CGO technique
that will be mimicked hereafter, the conductivities must lie in the Sobolev space
W 3/2,p(Ω) for p > 2d (see [22, 9]) in order to ensure uniqueness. This effect is not
totally surprising, since unique continuation (which seems closely related) behaves
differently in dimension 2 and in greater dimension.

One may also suppose that the operator Λ[q] is known only on a part of the
boundary. In this case uniqueness and stability still hold under some suitable
“illuminations” conditions if q ∈ L∞(Ω) (or σ in W 2,∞(Ω) by the Liouville transform)
using the so-called limiting Carleman weights (see [18, 14]).
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Concerning anisotropic conductivities, the celebrated Tartar’s counterexample
show that two conductivities differing only by the pull-back of a diffeomorphism
equal to the identity on the boundary yield the same Dirichlet-to-Neumann map.
In dimension 2 and anisotropic σ, Tartar’s counterexample has been proven to be the
only obstruction to uniqueness using complex analysis in isothermal coordinates (see
[21, 3]) for L∞(Ω) conductivities. The case of the dimension d ≥ 3 is not yet fully
understood, the case of real analytic anisotropic conductivities is solved in [20] and
encouraging progress has been done recently if the conductivity exhibits a preferred
direction that allows to treat the geometry like a transformation of a cylinder (see
[13]). To sum up the anisotropic case, the 2-d case is rather well understood, mainly
thanks to complex analysis, whereas higher dimensions are more of a Terra Incognita.

The question we are interested in is the following. Discretizing the Calderón
problem, can we still get stability estimates uniformly with respect to the mesh size?

To be more precise, we consider a discrete version of the elliptic equation (1.2).

Let Wh be a mesh that approximates the set Ω and, for gh ∈ H
1/2
h (∂Wh), let uh[qh]

be the solution of

Δhuh + qhuh = 0 in W̊h and uh = gh on ∂Wh. (1.3)

Here, the index h means that we are solving a discrete approximation of (1.2) with
parameter h > 0, corresponding for instance to the mesh size. Hence, W̊h is an
approximation of Ω (we shall come back later on the meaning of W̊h compared to Wh,
see (2.1) for more details), Δh is an approximation of the Laplace operator Δ, and

the space H
1/2
h (∂Wh) is the discrete counterpart of H1/2(∂Ω). We shall not give more

precise descriptions of these approximations at this stage, and we refer the reader to
the rest of the article for more details.

We can then introduce the discrete DtN maps Λh defined by

Λh[qh](gh) = ∂n,huh[qh]|∂Wh
,

where uh[qh] is the solution of (1.3) corresponding to the Dirichlet data gh and
∂n,huh[qh] is an approximation of the normal derivative of uh[qh], see (2.15) for an
explicit description of that quantity.

One should expect that, if the discrete approximations (1.3) converge (as h→ 0)
to the continuous equation (1.2), the maps qh �→ Λh[qh] as well as their reconstruction
Λh[qh] �→ qh should also converge, in some sense, to their continuous counterpart
q �→ Λ[q] and Λ[q] �→ q. Of course, these naive statements need to be thoroughly
study, as it turns out that the maps (Λh)h>0 all are non-linear, and therefore their
inverses may have very different behavior. Our goal is to make a first attempt at
describing the discrete DtN maps and their stability results in the case d ≥ 3. In
order to obtain convergence of the discrete reconstruction towards the continuous
one, we think that these estimates, that will be derived uniformly with respect to h,
are a step of crucial importance, see our comments in Section 7.

One of the difficulty to get uniform stability estimates is that the continuous
approach, based on CGO, strongly makes use of arbitrary large frequency solutions,
whereas in a discrete case of mesh-size h > 0, the frequency of solutions is limited to
the scale 1/h.

Another restriction linked to the discretization of the equation is that the
convergence of the spectrum is only guaranteed for frequencies smaller than h−2/3.
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For instance, the discrete Laplacian in 1-d on a uniform mesh,

(Δhuh)j =
1

h2
(uj+1,h − 2uj,h + uj−1,h) , j ∈ {1, · · · , 1/h− 1}, u0,h = u1/h,h = 0,

admits as eigenvalues,

λk,h =
4

h2
sin2

�
kπh

2

�

, k ∈ {1, · · · , 1/h− 1},

whereas the eigenvalues of the Laplacian with Dirichlet boundary conditions on (0, 1)
are given by λk = k2π2. Hence

�
�
�

�

λk,h −
�

λk

�
�
� ≤ Ck3h2, ∀k ∈ {1, · · · , 1/h− 1},

meaning that the convergence of the spectrum is achieved only in the range k =
o(h−2/3), corresponding to

�
λk,h = o(h−2/3) or frequencies of order o(h−2/3).

Since the CGO solutions are by their nature, linked to eigenvalues of the
Laplacian, when speaking convergence of the discrete Calderón problems towards
the continuous one, these scales of frequency should be kept in mind. Above these
scales, one can expect very surprising behavior between the continuous setting and
the discrete ones.

Let us point out a third and complex effect of the discretization, which is glaring
in the exact controllability problem for the wave equation, where the discrete controls
of smallest norm do not converge to the continuous one, see [16, 24].

This effect is due to numerical dispersion that introduces high-frequency spurious
waves of null speed, despite the fact every solution of the continuous wave equation
travels at velocity one (see [23]). Since these spurious waves do not propagate in the
domain, they cannot be controlled. We refer the reader interested by these questions
to the seminal articles [15, 17] and the subsequent survey article [24].

Of course, CGO solutions correspond to plane waves and therefore discrete
versions of CGO solutions may have very different behaviors as in the continuous
case.

Our last remark is based on counting the unknowns and the equations. For each
h > 0, the discrete Calderón problem is stated in a finite-dimensional space: If the
number of points in a direction is equivalent to N , knowing the whole DtN map is
tantamount to knowing Nd−1 potentials, each of which yielding a current, that is
Nd−1 data, on the boundary. Hence the knowledge of the DtN map is equivalent to
the knowledge of N2d−2 data, whereas the number of unknown is proportional to Nd.
Therefore, in dimension d ≥ 3, there are way too many data for the number of unknown
and the problem is ill-posed in the sense that they might not exist a solution at all for
an arbitrary set of data. Even if uniqueness of a solution is guaranteed, existence is
here of the essence. This remark seems to indicate that solving the discrete Calderón
problem is an easy matter, but we emphasize that the map Λh is non-linear and lies
in a finite-dimensional space of very large dimension, going to infinity as h→ 0, thus
making the resolution of the discrete Calderón problem a challenging issue.

The results in the continuous case and in the discrete case are in a contrast so
sharp that it is on the verge of being paradoxical. In the discrete case, iterative
reconstruction algorithms exists (see the review [5]), based on continuous analysis
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and a direct algorithm is proposed in [12] which strongly uses the intrinsic finite-
dimensional nature of these systems. However, these latest reconstruction algorithms
use highly oscillating test functions. As a consequence, for a set of data that represents
a DtN map (possibly with some errors), the reconstructed conductivities and potentials
are designed to match the Nd data of higher frequency. Let us also point out the direct
algorithm of [4] that builds the set of point on which the conductivity is reconstructed
accordingly to the data, but, as far as we know, this reconstruction algorithm does
not yield any uniform stability estimates for the discrete Calderón problem, where
uniform stands for uniformly with respect to the discretization parameter h > 0.

To study the discrete Calderón problems, we shall then develop similar tools as
for the continuous Calderón problem in dimension d ≥ 3. To be more precise, our
analysis will be based on the construction of discrete CGO solutions, solution of (1.3)
which are close to the usual harmonic functions. Of course, this cannot be done for
any arbitrarily large frequencies but rather for a limited range of frequency, depending
on the mesh-size h.

One of the main difficulties we shall encounter to construct these solutions is to
develop a discrete Carleman estimate for the elliptic problem (1.3). Of course, here
again, as expected in view of the above discussion, the parameters in the Carleman
estimate should be limited in some range depending on the mesh size (roughly
speaking, the parameter in the Carleman estimate correspond to the frequency of
the CGO solutions).

Note that, in this step, the recent works [6, 7, 8] are worth mentioning: to our
knowledge, they are so far the only works in which discrete Carleman estimates have
been derived, but having in mind the study of the exact controllability of the discrete
heat equations.

In Section 2, we define the discrete problems, introduce some notations and state
our main result. In Section 3, we prove a Carleman estimate which is the basis of
the proof of existence of the CGO solutions, given in Section 4. In Section 5, we
prove the stability estimate in terms of the different scales that come into play in the
discrete Calderón problems. In Section 6, we focus on the case of uniform meshes, in
which stronger stability estimates can be proved. In Section 7, we give some further
comments and open problems.

2. Definition of the discrete problem

In this section, we introduce notations specific to the discrete problem that will be
used throughout this paper.

Set Ω ⊂ [0, 1]d, d ≥ 3, a domain meshed with Mh, a finite subset of Ω̄. For
N ∈ N, define Kh the regular cartesian grid of [0, 1]d:

Kh :=

�

x ∈ [0, 1]d such that ∃k ∈ [[0, N − 1]]d such that x =
k

N

�

.

Suppose that the mesh Mh is a perturbation of Wh, a subset of Kh, in the sense that
there exists a smooth diffeomorphism F : [0, 1]d → [0, 1]d close to the identity such
that F (Wh) =Mh.

When treating discrete problems where nodes of Mh are directly related
to degrees of freedom of the linear system (Lagrangian finite elements or finite
differences), one usually introduce the concept of “connection” between two nodes
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(or “neighbours”) of Wh. We use the notation x ∼ y to denote the fact that two
points x �= y ∈ Wh are neighbours. We shall suppose that the set of connections or
edges is the same for every point and is symmetric, that is:

Assumption 1 Let h > 0 be the size of the mesh. There exists k vectors (ei)i=1···k ∈
Z
d such that ei �= −ej for all i �= j and such that for all x, y in Wh,

x ∼ y ⇐⇒ ∃i such that x− y = hei or y − x = hei.

We further assume that the set of vectors (ei)i=1···k spans R
d.

If x = y + hei, x is called the “neighbour of y in direction ei”, whereas y is the
neighbour of x in direction −ei. Note that, since the set of connections is the same for
every point, the mesh has to have some translation invariance that restricts drastically
the choice of possible meshes to, namely, cartesian grids.

Also note that we did not assume k = d. In particular, k can be much larger than
d. In the case k = d, much more can be said, see Section 3.6 and Section 6.

2.1. Dual meshes and operators

For any set of points Ah, define Aih, the dual set in the direction ei, as

Aih :=

�

x +
h

2
ei such that x ∈ Ah

�

∩
�

x− h

2
ei such that x ∈ Ah

�

.

As an immediate corollary, y ∈ Aih if and only if both y + h
2 ei and y − h

2 ei are in Ah,
hence y ∈ Aih is the middle point of a segment connecting two neighbours in direction

ei of points of Ah. Similarly, define the sets Aijh = (Aih)j = Ajih . The inclusion
Aiih ⊂ Ah is strict, since x ∈ Aiih if and only if x ∈ Ah and both its neighbours in
direction ei and e−i are in Ah. Define the interior and the boundary of a set Ah as

Åh :=

k�

i=1

Aiih and ∂iAh := Ah \ Aiih and ∂Ah := Ah \ Åh. (2.1)

For any finite set of point Ah, denote as C(Ah) the set of functions from Ah to
C and define the average and difference operators in the direction ei as the operators
from C(Ah) to C(Aih) :

ai(uh) := y �→ 1

2

�

uh(y +
h

2
ei) + uh(y −

h

2
ei)

�

,

di(uh) := y �→ 1

h

�

uh(y +
h

2
ei)− uh(y −

h

2
ei)

�

.

These operators are the discrete version of the average and the directional derivation.
Note that they depend on h > 0 and should rather be denoted by ai,h and di,h
respectively, but there, no confusion can occur and we remove it with a slight abuse
of notations.

We shall also sometimes denote by d generic difference operators which coincides
with one of the di and a generic average operator which coincides with one of the ai.

Here are a list of easy lemmas that will be used thereafter.

Lemma 2.1 As operators from C(Ah) to C(Aijh ), we have the following identities:

aiaj = ajai, aidj = djai, didj = djdi.
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Moreover, for any (uh, vh) ∈ C(Ah)2,

ai(uhvh) = ai(uh)ai(vh) +
h2

4
di(uh)di(vh) on Aih, (2.2)

di(uhvh) = di(uh)ai(vh) + ai(uh)di(vh) on Aih, (2.3)

uh = aiai(uh)−
h2

4
didi(uh) on Aiih . (2.4)

Lemma 2.2 Denote the hyperbolic cosinus and sinus as ch and sh, respectively.
For any uh ∈ C(Ah) and i ∈ {1, · · · , k}, on Aih we have

ai(e
uh) = eaiuhch

�
hdiuh

2

�

, di(e
uh) =

2

h
eaiuhsh

�
hdiuh

2

�

,

ai(sh(uh)) = sh(aiuh)ch

�
hdiuh

2

�

,

di(sh(uh)) =
2

h
ch(aiuh)sh

�
hdiuh

2

�

,

ai(ch(uh)) = ch(aiuh)ch

�
hdiuh

2

�

,

di(ch(uh)) =
2

h
sh(aiuh)sh

�
hdiuh

2

�

.

Besides, for any vector s ∈ R
d and i ∈ {1, · · · , k}, di(s · x) = s · ei.

Lemma 2.3 For any i ∈ {1, · · · , k}, uh ∈ C(Ah), zh ∈ C(Aih), we have

di(zh(aiuh)) = ai(zh(diuh)) + (dizh)uh on Åh, (2.5)

ai(zh(aiuh)) = (aizh)uh +
h2

4
di(zh(diuh)) on Åh. (2.6)

Lemmas 2.1–2.2–2.3 can all be derived easily by straightforward computations
left to the reader.

2.2. The discrete Laplace operator

On Wh, we are looking for an approximation of the solution u ∈ H1(Ω) of the
continuous problem (1.2).

The discrete problem then amounts to finding uh ∈ C(Wh) solution of (1.3) for
some discrete operator Δh that approximates Δ on Wh. Of course, this operator Δh
is defined on a finite-dimensional space and can then be considered as a matrix, as
it is usually done when doing numerics. But one can also see this operator Δh as an
operator from C(Wh) to C(W̊h), and we shall adopt this point of view in the rest of
the article.

We shall assume the following property:

Assumption 2 For all h > 0, there exists k functions (σih)i=1···k ∈ C(W i
h), such that

Δhuh =

k�

i=1

di(σ
i
hdiuh) on W̊h, ∀uh ∈ C(Wh).

For some standard problems, the existence of such σih is made in appendix, it
relies solely on the following properties:
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• There is a one to one correspondence between the linear system and the nodes.

• The linear system is symmetric.

• The function constant equal to 1 is in the kernel of Δh on W̊h.
The value of σih(x) is given in the appendix for some numerical methods. Roughly

speaking, it corresponds to the weight that the numerical method gives to the
connection of the nodes (x+ hei, x− hei). These functions σih encode the information
on the numerical method that has been chosen.

Given a set Ah, for uh ∈ C(Ah), we define its L∞(Ah) norm as

�uh�L∞(Ah) := max
x∈Ah

(|uh(x)|).

We suppose that the mesh regularity and the choice of discretization yield the following
properties on σih:

Assumption 3 Suppose that σih can be extended to a function of C(Kih). Still
denoting this extension by σih, we define:

�d(h) =
�

i,j

�dj(σih)�L∞(Ki
h)
, (2.7)

�a(h) = �
k�

i=1

ai(σ
i
h)ei ⊗ ei − Id�L∞(K̊h)

, (2.8)

M(h) =
�

i

�σih�L∞(Ki
h)
, (2.9)

and we suppose that
M := sup

h→0
M(h) <∞.

We shall compute explicitly σ for some standard examples in the appendix and
show where these two scalings �a and �d come from. Heuristically, condition (2.8) is
an “isotropic” condition, hence the notation �a, where a stands for “anisotropy”. The
scaling �d comes from the regularity of the diffeomorphism F that modifies the domain
Wh into Mh.

Note that Assumption 3 extends the operator Δh on the whole mesh Kh.
Assumption 3 therefore concerns the regularity of Wh. Indeed, extending σih
to a function of C(Kih) with the required properties implies that the domain Ω,
approximated by Wh, is regular.

We shall also make and additional assumption on the geometry of the domain
Wh:
Assumption 4 Denote by K̈h the interior of the interior of Kh (points that are at
least two nodes away form ∂Kh). We suppose that there exists a domain Bh such that
Wh ⊂ Bh, Bh ⊂ K̈h and such that there exists ψ ∈ Cc(Bh) such that ψ = 1 on Wh
and �di(ψ)�L∞(Kh) ≤M0 for all i ∈ {1, · · · , k} and �Δhψ�L∞(Kh) ≤M0, where M0 is
a constant independent of h.

Note that ψ in Assumption 4 is assumed to be independent of h > 0. This can
indeed be done by assuming that Ω̄ ⊂ (0, 1)d and constructing a function ψ compactly
supported in (0, 1)d and equal to one on Ω̄, and then taking h > 0 small enough.

Assumption 4 states that the domain Wh is at a fixed distance of the boundary
∂Kh, in particular, we have

Wh ⊂ B̊h ⊂ Bh ⊂ K̈h ⊂ Kh. (2.10)
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2.3. Integrals and Green’s identity

For any set of point Ah, for any (uh, vh) ∈ C(Ah), we define the following quantities:
�

Ah

uh(x) := hd
�

x∈Ah

uh(x), (uh, vh)Ah
:=

�

Ah

uh(x)vh(x). (2.11)

Note that (·, ·)Ah
defines a scalar product on the functions of C(Ah).

Remark that we choose the scaling hd of the volume integral. Therefore, in the
sequel (and especially in Green’s identity), the physical scaling of boundary integrals
will be h−1

�

∂Ah
u.

We also define the following norms in C(Ah) :

�uh�L2(Ah) :=
�

(uh, uh)Ah
, �uh�Ḣ1(Ah)

:=

�
�

i

�

Ai
h

σihdi(uh)
2

�1/2

,

�uh�H1(Ah) := �uh�L2(Ah) + �uh�Ḣ1(Ah)
. (2.12)

We are now in position to state the following discrete version of Green’s identity:

Proposition 2.4 (Integration by parts) Define Cc(Ah) the space of functions
with compact support as

Cc(Ah) := {uh ∈ C(Ah) s.t. uh = 0 on ∂Ah}.
For any vh ∈ C(Aih), uh ∈ Cc(Ah),

�

Ai
h

di(uh)vh = −
�

Åh

uhdi(vh),

�

Ai
h

ai(uh)vh =

�

Åh

uhai(vh). (2.13)

Proof Even if the proof of Green’s identity is standard, we show it here in order
to work out the notations. Below we only prove Green’s identity for the difference
operator and not for the average one, which can be proved similarly and is left to the
reader. Let us introduce the set

A±,i
h =

�

x s.t. x± h

2
ei ∈ Aih

�

,

yielding in particular Aiih = A+,i
h ∩A−,i

h . Moreover, performing two discrete change of
variables,

�

Ai
h

di(uh)vh = hd
�

i

�

x∈Ai
h

1

h

�

uh(x +
h

2
ei)− uh(x−

h

2
ei)

�

vh(x)

= hd
�

i




�

y∈A−,i
h

1

h
uh(y)vh(y −

h

2
ei)−

�

y∈A+,i
h

1

h
uh(y)vh(y +

h

2
ei)



 .

Since uh = 0 on ∂Ah, all the sums on A±,i
h are in fact on the set Åh ⊂ A±,i

h , and
hence

�

Ai
h

di(uh)vh = hd
�

i

�

y∈Åh

1

h
uh(y)

�

vh(y −
h

2
ei)− vh(y +

h

2
ei)

�

= −
�

Åh

uhdi(vh).

This concludes the proof of Proposition 2.4. �
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In order to get Green’s identity with boundary term, we have to define, for each
i ∈ {1, · · ·k}, the exterior normal to the setWh ⊂ Kh in direction ei as nih ∈ C(∂iWh)
:

∀x ∈ ∂iWh, nih(x) =







1 if x− h
2
ei ∈ W i

h but x + h
2
ei /∈ W i

h,

−1 if x + h
2 ei ∈ W i

h but x− h
2 ei /∈ W i

h,

0 if x + h
2 ei /∈ W i

h and x− h
2 ei /∈ W i

h.

This definition makes sense since x + h
2
ei ∈ W i

h and x− h
2
ei ∈ W i

h would imply that
x ∈ W ii

h hence x /∈ ∂iWh. Remark also that ni(x) = 0 on ∂iWh if and only if x does
not have any neighbours in the direction ei nor in the direction −ei, so that x is an
“isolated” point in the ±ei direction.

Proposition 2.5 Denote by Ih the operator from C(W i
h) to C(Kih) that extends

functions by zero outside W i
h, then

di(Ih(vh)) = − 2

h
ai(Ih(vh))n

i
h on ∂iWh. (2.14)

Extending nih by 0 outside ∂iWh, for all uh ∈ C(Wh), we define ∂n,huh ∈ C(∂Wh) as

∂n,huh =

k�

i=1

2(ai ◦ I)(σidiuh)nih. (2.15)

With this definition, we have the following formula: for all wh ∈ C(Wh),

1

h

�

∂Wh

(∂n,huh)wh =

�

W̊h

(Δhuh)wh+

k�

i=1

�

Wi
h

σi(diuh) (diwh).(2.16)

Let us emphasize that the factor 1/h in front of the integral in ∂Wh comes from
the fact that this latter integral is defined as

�

∂Wh
uh = hd

�

x∈∂Wh
uh(x) and not

with the standard scaling for boundaries which is hd−1.
Proof We first prove equation (2.14). Remark that if Wh ⊂ K̊h, then W i

h ⊂ Kih so
that the operator Ih can indeed be defined. Moreover, the functions di(Ih(vh)) and
ai(Ih(vh)) both belong to C(Kiih ). Due to the inclusions

∂iWh ⊂ Wh ⊂ K̊h ⊂ Kiih ,
it makes sense to look at the values of di(Ih(vh)) on ∂iWh. Set x ∈ ∂iWh, then
either nih(x) = −1, 0 or 1. Since the three cases are treated the same way, we may
suppose that nih(x) = 1, that is x − h

2 ei ∈ W i
h and x + h

2 ei /∈ W i
h. In this case

(Ihvh)(x + h
2 ei) = 0 and

di(Ihvh)(x) =
1

h
(−vh(x−

h

2
ei)) = − 2

h
ai(Ihvh)(x),

which is the sought result.
We now turn our attention to proving Green’s formula by itself. Denote by Ĩh

the operator from C(Wh) to C(Kh) that extends functions by zero on Kh \ Wh. We
have

di(Ĩh(wh)) = di(wh) on W i
h and Ih(σ

i
hdiuh) = 0 outside W i

h.

Hence
k�

i=1

�

Wi
h

σih(diuh)(diwh) =

k�

i=1

�

Ki
h

Ih(σ
i
h(diuh))di(Ĩhwh).
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Since Wh ⊂ K̊h, Ĩhwh = 0 on ∂Kh, and then, performing an integration by part,

k�

i=1

�

Wi
h

σih(diuh)(diwh) = −
k�

i=1

�

K̊h

di
�
Ih(σ

i
hdiuh)

�
Ĩh(wh)

= −
k�

i=1

�

Wh

di
�
Ih(σ

i
hdiuh)

�
wh

= −
�

W̊h

k�

i=1

di
�
Ih(σ

i
hdiuh)

�
wh −

�

∂Wh

k�

i=1

di
�
Ih(σ

i
hdiuh)

�
wh.

To end the proof of Proposition 2.5, we remark that

Ih(σ
i
hdiuh) = σihdiuh on W i

h

and then that
k�

i=1

di
�
Ih(σ

idiuh)
�

= Δhuh on W̊h.

Besides,

di
�
Ih(σ

i
hdiuh)

�
=
−2

h
ai

�
Ih(σ

i
hdiuh)

�
nih

and then

−
k�

i=1

di
�
Ih(σ

i
hdiuh)

�
=

1

h
∂n,huh on ∂Wh,

thus concluding the proof of Proposition 2.5. �

To conclude this section, we also define the Sobolev norms for any trace function
gh in C(∂Wh) as:

|gh|H1/2(∂Wh) = min
uh ∈ Wh

uh = gh on ∂Wh

�uh�H1(Wh),

|gh|H−1/2(∂Wh)
= max

uh ∈ ∂Wh
|uh|H1/2(∂Wh) = 1

1

h

�

∂Wh

ghuh.

Note that these definitions are of course compatible with the continuous ones.

2.4. The DtN map and the discrete Calderón problem

We are now in position to define the discrete Dirichlet-to-Neuman map (DtN map)
for a potential qh ∈ C(W̊h):

Definition 2.6 Let h > 0. For any qh ∈ C(W̊h) such that
�

Δhuh + qhuh = 0 in W̊hand uh = 0 on ∂Wh
�

⇒ uh = 0, (2.17)

we define the discrete Dirichlet-to-Neuman map (DtN map) as follows: Λh[qh] is an
operator from C(∂Wh) to C(∂Wh) defined by Λh[qh](gh) = ∂n,huh where ∂n,huh is
defined in (2.15) and uh is the unique solution in C(Wh) of (1.3) corresponding to the
potential qh.
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Note that the unique continuation property (2.17) is not very restrictive but is
needed to guarantee the uniqueness of the solution uh of (1.3). First, the operator
Δh + qh is symmetric and derives from (Δ + q), a continuous operator with compact
resolvent, hence its eigenspaces are finite dimensional (in the continuous setting), its
eigenvalues are separated and a standard bootstrap argument shows that the elements
in the kernel of Δu+qu are regular (their second derivatives are as regular as q) hence
if we suppose that the continuous operator u �→ Δu+qu has a null kernel, any sensible
numerical method will ensure that uh �→ Δhuh + qhuh has a null kernel for h small
enough.

Now, if the continuous potential q derives from a conductivity σ through Liouville
transform through the formula q = −Δ(

√
σ)/
√
σ, automatically, solutions u of (1.2)

with u = 0 on the boundary correspond to solutions v of

div(σ∇v) = 0 with v = 0 on ∂Ω, (2.18)

(more precisely, u =
√
σv) and hence v = u = 0. Indeed, multiplying (2.18) by v and

integrating by parts, one immediately checks that v ≡ 0. This indicates that condition
(2.17) is not very restrictive for practical applications.

The discrete Calderón problem then consists in the following one: Is the map Λh
injective?

But, as we have explained in the introduction, the main issue when dealing with
a family of discrete Calderón problems is to get uniform stability estimates, where
uniform means uniformly with respect to the mesh-size parameter h > 0.

To be more precise, we want to find a function ω : R+ → R
+ such that, for all

h > 0 and (q1,h, q2,h) ∈ C(W̊h)2,
�q1,h − q2,h� ≤ ω (�Λh[q1,h]− Λh[q2,h]�) .

Here, we do not give yet the norms that shall be put in the left and right hand-sides
of this estimate, which actually contains much of the information.

Before stating our result precisely, let us introduce the discrete Hr-norms for
r ∈ R. For h > 0, set K̂h = [[0, N − 1]]d and define the discrete Fourier transform of a
function uh in Cc(Kh) as ûh in C(K̂h) by

ûh(ξ) = Fh(uh)(ξ) =

�

Kh

uh(x)e−2iπ(x·ξ), ∀ξ ∈ K̂h.

We then define the Sobolev norm Hr, for any r ∈ R by

|uh|2Hr(Kh)
=

�

ξ∈K̂h

|û(ξ)|2(1 + |ξ|2)r.

Note that, with this definition, the celebrated Plancherel formula states that the norm
|u|H0(Kh) coincides with �u�L2(Kh). Moreover, we emphasize, that, as in the continuous
case, it is classical to show that �·�H1(Kh) defined in (2.12) and |·|H1(Kh) are equivalent
independently of h.

Our main result is the following one:

Theorem 2.7 Suppose that Assumptions 1–4 are satisfied. Let q1,h and q2,h in

C(W̊h) be two potentials satisfying (2.17) and �qj,h�L∞(W̊h)
≤ m, j ∈ {1, 2}. Set

�Λh[q1,h]−Λh[q2,h]�Lh
:= max
�gh�H1/2(∂Wh)

=1
| (Λh[q1,h]− Λh[q2,h]) (gh)|H−1/2(∂Wh).(2.19)
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There exist constants c, C depending on m so that if �Λh[q1,h]−Λh[q2,h]�Lh
, h, �d

and �a are smaller than c, setting

µ := max

�

�d, �
1/2
a , h1/2,

1

| log(�Λh[q1,h]− Λh[q2,h]�Lh
)|

�

, (2.20)

for all frequency ξ ∈ K̂h satisfying |ξ| ≤ cµ−1,

|Fh(q1,h − q2,h)(ξ)| ≤ Cµ. (2.21)

Consequently, we have the following stability estimate : For any r > 0, there exists
Cr > 0 depending on r, m such that

|q1,h − q2,h|H−r(Wh) ≤ Crµ
2r

2r+d . (2.22)

Before commenting this result, let us emphasize that the norm (2.19) corresponds
to a discrete version of the L(H1/2(∂Ω);H−1/2(∂Ω))-norm, thus being completely
consistent with the natural norms for the continuous Calderón problem.

Also note that Theorem 2.7 actually bears four results.

• The influence of the mesh size alone is seen by setting µ = h1/2 and Λh[q1,h] =
Λh[q2,h], this is the case, for instance for a regular mesh where the DtN operators
are equal, the uncertainty on the potentials qh in the H−r(Wh) norm then scales
as h

r
2r+d .

• The influence of the anisotropic scaling �a or the irregularity of the mesh �d is

measured by taking µ = �d or �
1/2
a .

• The influence of the error in the DtN maps, this is the true stability estimate.
The stability estimate is in | log(error)|α, with α < 0. It is consistent with every
continuous stability estimate (see [1]).

At this point, let us also emphasize that Theorem 2.7 does not yield uniqueness.
Indeed, if Λh[q1,h] = Λh[q2,h], then for any r > 0, we only have

|q1,h − q2,h|H−r(Wh) ≤ Cr max{�d, �1/2a , h1/2} 2r
2r+d . (2.23)

Of course, given h > 0, this does not give uniqueness, but rather some kind of
asymptotic uniqueness as h → 0, since the right hand-side of (2.23) goes to zero
as h→ 0.

The proof of Theorem 2.7 is the main goal of that article. It will be given in
Section 5 and it will strongly use the results developed in the other sections, and in
particular the construction of discrete CGO solutions derived in Section 4.

2.5. Basic properties of the DtN maps

Let us begin our analysis of the discrete Calderón problems by giving some properties
of the discrete DtN problems that are classical in the continuous setting:

Proposition 2.8 Let h > 0 and qh ∈ C(W̊h) satisfying (2.17).
The discrete DtN map is self adjoint:

�

∂Wh

Λh[qh](uh)vh =

�

∂Wh

Λh[qh](vh)uh, ∀(uh, vh) ∈ C(∂Wh)2.

Moreover, for all u1,h and u2,h that verify Δhuj,h + qj,huj,h = 0 for j = 1, 2 on W̊h
with q1,h, q2,h ∈ C(W̊h) satisfying (2.17), we have

�

W̊h

(q1,h−q2,h)u1,hu2,h =
1

h

�

∂Wh

(Λh[q1,h]− Λh[q2,h]) (u1,h)u2,h,(2.24)
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where we used the slight abuse of notations consisting of denoting the same way a
function on Wh and its trace on the boundary ∂Wh.

The proof of these assertions is similar to the one of the continuous case.
Proof We first prove the self-adjointness of Λh[qh] for qh ∈ C(W̊h). For (uh, vh) ∈
C(Wh)

2, solutions of Δhuh + qhuh = 0 = Δhvh + qhvh on W̊h, using the integration
by part equation (2.16), we obtain

1

h

�

∂Wh

Λh[qh](uh)vh =
1

h

�

∂Wh

(∂n,huh)vh

=

�

W̊h

(Δhuh)vh +
k�

i=1

�

Wi
h

σih(diuh)(divh)

=

�

W̊h

−qhuhvh +
k�

i=1

�

Wi
h

σih(diuh)(divh).

The right-hand side being symmetric in uh and vh, their roles can be exchanged which
proves the self adjointness of Λh[qh].

We now turn our attention to (2.24). Set u1,h and u2,h as in Proposition 2.8, then
�

W̊h

q1,hu1,hu2,h = −
�

W̊h

(Δhu1,h)u2,h

= − 1

h

�

∂Wh

(∂n,hu1,h)u2,h +

k�

i=1

�

Wi
h

σih(diu1,h)(diu2,h).

Recalling that, by definition ∂n,hu1,h = Λh[q1,h](u1,h), interchanging the roles of u1,h

and u2,h and subtracting the two equations lead to
�

W̊h

(q1,h − q2,h)u1,hu2,h = − 1

h

�

∂Wh

(Λh[q1,h](u1,h)u2,h − Λh[q2,h](u2,h)u1,h)

= − 1

h

�

∂Wh

(Λh[q1,h]− Λh[q2,h]) (u1,h)u2,h,

where we used the self-adjointness of Λh[q2,h] in order to conclude. �

Note that formula (2.24) will be the basis for the proof of the stability estimates
in Theorem 2.7, as it will be seen in Section 5.

2.6. Notations

In the sequel, we shall denote by C and c generic constants that can be chosen
independently of the parameters h, �a, �d, the Carleman parameter s and the CGO
parameter β, s, η. The constant C will be chosen large enough, whereas c will be a
small positive constant.

3. Carleman estimate

The main tool that proves the existence of CGO solutions is a Carleman estimate
proved with special weight functions called the “limiting Carleman weights” (see [18]).
We emphasize the fact that discrete Carleman estimates already exist, see [6, 7], but
that they are not based on limiting Carleman weights.

The goal of this section is to develop the proof of uniform discrete Carleman
estimate (here, uniform means with respect to the discretization parameter h > 0)
with a simple limiting Carleman weight, namely the one corresponding to plane waves.
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3.1. Statement of the Carleman estimate

For any s ∈ R
d, introduce φs(x) = s · x and define the operator Δs,h from Cc(Kh) to

Cc(Kh) as

Δs,huh =

� �k
i=1 e

−φsdi
�
σihdi(e

φsuh)
�

on K̊h
0 on ∂Kh

, (3.1)

We aim at performing a Carleman estimate on Δs,h.
Below, we use the slight abuse of notation consisting of identifying functions of

Cc(Bh) as functions of Cc(Kh), by extending functions of Cc(Bh) by zero outside Bh.

Theorem 3.1 There exist c > 0 and C > 0 such that for all (h, �d, �a) ∈ (0, c)3, for
all s ∈ R

d such that |s| ≤ cmin{�−1
d , h−2/3}, for any uh ∈ Cc(Bh), we have

|s|�uh�L2(Bh) + �uh�Ḣ1(Bh)
≤ C�Δs,huh�L2(Kh). (3.2)

Note that estimate (3.2) is similar to the continuous one. However, an important
difference between (3.2) and the continuous Carleman estimate is that the range of s
for which (3.2) holds true is limited to some scales depending on the mesh. Of course,
these scales are going to infinity as (h, �d)→ 0, thus being completely compatible with
the continuous Carleman estimate.

Remark 3.2 When k = d (i.e, there are as many connections as the dimension), then
the scaling becomes |s| ≤ cmin{�−1

d , h−1} and thus we gain an order of s with respect
to h. This scaling is coherent with the one obtained in [7]. We do not state it as a
main result since the final scaling appearing in the stability theorem (Theorem 2.7) is
|s| ≤ h−1/2 and is driven by Proposition 4.1. Nevertheless, we show in Subsection 3.6
how to improve the following proof in order to obtain the scaling h−1.

Proof [Sketch of the proof] The proof of (3.2) is based on three steps that will be
developed in details in next sections:

• Decompose the operator Δs,h into its symmetric and skew-symmetric parts, Ss,h
and As,h (see Proposition 3.3);

• Prove a lower bound on �Ss,huh�L2(Kh) + �As,huh�L2(Kh) of the form

|s|�uh�L2(Bh) + �uh�Ḣ1(Bh)
≤ C

�
�Ss,huh�L2(Kh) + �As,huh�L2(Kh)

�
,

see Proposition 3.4 for more precise statements;

• Prove an upper bound on
�

Kh
(Ss,huh)(As,huh) of the form

�

Kh

(Ss,huh)(As,huh) = o(�Ss,huh�2L2(Kh)
+ �As,huh�2L2(Kh)

)

for all uh ∈ Cc(Bh), see Proposition 3.9 for detailed statements.

Then the decomposition

�Δs,huh�2L2 = �Ss,huh�2L2 + �As,huh�2L2 + 2

�

Kh

(Ss,huh)(As,huh)

yields (3.2) immediately, see Subsection 3.5 for the final compilation of the different
listed propositions. �

Also note that actually, for Theorem 3.1 to be true, we strongly need Bh to be
such that Bh ⊂ K̈h, thus explaining where this condition comes from in Assumption 4.
The reason is we need to perform several integration by parts without boundary terms
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in the proof of the upper bound of the commutator. We then need to ensure that the
extension by 0 of uh outside Bh satisfies that uh, diuh and ajdiuh equal to 0 on,

respectively, ∂Kh, ∂(Kih),∂(Kijh ).
To make easier the reading of the tedious computations that will come afterwards,

let us briefly recall how the Carleman estimate is proved in the continuous case. First,
one easily checks that

Δsu = e−φsΔ(eφsu) = Δu + 2s · ∇u + |s|2u.
This operator is then decomposed into its symmetric and skew-symmetric parts:

Ssu = Δu + |s|2u and Asu = 2s · ∇u. (3.3)

Then Poincaré inequality yields

�Asu�L2(Ω) � |s|�u�L2(Ω), (3.4)

whereas
�

Ω

|∇u|2 = −
�

Ω

(Ssu)u + |s|2
�

Ω

|u|2 ≤ �Ssu�L2�u�L2 + |s|2�u�L2.

Using the previous estimate, we thus directly get

�u�2
Ḣ1(Ω)

+ |s|2�u�2L2(Ω) � �Ssu�2L2(Ω) + �Asu�2L2(Ω),

which concludes the proof in the continuous case since one easily checks that
�

Ω
SsuAsu = 0 for u ∈ C∞

c (Ω).

3.2. Decomposition into the symmetric and skew-symmetric part

The discrete counterpart of the continuous decomposition in (3.3) is:

Proposition 3.3 Let h > 0. For i ∈ {1, · · · , k}, define κis,h, g
i
s,h, p

i
s,h ∈ R as

κis,h := ch(hs·ei), pis,h :=
4

h2
sh2

�
h

2
s · ei

�

, gis,h :=
1

h
sh(hs·ei).(3.5)

Define the operators Sis,h and Ais,h from Cc(Kh) to Cc(Kh) as

Sis,huh := κis,hdi(σ
i
hdiuh) + pis,h(aiσ

i
h)uh on K̊h

Ais,huh := 2gis,hai(σ
i
hdiuh) + gis,h(diσ

i
h)uh on K̊h.

Then the Sis,h are symmetric whereas the Ais,h are skew-symmetric and we have

Δs,h = Ss,h + As,h with Ss,h =

k�

i=1

Sis,h and A =

k�

i=1

Ais,h.

Proof Before going into the proof, let us emphasize that it can be done for s ∈ R
d

and h > 0 fixed. We shall therefore omit the indexes s and h in the proof to simplify
the notations.

Note that thanks to (2.3) in Lemma 2.1, we have

ai(e
φ)di(e

−φ) = −ai(e−φ)di(eφ)
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The proof of Proposition 3.3 is then an application of Lemma 2.1 and a discrete
integration by parts (see Proposition 2.4) with v = 0 on ∂Kh. For all u, v ∈ Cc(Kh),
we have:

−
�

Kh

(Δs,hu)v = −
�

K̊h

(
�

i

e−φdi
�
σidi(e

φu))
�
v

=
�

i

�

Ki
h

σidi(ue
φ)di(ve

−φ)

=
�

i

�

Ki
h

σi
�
di(u)ai(e

φ) + di(e
φ)ai(u)

��
di(v)ai(e

−φ) + di(e
−φ)ai(v)

�

=
�

i

�

Ki
h

�
ri1di(u)di(v) + ri2ai(u)ai(v) + ri3di(u)ai(v) − ri3ai(u)di(v)

�

where a direct computation, using Lemma 2.2, yields :

ri1 = σiai(e
φ)ai(e

−φ) = σich2
�
h

2
s · ei

�

, (3.6)

ri2 = σidi(e
φ)di(e

−φ) =
−4σi

h2
sh2

�
h

2
s · ei

�

, (3.7)

ri3 = σiai(e
φ)di(e

−φ) = −σi

h
sh(hs · ei). (3.8)

Hence, for all i ∈ {1, · · · , k} the decomposition into the symmetric part and the skew-
symmetric part of the operator e−φdi(σ

idi(e
φu)) is given by

(Siu, v) = −
�

Ki
h

ri1di(u)di(v) + ri2ai(u)ai(v)

=

�

K̊h

[di(r
i
1diu)− ai(r

i
2aiu)]v

(Aiu, v) = −
�

Ki
h

ri3(di(u)ai(v)− di(v)ai(u))

= −
�

K̊h

[ai(r
i
3diu) + di(r

i
3aiu]v.

Using Lemma 2.3, we obtain, on W̊h :

Si = di

�

ri1 −
h2

4
ri2

�

diu− (air
i
2)u, Ai = −2ai(r

i
3diu)− (dir

i
3)u.

Then, basic identities on the hyperbolic functions yield Proposition 3.3. �

3.3. The Lower bound

The goal of this section is to prove the following proposition:

Proposition 3.4 Let Ss,h,As,h be as in Proposition 3.3. Then there exist c > 0 and
C > 0 such that for (h, �d, �a) ∈ (0, c)3, for all |s| ≤ ch−2/3, for all uh ∈ Cc(Bh),

|s|�uh�L2(Kh)+�uh�Ḣ1(Kh)
≤ C(�Ss,huh�L2(Kh)+�As,huh�L2(Kh))(3.9)

The proof of Proposition 3.4 is postponed to the end of the section.
As in the continuous case, see above, the first step of such a proof is a Poincaré

inequality that yields (3.4).
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Lemma 3.5 Given s ∈ R
d and h > 0, define the operator Âs,h on Cc(Kh) by

Âs,huh := 2

k�

i=1

(s · ei)(aiσih)aidiuh. (3.10)

Then there exist c > 0 and C > 0 such that for all (�d, �a) ∈ (0, c)2, for all s ∈ R
d,

|s|2�uh�2L2(Kh)
≤ C�Âs,huh�2L2(Kh)

, ∀uh ∈ Cc(Bh). (3.11)

Proof Below, we use the symbol � to refer to an equality modulo a term of order
(�d + �a)|s|2�u�2L2(Kh)

. By setting c small enough these terms are negligible when

compared to |s|2�uh�2L2(Kh)
.

|s|2�u�2L2(Kh)
�

�

Kh

�
k�

i=1

(s · ei)2ai(σi)
�

u2

=

�

Kh

k�

i=1

aidi(s · x)ai(σ
i)(s · ei)u2

= −
�

Kh

k�

i=1

(s · x)aidi
�
(s · ei)ai(σi)u2

�

= −
�

Kh

(s · x)
k�

i=1

(s · ei)aidi
�
ai(σ

i)u2
�

� −
�

Kh

(s · x)

k�

i=1

(s · ei)ai(σi)aidi
�
u2

�

= − 2

�

Kh

(s · x)

k�

i=1

(s · ei)ai(σi)aidi(u)

�

aiai(u) +
h2

4
didi(u)

�

≤ C|s|�Âu�L2(Kh)�u�L2(Kh).

Here, for the first sign �, we used (2.8), for the second one we used |di(σi)| ≤ �d (see
(2.7)) and, for the last estimate, that �aiai(u)�+ h2�didiu� ≤ C�u�. �

Remark 3.6 Note that this discrete Poincaré inequality uses dearly the fact uh = 0
on ∂Bh and that Bh ⊂ K̈h. This is not only a technical argument for the proof. Indeed
uh must cancel on the boundary of Kh (as expected for any Poincaré inequality) but
also on the points at distance one of the boundary.

We can indeed build a counterexample to the Poincare inequality in (3.11) in 1-d,
by taking uh(jh) = 0 for j even and uh(jh) = 1 for j odd: in this case, ad(uh) = 0
whereas �uh� �= 0 and uh indeed cancels on the boundary if Bh = {0, · · · , jh, · · · , Nh}
for N even.

We are now in position to prove Proposition 3.4.
Proof [Proof of Proposition 3.4] We now turn our attention to proving (3.9). First we
remark that κi ≥ 1 (defined in (3.5)) and |pi ai(σi)| ≤ C|s|2 (since |s|h is uniformly
bounded), hence we have, for all u ∈ Cc(Bh),

−(Su, u) ≥ 1

2

�

Kh

�

i

σidi(u)di(u)− C|s|2�u�2L2(Kh)

=
1

2
�u�2

Ḣ1(Kh)
− C|s|2�u�2L2(Kh)

.
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Using

|(Su, u)| ≤ �Su��u� ≤ 1

2
(�Su�2 + �u�2),

we get

�u�2
Ḣ1(Kh)

≤ C
�

�Su�2L2(Kh)
+ |s|2�u�2L2(Kh)

�

.

Now, Lemma 3.5 yields

|s|2�u�2L2(Kh)
+ �u�2

Ḣ1(Kh)
≤ C

�

�Su�2L2(Kh)
+ �Âs,hu�2L2(Kh)

�

,(3.12)

where Âs,h is the operator defined in (3.10).

To conclude, we shall then compare the operators Âs,h and As,h.
Since |gi − s · ei| ≤ C|s|3h2 (recall the definition of gi in (3.5) and |s|h uniformly

bounded), for all u ∈ Cc(Bh),

�2
�

i

gi(aiσ
i)aidiu− Âu�L2(Kh) ≤ C|s|3h2�u�Ḣ1(Kh)

,

and thus, for every |s| ≤ ch−2/3,

�2
�

i

gi(aiσ
i)aidiu− Âu�2L2(Kh)

≤ cC�u�2
Ḣ1(Kh)

. (3.13)

Besides, using that |gi| ≤ C|s| and |diσi| ≤ �d by (2.7),

�gi(diσi)u�2L2(Kh)
≤ C�2d|s|2�u�2L2(Kh)

. (3.14)

Using the two estimates (3.13)–(3.14) and plugging them in (3.12) while using the
definition of Ai in Proposition 3.3, we obtain (3.9) for c small enough. �

Remark 3.7 The case k = d. Let us now turn our attention to the case k = d. A
careful reading of the previous proof shows that the only occurrence of the hypothesis
|s| ≤ ch−2/3 lies in the proof of (3.13). In order to avoid this hypothesis, when k = d,
we can define the vector G such that G · ei = gis,h, since ei form a basis of Rd. Thus

following the proof of Lemma 3.5, we can replace the operator Â by Ã defined as

Ã := 2

k�

i=1

(G · ei)(aiσih)aidiuh

and obtain, for �d + �a small enough,

|G|2�uh�2L2(Kh)
≤ C�Ãs,huh�2L2(Kh)

, ∀uh ∈ Cc(Bh). (3.15)

Hence, since Ã satisfies, similarly as in (3.14),

�Ãu−Au�2L2(Kh)
≤ C�2d|s|2�u�2L2(Kh)

,

following the proof of Proposition 3.4, one can prove:

Proposition 3.8 When k = d, there exist c > 0 and C > 0 such that for
(h, �d, �a) ∈ (0, c)3, for all |s| ≤ ch−1, for all uh ∈ Cc(Bh),

|s|�uh�L2(Kh)+�uh�Ḣ1(Kh)
≤ C(�Ss,huh�L2(Kh)+�As,huh�L2(Kh)).(3.16)

Where we used |s| ≤ |g| ≤ C0|G|, where C0 depends only on the basis (ei)i.
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3.4. The upper bound of the commutator

Proposition 3.9 Let Ss,h,As,h be as in Proposition 3.3. There exists C, c > 0 such
that for all (h, �a, �d) ∈ (0, c)3, for all ε > 0, there exists cε > 0, depending on ε such
that for all s ∈ R

d such that |s| ≤ cεmin{�−1
d , h−2/3}, then for all uh ∈ Cc(Bh),

�
�
�
�

�

K̊h

(As,huh)(Ss,huh)

�
�
�
�
≤ ε(�As,huh�2L2(Kh)

+ �Ss,huh�2L2(Kh)
). (3.17)

Remark 3.10 In the case k = d, following the proof of Proposition 3.9 and using
Proposition 3.8, one can prove (3.17) for |s| ≤ cεmin{�−1

d , h−1}.
Proof First suppose that cε < c so that Proposition 3.4 holds. As before, for simplicity
of notations, in the proof below, we shall omit the indexes s and h since the proof is
done for s and h fixed.

We shall introduce the slightly modified operators S̃i and Ãi defined on Cc(Kh)
by

S̃iu := (κiai(σ
i))didiu + (piai(σ

i))u = Siu− (κidi(σ
i))aidiu

Ãiu := 2(giai(σ
i))aidiu = Aiu−

h2

4
gidi(σ

i))didiu− (gidi(σ
i))u

Using the bounds �u�Ḣ1(Kh)
≤ C(�Su�L2(Kh) + �Au�L2(Kh)), κi ≤ C (since |s|h is

bounded) and |di(σ)| ≤ �d, then

�S̃iu− Siu�L2(Kh) ≤ �d(�Au�L2(Kh) + �Su�L2(Kh)).

A similar development for the operators Ai may be obtained by using

h2�didiu�L2(Kh) ≤ C�u�L2(Kh) ≤ C|s|−1(�Su�L2(Kh) + �Au�L2(Kh)),

by using |gi| ≤ C|s| (since |s|h is bounded) and |d(σi)| ≤ �d by (2.7).
Therefore, it is enough to prove Proposition 3.9 while replacing S and A by

S̃ =
�

i S̃i and Ã =
�

i Ãi.

Define Lij ∈ C(K̊h)
Lij = Lji := ai(σ

i)aj(σ
j) on K̊h.

We then have, for all u ∈ Cc(Kh),
1

2
(S̃iu, Ãju) = (κigj)

�

K̊h

Lij(didiu)(ajdju) + (pigj)

�

K̊h

Liju(ajdju).

From the explicit form of the coefficients in (3.5), κi ≤ C, gi ≤ C|s| and pi ≤ C|s|2.
Therefore, since we shall ensure that �d|s| can be made arbitrary small at the end, it
is sufficient to show the following lemma:

Lemma 3.11 For all (i, j) ∈ {1, · · · , k}2 and s ∈ R
d, there exists a constant C

independent of s and �d such that for all uh ∈ Cc(Bh),
�
�
�
�

�

K̊h

Lij(didiu)(ajdju)

�
�
�
�
≤ C�d(�Su�2L2(Kh)

+ �Au�2L2(Kh)
), (3.18)

and
�
�
�
�

�

K̊h

Liju(ajdju)

�
�
�
�
≤ C|s|−2�d(�Su�2L2(Kh)

+ �Au�2L2(Kh)
). (3.19)

These two estimates are established in Section 3.4.1 and 3.4.2 respectively and
are based on two main ingredients:
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• Thanks to the bound �di(σi)�L∞ ≤ �d, we have �di(Lij)�L∞ ≤ CM�d.

• Bh ⊂ K̈h so that for all u ∈ Cc(Bh)
aju = dju = 0 on ∂(Kjh) and djdju = ajdju = ajaju = 0 on ∂Kh,

thus allowing us to perform several integration by parts without any boundary
term.

The proofs of these estimates are given in the next sections. �

3.4.1. Proof of estimate (3.18) in Lemma 3.11 Our proof is based on several
integration by parts and interchanges between the operators a and d.

The integrations by part are done in the following order: first on ai, then on di,
dj and finally on the last di. The underlined terms will scale as C�d(�Su�2L2(Kh)

+

�Au�2L2(Kh)
) and thus will be removed. They will be of the form:

d(L)d(u)d(u) (first case) or h2d(L)d3(u)d(u) (second case).

Terms corresponding to the first case are underlined before being removed. Note
that those terms have the required scaling since �d(Lij)�L∞ ≤ C�d and �u�Ḣ1(Bh)

≤
C(�Su�L2(Kh) + �Au�L2(Kh)) and �h2d2(v)� ≤ C�v�. Below, the symbol � will refer
to an equality modulo a term C�d(�Su�2Kh

+ �Au�2Kh
).

�

K̊h

(didiu)Lij(ajdju) =

�

K̊h

(didiu)Lij(ajdju)

=

�

Kj
h

aj [(didiu)Lij ](dju) ( since didiu = 0 on ∂Kh)

=

�

Kj
h

(ajdidiu)(ajL
ij)(dju) +

h2

4

�

Bj
h

(djdidiu)(djL
ij)(dju)

� �� �

2nd case

� −
�

Kij
h

(ajdiu)di[(ajL
ij)(dju)] ( since dju = 0 on ∂(Kjh))

= −
�

Kij
h

(ajdiu)(aiajL
ij)(didju)−

�

Kij
h

(ajdiu)(diajL
ij)(aidju)

� �� �

1st case

�
�

Ki
h

dj [(ajdiu)(aiajL
ij)](diu) ( since diu = 0 on ∂(Kih))

=

�

Ki
h

(djajdiu)(ajaiajL
ij)(diu) +

�

Ki
h

(ajajdiu)(djaiajL
ij)(diu)

� �� �

1st case

� −
�

K̊h

(djaju)di[(aiajajL
ij)(diu)] ( since ajdju = 0 on ∂Kh)

= −
�

K̊h

(djaju)(aiaiajajL
ij)(didiu)−

�

K̊h

(djaju)(diaiajajL
ij)(diu)

� �� �

1st case
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Finally, using (2.4), we have, since |h2dd(L)| ≤ C|hd(L)|

|aiai(L)− L| =
�
�
�
�

h2

4
didi(L)

�
�
�
�
≤ Ch�d on Kh,

so that
�

K̊h

(djaju)(aiaiajajL
ij)(didiu) �

�

K̊h

(djaju)Lij(didiu).

Gathering these equations yields
�

K̊h

(djaju)Lij(didiu) � −
�

K̊h

(djaju)Lij(didiu),

up to an error term of the form

C�d�u�2Ḣ1(Bh)
,

which proves the required result thanks to Proposition 3.4. �

3.4.2. Proof of (3.19) in Lemma 3.11 The idea of the proof is the same as for (3.18),
except that the scaling here is C|s|−2�d(�Su�2L2(Kh)

+�Au�2L2(Kh)
). Again, this scaling

comes from error term corresponding to two cases:

h2d(L)d(u)d(u) (first case) or ud(L)u (second case).

Indeed �d(L)�L∞ ≤ C�d, �hd(u)� ≤ C�u� and �u�L2 ≤ C|s|−1(�Su�+ �Au�).
Below, the symbol � will refer to an equality modulo a term C|s|−2�d(�Su�2 +

�Au�2).
�

K̊h

uLij(ajdju) =

�

Kj
h

aj(uL
ij)(dju) (since u = 0 on ∂Kh)

=

�

Kj
h

(aju)(ajL
ij)(dju) +

h2

4

�

Kj

(dju)(djL
ij)(dju)

� �� �

1st case

� −
�

K̊h

dj [(aju)(ajL
ij)]u (since u = 0 on ∂Kh)

= −
�

K̊h

(djaju)(ajajL
ij)u−

�

K̊h

(ajaju)(djajL
ij)u

� �� �

2nd case

.

As in the previous section, using

|aa(L)− L| =
�
�
�
�

h2

4
dd(L)

�
�
�
�
≤ Ch�d on Kh,

we get
�

K̊h

(djaju)Liju � −
�

K̊h

uLij(djaju)

which proves the required result. �



Uniform stability estimates for the discrete Calderón problems 23

3.5. Proof of Theorem 3.1

As explained in the discussion following the statement of Theorem 3.1, we base our
analysis on the decomposition:

�Δs,huh�2L2(Kh)
= �Ss,huh�2L2(Kh)

+ �As,huh�2L2(Kh)
+ 2

�

Kh

(Ss,huh)(As,huh)

First set c > 0 such that Proposition 3.4 holds for max{h, �d, �a} ≤ c and |s| ≤
cmin{h−2/3, �−1

d } with some constant C
Then set ε > 0 small enough compared to C so that the error term, estimated in

Lemma 3.11 can be absorbed.
Thus, reducing c if necessary, we take c < cε and for |s| ≤ cmin{�−1

d , h−2/3}, we
obtain the Carleman estimate (3.2). �

3.6. The case k = d

Following Remarks 3.7 and 3.10 and the above proof of Theorem 3.1, one easily proves
that in the case k = d, Theorem 3.1 holds for s ∈ R

d such that |s| ≤ cmin{�−1
d , h−1}

(and still (h, �d, �a) ∈ (0, c)3).

From now on, we fix c > 0 such that Theorem 3.1 holds and we implicitly restrict
ourselves to parameters (h, �d, �a) ∈ (0, c)3.

4. Construction of the CGO solutions

In the continuous case, CGO solutions, originally introduced in [11] are solutions of
the continuous elliptic equation (1.2) that behave like u(x) � eη·x for η ∈ C

d, η ·η = 0
and |η| large enough.

In the continuous case, the existence of a CGO solution relies on two facts :

• The function u(x) = eη·x solves Δu = 0 when η ∈ C
d satisfies η · η = 0.

• The multiplication by q is a zero order operator that is negligible with respect
to the Laplace operator Δ when |η| is big enough. This fact is measured via the
Carleman estimate.

This section is an adaptation of the proof of the continuous case, the main
difference is that the function uh(x) = eη·x is not solution of Δhuh = 0 anymore
for η ∈ C

d satisfying η · η = 0.

4.1. CGO solutions are almost harmonic

Let us begin our analysis by giving estimates on the lack of “discrete harmonicity” of
the functions u(x) = eη·x for η ∈ C

d satisfying η · η = 0:

Proposition 4.1 For all C > 0, there exists C0 > 0 such that for any vector η ∈ C
d

such that η · η = 0 and |η| ≤ Ch−1, define Φη(x) = η · x ∈ C(Kh),
�e−ΦηΔhe

Φη�L∞(K̊h)
≤ C0

�
|η|�d + |η|2�a + |η|4h2

�
.
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Proof Using Lemma 2.2, and the fact that didi(η · x) = 0, we have

e−Φηdidi(e
Φη ) =

4

h2
sh2

�
hη · ei

2

�

= (η · ei)2 + O(|η|4h2),

�
�e−Φηaidi(e

Φη )
�
� =

�
�
�
�

2

h
ch(η · ei)sh

�
hη · ei

2

��
�
�
�
≤ C|η|.

.
Hence, recalling that |di(σih)| ≤ �d,

e−Φη

�

i

diσ
idie

Φη =
�

i

ai(σ
i)(e−Φηdidie

Φη) + di(σ
i)(e−Φηaidie

Φη )

=
�

i

ai(σ
i)(η · ei)2 + O(|η|�d + |η|4h2).

Using (2.8) and η · η = 0, we thus obtain
�
�
�
�
�
e−Φη

�

i

diσ
idie

Φη

�
�
�
�
�
≤ C(|η|�d + |η|2�a + |η|4h2),

which concludes the proof of Proposition 4.1. �

4.2. An auxiliary problem

In this section, we prove the existence of a solution to an elliptic problem that will
arise naturally when proving the existence of discrete CGO solutions.

Lemma 4.2 Let m ∈ R+, for all qh ∈ C(B̊h) satisfying �qh�L∞(B̊h)
≤ m, there

exists s0 > 0 depending on m such that if s0 ≤ |s| ≤ cmin{�−1
d , h−2/3}, then for all

fh ∈ C(B̊h), there exists a solution uh ∈ C(Bh) to the problem

Δs,huh + qhuh = fh on B̊h, (4.1)

(recall that Δs,h is defined in (3.1)) that verifies,

�uh�L2(Bh) ≤
C

|s| �fh�L2(B̊h)
. (4.2)

Proof Define the operator P �s,h : Cc(Bh)→ C(Bh) by

P �s,hvh := Δ−s,hvh + qhvh, vh ∈ Cc(Bh).
Note that P �s,h is the adjoint of the operator Ps,h defined by Ps,h(uh) = Δs,huh+qhuh.

Let us then consider the following minimization problem: Find Vh ∈ Cc(Bh) that
minimizes the functional Js,h defined by

Js,h(vh) =

�

Bh

|P �s,h(vh)|2 −
�

B̊h

fhvh

among all vh ∈ Cc(Bh).
The existence of such a minimizer is ensured by the fact that Cc(Bh) is a finite

dimensional set and the Carleman estimate in Theorem 3.1 that reads, for vh ∈ Cc(Bh),

�P �s,hvh�2L2(Bh)
≥ 1

2
�Δ−s,hvh�2L2(Bh)

− �qh�2L∞(B̊h)
�vh�2L2(Bh)

≥ C−1
�

|s|2�vh�2L2(Bh)
+ �v�2

Ḣ1(Bh)

�

−m2�vh�2L2(Bh)

≥ C−1
�

|s|2�vh�2L2(Bh)
+ �v�2

Ḣ1(Bh)

�

, (4.3)
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for |s| large enough compared to m and C.
As a critical point of Js,h, Vh satisfies the following Euler-Lagrange equation:

�

Bh

P �s,hVhP
�
s,hvh =

�

B̊h

fhvh, ∀vh ∈ Cc(Bh). (4.4)

Therefore, setting uh = P �s,hVh, doing integration by parts,
�

Bh

vh (Ps,huh − fh) = 0, ∀vh ∈ Cc(Bh),

and thus uh solves (4.1). Here, we have used that, since vh ∈ Cc(Bh) and uh ∈ Cc(Kh)
since Bh ⊂ K̊h,

�

Bh

uhP
�
s,hvh =

�

Kh

uhP
�
s,hvh =

�

Kh

Ps,huhvh =

�

Bh

Ps,huhvh.

To get the estimate on the L2(Bh)-norm of uh, we plug vh = Vh in (4.4) and use
(4.3):

�P �s,hVh�2L2(Bh)
=

�

B̊h

fhVh ≤ �fh�L2(B̊h)
�Vh�L2(Bh)

≤ C

|s| �fh�L2(B̊h)
�P �s,hV �L2(Bh).

We then have

�uh�L2(Bh) = �P �−s,hVh�L2(Bh) ≤
C

|s| �fh�L2(B̊h)
,

which is exactly the sought result. �

We shall also need further estimate on the function uh given by Lemma 4.2,
namely in the H1-norm.

At this stage, let us recall Assumption 4 that states the existence of a suitable
cut-off function ψ that equals to 1 onWh while being compactly supported in Bh with
additional estimates on its discrete derivatives.

Lemma 4.3 Let m ∈ R+, for all qh ∈ C(W̊h) satisfying �qh�L∞(W̊h)
≤ m, there

exists s0 > 0 depending on m such that if s0 ≤ |s| ≤ c0 min{�−1
d , h−2/3}, for all

fh ∈ C(W̊h), there exists a solution uh ∈ C(Wh) to the problem

Δs,huh + qhuh = fh on W̊h, (4.5)

that verifies,

�uh�Ḣ1(Wh)
+ |s|�uh�L2(Wh) ≤ C�fh�L2(W̊h)

. (4.6)

Proof First, we extend fh and qh to Bh by zero outside W̊h, and we define uh as in
Lemma 4.2.

Thus, to prove Lemma 4.3, it remains to show that �uh�Ḣ1(Wh)
≤ C�fh�L2(W̊h)

since we already have by Lemma 4.2 that

|s|�uh�L2(Wh) ≤ |s|�uh�L2(Bh) ≤ C�f�L2(W̊h)
.

Thus, to get the estimate in the Ḣ1(Wh)-norm, we do a multiplier-type estimate,
multiplying the equation satisfied by uh by ψuh, where ψ is the multiplier function
given by Assumption 4.
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First, let us remark that the L2(B̊h)-norm of uh is bounded by C�fh�L2(W̊h)
/|s|

and the one of Δs,hu = f − qu is then bounded by C�f�L2(W̊h)
, and then

�
�
�
�

�

B̊h

Δs,huhψuh

�
�
�
�
≤ C

|s| �fh�L2(W̊h)
. (4.7)

But on the other hand, following the computation already performed in the proof of
the Proposition 3.3, we have:

�

B̊h

Δs,huhψuh =
�

i

�

Bi
h

�
ri1di(uh)di(ψuh) + ri2ai(uh)ai(ψuh)

+ri3di(uh)ai(ψuh)− ri3ai(uh)di(ψuh)
�
, (4.8)

where the coefficients ri1, r
i
2, r

i
3 are given in (3.6)–(3.7)–(3.8):

ri1 = σich2

�
h

2
s · ei

�

= σi + O(h2|s|2), (4.9)

ri2 =
−4σi

h2
sh2

�
h

2
s · ei

�

, (4.10)

ri3 =
−σi
h

sh(hs · ei). (4.11)

In particular, for |s|h bounded,

|ri1| ≤ C, |ri2| ≤ C|s|2, |ri3| ≤ C|s|. (4.12)

for some constant C independent of s and h.
Combining (4.7) and (4.8) and using the formula of lemma 2.1, we obtain

C

|s| �fh�
2
L2(W̊h)

≥
�

i

�

Bi
h

(diuh)
2

�

ri1ai(ψ) + ri3
h2

4
di(ψ)

�

� �� �

(1)

+
�

i

�

Bi
h

di(uh)ai(uh)

�

ri1 − ri2
h2

4

�

di(ψ)

� �� �

(2)

+
�

i

�

Bi
h

(ai(uh))
2 �

ri2ai(ψ)− ri3di(ψ)
�

� �� �

(3)

. (4.13)

We shall now estimate the terms (1), (2) and (3) separately.

To estimate (1), we use the fact that |di(ψ)| ≤ C and |ri3| ≤ C|s| by (4.11), so
that |ri3h2di(ψ)| ≤ Ch2|s|. Now, we use that the operator di is of norm of the order
of 1/h, hence

k�

i=1

�

Bi
h

(diuh)
2 ≤ C

h2

�

Bh

(uh)
2. (4.14)

Combining all these estimates, we obtain
�
�
�
�
�

�

i

�

Bi
h

(diuh)
2ri3

h2

4
di(ψ)

�
�
�
�
�
≤ C�fh�2L2(W̊h)

|s|−1.
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According to (4.9), we also have
�
�
�
�
�

�

i

�

Bi
h

(diuh)
2
ri1ai(ψ)−

�

i

�

Bi
h

(diuh)
2
σihai(ψ)

�
�
�
�
�

≤ C|s|2|h|2�uh�2Ḣ1(Bh)
≤ C|s|2�uh�2L2(Bh)

≤ C�fh�2L2(W̊h)
.

where we again used (4.14).
Finally, using that ai(ψ) ≥ 0 on Kh and ai(ψ) = 1 on Wh, we obtain

�

i

�

Bi
h

(di(uh))
2

�

ri1ai(ψ) + ri3
h2

4
di(ψ)

�

≥ �uh�2Ḣ1(Wh)
−C

�fh�2L2(W̊s)

|s| ,(4.15)

The term denoted as (2) simplifies by remarking that ai(u)di(u) = di(u
2/2) and by

performing an integration by part without boundary terms since diψ = 0 on ∂Bh. To
simplify notations, let us also remark that ri1 − ri2h

2/4 = σihch(hs · ei). Then

�

i

�

Bi
h

di(uh)ai(uh)σ
i
hch(hs · ei)di(ψ) = −

�

i

�

Bi
h

u2
h

2
di

�
σihch(hs · ei)di(ψ)

�
.

Recalling that |di(σidiψ)| ≤ C by assumption, this term then satisfies
�
�
�
�
�

�

i

�

Bi
h

di(uh)ai(uh)σ
i
hch(hs · ei)di(ψ)

�
�
�
�
�
≤ C�uh�2L2(Bh)

≤ C
�fh�2L2(W̊s)

|s|2 .(4.16)

Finally, to estimate the term (3), using the rough estimates (4.12), one easily
checks that

�
�
�
�
�

�

i

�

Bi
h

(ai(uh))
2 �

ri2ai(ψ)− ri3di(ψ)
�

�
�
�
�
�
≤ C|s|2�uh�2L2(Bh)

≤ C�fh�2L2(W̊s)
.(4.17)

Combining estimates (4.15)–(4.16)–(4.17) and putting them in (4.13), we obtain
directly estimate (4.6). �

4.3. Existence of discrete CGO solutions

In this section we state the theorem of existence of discrete CGO solutions and we
give some estimates on them.

Theorem 4.4 Let m ∈ R+. For all qh ∈ C(W̊h) satisfying �qh�L∞(W̊h)
≤ m, there

exist s0 > 0 that depends on m such that ∀η ∈ C
d such that η · η = 0, if s := �(η)

verifies s0 ≤ |s| ≤ cmin{�−1
d , h−2/3}, there exists uh ∈ C(Wh) a solution of

Δhuh + qhuh = 0, on W̊h,
that satisfies

uh(x) = eη·x + es·xrh(x) on Wh (4.18)

with

�rh�Ḣ1(Wh)
+ |s|�rh�L2(Wh) ≤ C(1 + |s|2�a + |s|4h2), (4.19)

Moreover, the CGO solution uh satisfies,

�uh�H1(Wh) ≤ Ce|s||s|2. (4.20)
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Before going into the proof, let us remark that when η ∈ C
d satisfies η · η = 0,

easy computations show |�(η)| = |�(η)| and then |s| = |η|/
√

2.
Proof Set Φη(x) = η · x ∈ C(Kh) and φs(x) = s · x = �(Φη(x)).

Writing η = s + iα, (s, α) ∈ (Rd)2, using Proposition 4.1, we get

e−φs(Δhe
Φη + qhe

Φη ) = eiα·x
�
e−ΦηΔeΦη + q

�

and therefore

�e−φs(Δhe
Φη + qh)�L2(W̊h)

≤ C(|s|2�a + |s|4h2 + 1),

where, since |s|�d ≤ c0, we have bounded |s|�d by some uniform constant.
The sought rh ∈ C(Wh) must verify

Δh
�
eφsr

�
+ qhe

φsrh = −Δhe
Φη − qhe

Φη in Wh,
that is

Δs,hrh + qhrh = e−φs(Δhe
Φη + qhe

Φη ) in Wh.

Lemmas 4.2–4.3 then prove the existence of such an rh that verifies in addition

�rh�Ḣ1(Wh)
+ |s|�rh�L2(Wh) ≤ �e−φs(Δhe

Φη + qh)�L2(W̊h)

≤ C(1 + |s|2�a + |s|4h2),

which ends the proof of (4.19).
Estimate (4.20) then immediately follows. �

Of course, replacing rh by r̃h = e−i�(η)·xrh, the solution uh in (4.18) can be
rewritten as

uh(x) = eη·x(1 + r̃h(x)) on Wh, (4.21)

and easy computations show that r̃h also satisfy estimates (4.19).
In the sequel, we shall use this form of CGO solutions instead of (4.18).

Remark 4.5 Following Section 3.6, when k = d, one can construct CGO solutions
for |s| ≤ cmin{�−1

d , h−1}. Indeed, Lemma 4.2 and 4.3 only require |s| ≤ ch−2/3 in
order to apply Theorem 3.1, which holds when k = d up to the scaling h−1.

However, in this case, we see that �rh�L2 is bounded by |s|3h2, which is small only
for |s|h2/3 small, thus explaining why we cannot improve much the uniform stability
results when k = d despite the fact that the Carleman estimate is better in that case.

Howver, we shall see in Section 6 that, in the case of a uniform mesh, using
special “discrete harmonic functions”, we can slightly improve the stability estimates.

5. Stability estimate

In this Section, we focus on the proof of Theorem 2.7.
Proof Let q1,h and q2,h be two potentials in C(W̊h) such that �qj,h�L∞(W̊h)

≤ m,
j = 1, 2.

For any ξ ∈ K̂h satisfying 2π|ξ| ≤ cmin{�−1
d , h−2/3}, where c > 0 is the one of

Theorem 4.4, we set β = −2πξ ∈ R
d.

Then find s and δ in R
d such that

• s0 ≤ |s| ≤ cmin{�−1
d , h−2/3}, where s0 is given by Theorem 4.4;

• the three real vectors (s, β, δ) are orthogonal: s · β = β · δ = δ · s = 0;

• |s|2 = |δ|2 + |β|2.
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For this to be possible, we strongly use the fact that we are in dimension greater than
3, d ≥ 3. Also note that these conditions can be satisfied if and only if |s| ≥ |β|.

Set then η1 and η2 as

η1 = s + i(β + δ) and η2 = −s + i(β − δ).

By construction, η1 and η2 obeys the condition of Theorem 4.4. Therefore, there exist
solutions u1,h and u2,h of, respectively,

Δhuj,h + qj,huj,h = 0, on W̊h, j = 1, 2,

that verify

uj(x) = eηj ·x(1 + rj), j = 1, 2.

In order to simplify the notations, set λ := �Λh[q1,h]− Λh[q2,h]�Lh
.

Equation (2.24) then reads
�

W̊h

(q1,h − q2,h)e
iβ·x(1 + r1,h)(1 + r2,h) =

�

W̊h

(q1,h − q2,h)u1,hu2,h

=

�

∂Wh

(Λh[q1,h]− Λh[q2,h])(u1,h)u2,h

≤ λ|u1,h|H1/2(∂Wh)|u2,h|H1/2(∂Wh)

≤ λ�u1,h�H1(Wh)�u2�H1(Wh) ≤ λ|s|2e2|s|,
where we used (4.20) in the last inequality. Therefore,

|Fh(q1,h − q2,h)(ξ)| ≤ λs2e2s +

�

W̊h

(q1 − q2)e
iβ·x(r1,h + r2,h + r1,hr2,h)

≤λs2e2s+ C
�
�r1,h�L2(Wh)+�r2,h�L2(Wh)+�r1,h�L2(Wh)�r2,h�L2(Wh)

�
(5.1)

We first suppose that s is chosen so that it also verifies |s| ≤ �−1
a . This implies that

�r1,h�L2(Wh) and �r2,h�L2(Wh) are bounded: indeed, using (4.19),

�r1,h�L2(Wh) + �r2,h�L2(Wh) ≤ C

�
1

|s| + |s|
3h2 + �a|s|

�

.

Setting µ̃ = max{�1/2a , h1/2, �d/c}, we always have 1/µ̃ ≤ cmin{�−1
d , h−2/3} and a

simple study shows that, setting |s| = 1/µ̃,
�

1

|s| + |s|3h2 + �a|s|
�

≤ Cµ̃.

Therefore, if λ = 0, for all ξ ∈ K̂h such that 2π|ξ| ≤ 1/µ̃,

|Fh(q1,h − q2,h)(ξ)| ≤ Cµ̃.

Of course, using (5.1), this is still the case when considering λ small enough, namely
such that

λ

µ̃2
e2/µ̃ ≤ µ̃,

which can be guaranteed, for instance, for

− log(λ) ≥ 3

µ̃
. (5.2)
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Therefore, if (5.2) holds, taking |s| = 1/µ̃, we obtain that for all ξ ∈ K̂h such that
2π|ξ| ≤ 1/µ̃,

|Fh(q1,h − q2,h)(ξ)| ≤ Cµ̃. (5.3)

On the other hand, if − log(λ) ∈ (4|s0|, 3/µ̃), taking |s| = − log(λ)/3 in (5.1), we
get, for all ξ ∈ K̂h such that 2π|ξ| ≤ | log(λ)|/3,

|Fh(q1,h − q2,h)(ξ)| ≤ Cλ1/3(log(λ))2 +
1

| log(λ)| + | log(λ)|3h2 + | log(λ)|�a

≤ C

| log(λ)| ,

where we used that µ̃ = max{h1/2, �
1/2
a , �d/c0} ≤ 3/| log(λ)|,

Combining these two cases, we obtain that, if λ ≤ e−4s0 , setting

µ = max{µ̃, 3/ log(λ)},
for all ξ ∈ K̂h such that 2π|ξ| ≤ 1/µ,

|Fh(q1,h − q2,h)(ξ)| ≤ Cµ, (5.4)

which of course coincides with (2.21).
We now turn our attention to proving the bounds (2.22) on the H−r norms of

q1,h − q2,h.
For any ρ ∈ (0, 1/µ), we have

|q1,h − q2,h|2H−r(Kh)
=

�

ξ∈K̂h

|Fh(q1,h − q2,h)(ξ)|2(1 + |ξ|2)−r

=
�

|ξ|<ρ,ξ∈K̂h

|Fh(q1,h − q2,h)(ξ)|2(1 + |ξ|2)−r

+
�

|ξ|>ρ,ξ∈K̂h

|Fh(q1,h − q2,h)(ξ)|2(1 + |ξ|2)−r

≤ C(ρdµ2 + ρ−2r),

where we used that the two potentials q1,h and q2,h have L2-norms bounded by a
constant m and therefore,

�

ξ∈K̂h

|Fh(q1,h − q2,h)(ξ)|2 ≤ C.

Optimizing in ρ ≤ 1/µ, we take ρ = µ−2/(d+2r), which is indeed smaller than 1/µ,
and we obtain (2.22). �

Remark 5.1 Let us emphasize that the above proof requires the knowledge of the
norm of the difference between the DtN maps only for CGO solutions corresponding
to frequency scaling smaller than µ−1.

Therefore, we expect Theorem 2.7 to hold when replacing

�Λh[q1,h]− Λh[q2,h]�Lh
:= max
�gh�H1/2(∂Wh)

=1
| (Λh[q1,h]− Λh[q2,h]) (gh)|H−1/2(∂Wh).

by

max
�uh�H1(Wh)≤1, uh∈V≤µ−1

| (Λh[q1,h]− Λh[q2,h]) ((uh)|∂Wh
)|H−1/2(∂Wh),
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where V≤µ−1 is the space of functions of frequency smaller than 1/µ, defined by

V≤µ−1 = {u ∈ C(Wh) s.t. �u�H1(Wh) ≤ µ−1�u�L2(Wh)}.
Unfortunately, we do not know so far if the CGO solutions corresponding to |η| ≤ µ−1

belong to that space or not. This would be interesting since it would mean that only the
solutions that are relevant from the numerical analysis point of view should be taken
into account.

6. The special case of uniform meshes

When the meshes are uniform, that is when the set of directions (ei)i=1..k correspond
to an orthonormal basis of Rd (hence k = d) and when σi = 1 for every i = 1..d, the
analysis greatly simplifies. In this case, we have in particular that �d = �a = 0.

But much more simplifications occur. This section aims at giving results
corresponding to that case. In particular, we shall see that in this case, a uniqueness
result can be derived from the knowledge of the DtN map, see Theorem 6.5.

6.1. Discrete CGO solutions

In the case of a uniform mesh, Theorem 3.1 can be improved as follows:

Theorem 6.1 Using the same notations as in Theorem 3.1, if h ≤ c, for all |s|, for
all uh ∈ Cc(Bh),

|s|�uh�L2(Bh) ≤ C�Δs,hu�L2(Kh). (6.1)

Proof Of course, the proof closely follows the one of Theorem 3.1. But, in the
case of uniform meshes, the proof turns out to be much easier since, using the same
decomposition as the one in Proposition 3.3, the commutator (As,huh, Ss,huh) = 0.
This fact is due to d(σ) = 0 implying d(L) = 0 as well. We omit the proof since it is
based on the same ingredients as in Section 3.4. In order to conclude (6.1), we only
need to prove a Poincaré inequality on As,h that holds for all s, which coincides with

(3.15) since in this case Ãs,h = As,h. Details are left to the reader. �

In the uniform case, we can construct more CGO solutions than in the non-
uniform case. This is in particular due to the fact that the Carleman estimate (6.1)
holds without any limitation on the size of s.

In particular, if η ∈ C
d, setting Φη(x) = η · x, one easily checks that eΦη is a

solution of Δhuh = 0 if and only if

4

h2

d�

i=1

sh2
�
hη · ei

2

�

= 0. (6.2)

Thus, based on these discrete harmonic solutions and the Carleman estimate
(6.1), we get the following:

Theorem 6.2 Let m ∈ R+. If h < c, for all qh ∈ C(W̊h) satisfying �qh�L∞(W̊h)
≤ m,

there exist s0 > 0 depending on m such that ∀η ∈ C
d satisfying (6.2), if s := �(η)

verifies s0 < |s|, there exists uh ∈ C(Wh) a solution of

Δhuh + qhuh = 0, on W̊h,
that satisfies

uh(x) = eη·x(1 + rh(x)) on Wh (6.3)
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with

|s|�rh�L2(Wh) ≤ C, (6.4)

for some C > 0 independent of h > 0 and s.

The proof of Theorem 6.2 is the same as the one of Theorem 4.4, and is therefore
omitted.

6.2. Application

The application we have in mind is very much related to the proof of Theorem 2.7.
Namely, we are going to prove the following:

Proposition 6.3 Suppose that the mesh is uniform, that is the set of connection
(ei)i=1..d is an orthonormal set of R

d and σi = 1 forall i = 1..d. Let m ∈ R+.
Then for all qh ∈ C(W̊h) satisfying �qh�L∞(W̊h)

≤ m, for all β ∈ R
d, if there exists

j0 ∈ [[1, d]] such that β · ej0 = 0, then for all h > 0 there exists ηh ∈ C
d that can be

made arbitrarily large so that there exist u±,h ∈ C(Wh) solutions of

Δhu±,h + qhu±,h = 0,

that satisfy

u±,h(x) = eiβ·xe±ηh·x(1 + r±,h(x))

with r±,h(x)

|ηh|�r±,h�L2(Wh) ≤ C.

Furthermore, ηh is independent of qh.

Proof Let β ∈ R
d , and assume, without loss of generality, that β · e1 = 0. Then, one

has to find ηh ∈ C
d such that η1 = iβ+ ηh and η2 = iβ− ηh both satisfy (6.2), that is:

0 =

d�

j=1

sh2
�
hηh · ej ± ihβ · ej

2

�

.

After some tedious computations, this yields:

0 =

d�

j=1

sh(hηh ·ej) sin(hβ ·ej) and

d�

j=1

ch (hηh · ej) cos(hβ ·ej) = d.(6.5)

We then choose a real unit vector ah orthogonal to
�d
j=1 sin(hβ · ej)ej such that

a · e1 = 0. Such a vector always exist in dimension d ≥ 3.
For α ∈ R

∗ arbitrary, let ηh ∈ C
d be a solution of

∀j = 2..d,
1

h
sh(hηh · ej) = αaj,h (6.6)

and ch(hηh · e1) = d−
d�

j=2

ch(hηh · ej) cos(hβ · ej),

which can be solved in C since ch is surjective on C.
By construction, this vector ηh is convenient for Proposition 6.3.
Besides the coefficient α may be chosen arbitrarily large enough, which completes

the proof of Proposition 6.3. �

Remark 6.4 When there is no j such that β · ej = 0, we do not know how to solve
(6.5) with arbitrarily large η. This would have important consequences with respect to
the uniqueness properties of the discrete Calderón problems on uniform meshes, see
for instance the paragraph below.
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6.3. A uniqueness result

The above construction allows us to state a uniqueness result:

Theorem 6.5 For qh defined on Kh and j = 1..d, define qh[j], the average of qh in
the direction j as follows: qh[j] : K�j

h → R, where

K�j
h :=

�

x ∈ [0, 1]d−1 such that ∃k ∈ [[0, N − 1]]d−1 such that x =
k

N

�

,

and is defined by

qh[j](x1, .., xj−1, xj+1, .., xd) :=

h
�

(x1,xj−1,xj ,xj+1,..,xd)∈Kh

qh(x1, .., xj−1, xj , xj+1, .., xd).

If the mesh is uniform and Λh[q1,h] = Λh[q2,h] and q1,h, q2,h belong to L∞(W̊h),
then for every direction j, we have q1,h[j] = q2,h[j].

Proof Fix j ∈ [[1, d]]. Take then ξ̂ ∈ K̂�j
h . Our goal is to show that

Fh(q1,h[j]− q2,h[j])(ξ̂) = 0,

which of course implies that q1,h[j] = q2,h[j]. In order to do that, we define ξ ∈ K̂h as
follows:

ξ = (ξ̂1, . . . , ξ̂j−1, 0, ξ̂j+1, . . . , ξ̂d),

One then easily checks that

Fh(q1,h − q2,h)(ξ) = Fh(q1,h[j]− q2,h[j])(ξ̂).

Thus we only have to prove that for all ξ ∈ K̂h such that ξ · ej = 0,

Fh(q1,h − q2,h)(ξ) = 0.

But, setting β = 2πξ, we can use then the functions u+ and u− built as in
Proposition 6.3 and apply equation (2.24):

0 =

�

Wh

(q1,h − q2,h)u+,hu−,h

=

�

Wh

(q1,h − q2,h)e
2iβ·x(1 + r+,h)(1 + r−,h)

= Fh(q1,h − q2,h)(ξ) + O

�
1

|η|

�

.

Since η can be made arbitrarily large, we obtain Fh(q1,h − q2,h)(ξ) = 0 for all ξ ∈ K̂h
such that ξ · ej = 0. This concludes the proof. �

7. Conclusion

In this article, we have derived uniform stability estimates for the discrete Calderón
problems. But still, a lot remains to be done.

1. Convergence of the inverse problems. The results developed here should
be considered as a first step of the convergence of the discrete Calderón problems
towards the continuous ones. Indeed, it would be very interesting to prove that if qh
is such that Λh[qh] is close to Λ[q] for h small enough, then qh is close to q.
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However, this might be much more difficult than expected since the operators
Λh[qh], Λ[q] are operators defined on different functional spaces. Besides, as we have
explained in that article, Λh[qh] contains all the solutions of the discrete Calderón
problem, which may have very unexpected behavior at large frequency scales.

2. Discrete vs continuous CGO. Another open problem concerns the
convergence of the discrete CGO solutions toward the continuous ones. This issue
is probably related to the above point, but so far, it is not clear how fast the discrete
CGO solutions converge to the continuous ones.

Of course, this study should help to understand in which sense the discrete
Calderón problems converge to the continuous one.

3. The 2 dimensional case. When considering the Calderón problem in 2-d,
one cannot use CGO solutions anymore, and the analysis in [2] rather uses tools of
complex analysis. To our knowledge, trying to get uniform stability estimates for the
discrete 2-d Calderón problems is completely open.

4. New bounds on the gradient. We point out that we obtained new bounds
on the gradient of r by performing a multiplier type estimate in the proof of Lemma 4.3.
Those bounds could be used to improve the results in the continuous case. This work
is in progress.

Acknowledgments. The authors thank Jérôme Le Rousseau and Gunther Uhlmann

for their interest in that work and fruitful discussions.

Appendix

We check in this appendix that Assumptions 2 and 3 hold in several relevant situations.
A finite-element method Set n the cardinal of Kh, we shall identify C(Kh) and
C
n via a so-called numbering of the nodes. We suppose that the discretization of the

problem leads to a linear system of the form

Khuh + qhuh = 0, (A.1)

where Kh is the n × n rigidity matrix representing the Laplacian and qhuh is the
multiplication of the function qh by the function uh. Note that, for Lagrangian finite
elements, the discretization would rather yield a system of the form

Khuh + Mh[qh]uh = 0, (A.2)

where Mh[qh] is the mass matrix, a n× n matrix whose coefficient depend linearly on
qh defined by

(Mh[qh])ij =

�

Ω

qφiφj ,

where (φi) is the basis function associated to the node i. We suppose that the so-called
“mass lumping” technique has been used. This technique reduces the mass matrix to
a diagonal matrix, hence to a multiplication coefficient-wise by a vector, which yields
a system of the form (A.1).

For each x, y ∈ C(K̊h), we denote Kh(x, y) the coefficient of the matrix Kh that
links the degrees of freedom of uh associated to the nodes x and y. We suppose that
Kh obeys the following standard conditions :

• Kh is symmetric, that is Kh(x, y) = Kh(y, x).
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• The constants functions of C(Kh) are in the kernel of Kh , that is Kh(1) = 0 on
K̊h .

• Kh(x, y) = 0 if x � y or x �= y

Note that these conditions are natural and usually satisfied when discretizing the
Laplace operator.

In order to simplify the notations, define, for any x ∈ K̊h,

x±i/2 = x± h

2
ei and x±i = x± hei

The third condition states that

Khuh(x) =
�

y∈Kh

Kh(x, y)uh(y)

= Kh(x, x)uh(x) +

k�

i=1

Kh(x, x
+i)uh(x

+i) + Kh(x, x
−i)uh(x

−i).

The second condition states that

Kh(x, x) = −
k�

i=1

�
Kh(x, x

+i) + Kh(x, x
−i)

�
.

For each direction of connection i, define σih as σih(x) := h2Kh(x
+i/2, x−i/2)

Then, for any uh ∈ C(K̊h),

(
�

i

diσ
idiu)(x) =

1

h

k�

i=1

(σidiu)(x+i/2)− (σidiu)(x−i/2)

=
1

h2

k�

i=1

�

σih(x
+i/2)(uh(x

+i)−uh(x))− σih(x
−i/2)(uh(x) − uh(x

−i))
�

=

k�

i=1

�
Kh(x

+i, x)(uh(x
+i)−uh(x))−Kh(x, x

−i)(uh(x)−uh(x
−i))

�

=

�
k�

i=1

�
Kh(x, x

+i)uh(x
+i) +Kh(x, x

−i)uh(x
−i)

�

�

− uh(x)

�
k�

i=1

Kh(x, x
+i) + Kh(x, x

−i)

�

= Khuh(x).

Below, we exhibit some particular cases of interest that verify Assumption 3.
First instance of Assumption 3. First, suppose that the meshMh ∈ R

d is regular
(i.e, F = Id) and that the discretization method is the 2d+1 point Laplacian. In this
case, taking e1,...,ed as the canonical vectors of Rd, the matrix Kh is the following:

Kh(x, y) =







1
h2 if x ∼ y and x �= y
− 2d
h2 if x = y
0 if x � y or x �= y.

Such a Kh verifies the hypotheses needed in the proof of Theorem 2. Moreover, σih is
a constant equal to σi = 1 and �a = �d = 0.
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Second instance of Assumption 3. If one discretizes the regular mesh with an
higher order finite difference Laplacian, say for instance the 9 points Laplacian in two
dimensions, it is sufficient to take a higher number of connections. For the 9 points
Laplacian, take e1 = (1, 0), e2 = (0, 1),e3 = (1, 1), e4 = (1,−1), the matrix K takes 4
different values

Kh(y, x) = Kh(x, y) =







a
h2 if y = x± e1 or y = x± e2
b
h2 if y = x± e3 or y = x± e4

− 4
h2 (a + b) if x = y

0 if x � y or x �= y.

By construction of σ, we have : σ1
h = σ2

h = a and σ3
h = σ4

h = b. Hence σh has the
required properties with �a = �d = 0 for a + b = 1
Third instance of Assumption 3. We now suppose that the mesh Mh ∈ R

2 is
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Figure A1. Left : The mesh refinement of the rectangular grid for triangular
finite elements. Right: Notation on a standard triangle

a perturbation of Wh, and that the discretrization used is the P1 finite element on
triangles. we do not treat the case of tetrahedrons in R

3 which only adds complexity
to the notations. It is possible to uniformly refine a cartesian grid into a triangular
mesh without adding point by considering the connexions e1 = (1, 0), e2 = (0.1),
e3 = (1, 1) (See Figure 7 left: The black point represent a node x, and all the grey
points represent the neighbours of x).

We recall that, in P1 finite elements for triangles, the coefficient Kh(x, y) of the
rigidity matrix is defined as

Kh(x, y) = −
�

T∈T (x,y)

�

T

∇φxT∇φyT ,

where T (x, y) is the set of triangles that contains both x and y and φxT is the only
linear form of T that is equal to 1 on the vertex x ∈ T and equal to 0 on the two
other vertices of T . If the triangle vertices xi and the triangle edges Ei are numbered
as shown in Figure 7 on the right, if a⊥ is the vector a rotated by π/2, then:

φx1(x) = 1 +
E⊥

1 · (x − x1)

E⊥
1 ·E2

φx2(x) = 1 +
E⊥

2 · (x− x2)

E⊥
1 · E2

.
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Consequently:
�

T

∇φx1T ∇φx2T =

�

T

E⊥
1 ·E⊥

2

(E⊥
1 ·E2)2

= 2
E1 · E2

|E⊥
1 · E2|

We perform an explicit computation of K(x, x + he1) for which T (F (x), F (x + he1))
is made of two triangles. They both of course have F (x), F (x + he1) as vertices,
the third vertex being either F (x + he3) or F (x − he2). For instance, for the
F (x), F (x + he1), F (x + he3) triangle, we get the following contribution in σ, that
we call A hereafter:

A :=

�

T

∇φxT∇φx+he1T

= −1

2

(F (x + he3)− F (x + he1)) · (F (x + he3)− F (x))

|(F (x + he3)− F (x + he1))⊥ · (F (x + he3)− F (x))| .

If we suppose that F = Id + g, with �a = �g�C1 ≤ 1 a Taylor expansion proves that
A = −1/2 and summing the different contributions on the triangles, we have

�
�
�

�

σjej ⊗ ej − Id
�
�
� = O(�a).

Besides, setting �d = �g�C2, the contribution to di(σ
j) is of the form

diA = O(�d).

For instance, Theorem 2.7 ensures that the scaling that should be compared are �d, �
1/2
a

and h1/2, meaning that if we want h1/2 to be the dominant scale, the C1-norm of g
has to be smaller than h whereas its C2-norm can scale as h1/2 at most. Note that the
scaling �g�C2/�g�C1 is a scaling of the oscillations of g and that it must be bounded
by h−1/2.
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