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Abstract 
 
Engle’s (1982) ARCH-LM test is the standard test to detect autoregressive 
conditional heteroscedasticity. In this paper, Monte Carlo simulations are used to 
demonstrate that the test’s statistical size is biased in finite samples. Two complementing 
remedies to the related problems are proposed. One simple solution is to simulate new 
unbiased critical values for the ARCH-LM test. A second solution is based on the 
observation that for econometrics practitioners, detection of ARCH is generally followed 
by remedial modeling of this time-varying heteroscedasticity by the most general and 
robust model in the ARCH family; the GARCH(1,1) model. If the GARCH 
model’s stationarity constraints are violated, as in fact is very often the case, obviously, 
we can conclude that ARCH-LM’s detection of conditional heteroscedasticity has no or 
limited practical value. Therefore, formulated as a function of whether the GARCH 
model’s stationarity constraints are satisfied or not, an unbiased and more relevant two-
step ARCH-LM test is specified. If the primary objectives of the study are to detect and 
remedy the problems of conditional heteroscedasticity, or to interpret GARCH 
parameters, the use of this paper’s new two-step procedure, 2S-UARCH-LM, is 
strongly recommended. 
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1. Introduction 
 
Engle’s (1982) ARCH-LM test is the standard approach to detect autoregressive conditional 
heteroscedasticity.1 However, according to previous research by for instance Engle, Hendry, 
and Trumble (1985), Hong and Shehadeh (1999), Luukkonen, Saikkonen, and Teräsvirta 
(1988), Diebold and Pauly (1989), and Bollerslev and Wooldrige (1992), the actual statistical 
size of the ARCH-LM test is generally less than its nominal size in finite samples. This 
implies that the nominal size of the test tends to overestimate the true probability of a type-1 
error in finite samples. Consequently, if this is the case, there should be a good potential to 
adjust the statistical size of the original ARCH-LM test to increase the statistical power of 
this test. However, in this paper Monte Carlo simulations reveal that in practice the actual 
statistical sizes for medium and small sample sizes are higher than what is stipulated by the 
nominal statistical sizes, given that we rule out the irrelevant cases which exhibit violated 
non-stationarity constraints2 in the GARCH model. Thus, when we apply a more relevant 
and realistic Monte Carlo simulation approach that replicates the factual test procedure that 
practitioners in fact follow (which includes ruling out cases where the stationarity constraints 
are violated), we find severe size overrejection for medium and low sample sizes.3 For these 
reasons, new critical values are simulated to remedy the problems in both of the above 
mentioned approaches.4 
 
As a consequence, a new test named the Two-Step Unbiased ARCH-LM (2S-UARCH-LM) 
test is constructed in this paper. In contrast to all previous ARCH tests, this new test takes 
into account whether or not we can remedy the autoregressive conditional heteroscedasticity 
problem that is detected by the applied ARCH test. If the primary objectives of the study are 
to detect and remedy the problems of conditional heteroscedasticity (e.g. to obtain more 
efficient standard errors by modeling a GARCH model), or to interpret GARCH parameters 
(and make a statement about financial risks), it is of crucial importance that the stationarity 
constraints of the GARCH estimates are not violated (for instance due to negative 
variances). The new test procedure only declares that relevant autoregressive conditional 
heteroscedasticity effects are identified when the ARCH test is significant and the 
stationarity constraints are satisfied in a GARCH(1,1) framework. If not both of these 
conditions are satisfied this new test does not define this series as a relevant autoregressive 
conditional heteroscedasticity process. Only if both conditions are simultaneously satisfied 
we can know that there is a remedy to the problem, and solving the noise problem in the 
residuals is usually the sole purpose behind the entire exercise of ARCH-detection tests.  
 
If the estimated GARCH coefficients exhibit negative or explosive variances, this GARCH 
model is not useful despite that the ARCH-LM test is significant. Thus, this violation of the 
stationarity constraints is also a warning that a GARCH(1,1) model is not suitable for solving 
the noise problems in this model’s residuals (often due to misspecification problems). In 
summary, the major reasons for why 2S-UARCH-LM should be applied is because it 

                                                 
1 In this paper the name ARCH-LM is used, regardless of whether the test’s χ2- or F-versions are referred to. ARCH-LM is, despite its small-sample biasedness, 
the standard test to detect autoregressive conditional heteroscedasticity in all sample sizes (see for instance, Hodge (2005), Karadas and Öğünç (2005), and 
Weymark (1999)). 
2 These so-called “stationarity constraints” are presented in Table 1. Notice that these restrictions include both constraints regarding non-stationarity of the 
GARCH coefficients as well as non-negativity constraints for these coefficients. 
3 See the statistical size of the 2S-ARCH-LM test in Table 4. 
4 See the unbiased critical values of the UARCH-LM test in Table 5 (that adjusts the size of the ARCH-LM test), and the unbiased critical values of the 2S-
UARCH-LM test in Table 5 (that adjusts the size of the 2S-ARCH-LM test). 
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exhibits good size and power properties and since it takes into consideration whether the 
GARCH constraints are satisfied or not. 
 
In previous research we can actually find some unbiased alternatives5 to Engle’s ARCH-LM 
test that have been proposed by for instance Bera and Higgins (1992), Gregory (1989), Lee 
(1991), Lee and King (1993), Robinson (1991), and Hong and Shehadeh’s (1999). However, 
the main reason why neither of the previous tests constitute any relevant substitute to the 
new test in this paper is because none of them takes into consideration whether the GARCH 
model’s stationarity constraints are satisfied or not. For instance, these traditional 
approaches do not distinguish whether the variances are negative or whether there are very 
explosive coefficients in a series. Therefore, these tests are not directly comparable or any 
valid substitute to the new 2S-UARCH-LM test in this paper. Moreover, the impact factors 
of these traditional ARCH tests are very low compared to the ARCH-LM test which still is 
the undisputed number one standard test to detect autoregressive conditional 
heteroscedasticity. Accordingly, these complicated alternative methods are generally not 
applied by the average practitioner in economics which implies that these contributions have 
limited utility in practice. These methods involves for instance fairly complicated kernel-
based weighting schemes based on frequency-domain approaches which is executed by 
programming in Gauss, MatLab, or some other flexible environment. One may also argue 
that there are some other problems and limitations in these tests, however, the main reason 
why the ARCH-LM test still is the standard test (despite its size problems) appears to be due 
to its simplicity and since it is included in many user-friendly program packages.  
 
Consequently, this paper aims to introduce a simple and user-friendly unbiased procedure 
(based on new critical values) to detect and remedy conditional heteroscedasticity problems. 
This new approach can be applied by practitioners in economics with fairly basic skills in 
statistics and with no knowledge in programming. However, the unique contribution of this 
paper and the most important reason to apply this new ARCH-detection method (2S-
UARCH-LM) is that it exhibit good size and power properties and that it, unlike previous 
methods, takes into account whether the GARCH stationarity constraints are satisfied or 
not.  
 
2. The specifications of the ARCH tests 
 
From the viewpoint of inference, neglecting ARCH effects may lead to arbitrary large losses 
in asymptotic efficiency (Engle, 1982) and cause overrejection of standard tests for 
autocorrelation in the conditional mean (see Taylor, 1984 and Diebold, 1987). Engle’s (1982) 
ARCH-LM test statistic is still the most commonly applied standard test to detect 
autoregressive conditional heteroscedasticity. It is computed from an auxiliary test 
regression, and the null hypothesis is that there is no existing ARCH up to order q in the 
residuals (et). It is asymptotically locally most powerful if the true alternative is ARCH(q). 
The null hypothesis of no ARCH(q) is examined by running the following regression. 

(1)  t

2

st

q

1s

s0

2

t υeˆˆe ++= −
=
∑δδ  

                                                 
5 Most of these mentioned alternative tests are not directly comparable to Engle’s ARCH-LM test. These tests usually only test some alternative properties that 
are very related to the ARCH-LM test, but they definitely not direct substibutes to the ARCH-LM test.  
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Thus, the squared residuals are regressed on a constant and lagged squared residuals up to 
order q. There are two commonly applied versions of the test. One is the ARCH-LM test 
statistic that is computed by the number of observations multiplied by the R2 from the 
regression in Equation 1. A lagrange multiplier interpretation can be given the test statistic 
and it is asymptotically distributed as a χ2(p) random variable. However, the F-statistic 
version of the test is an omitted variable test for the joint significance of all lagged squared 
residuals. From previous research we know that the exact finite sample distribution of the F-
statistic under the null hypothesis is not known.  

Usually, detection of autoregressive conditional heteroscedasticity is followed by the 
modeling of this time-varying heteroscedasticity. In the family of ARCH, the most robust 
and most commonly used modeling procedure is the GARCH(1,1) model (Bollerslev, 1986). 
It is well known that the stationarity constraints very often are not satisfied for the estimated 
GARCH(1,1) models (see Table 1). Satisfied stationarity constraints in GARCH(1,1) are 
crucial in order to avoid meaningless processes, such as models with negative variances or 
very explosive processes. If the ARCH-LM test concludes that there is a conditional 
heteroscedasticity problem but the GARCH(1,1) model estimates coefficient values which 
implies negative variances, then there is no simple remedy to the problem. 

Prior to the presentation of the new test procedure, it is necessary to present some 
fundamental concepts on the topic of GARCH models. In Equation 2 a GARCH(1,1) 
process is presented. 

(2)  1t

2

1ttttt hβεαωh,hηε −− ++==  

Obviously this data generating process (DGP) is also the test specification of an empirical 
GARCH(1,1) model, where the GARCH coefficients are interpreted as follows. ω̂  is the 
estimated weighted average of the long-term average. α̂  is the ARCH component that 

estimates the relation to the conditional volatility observed in the previous period, while β̂  
(the GARCH component) is the estimated forecasted variance from the last time period. In 
the GARCH(1,1) process, it is roughly accurate to say that α determines the degree of 
volatility of the variance process, while ∑(α+β) determines its persistence.6  

If the residuals from an arbitrary OLS regression model exhibit the GARCH problems 
observed in Equation 2, it is a well known fact that this heteroscedasticity can cause 
problems in the analysis. The regression coefficients are still unbiased, but the confidence 
intervals will be too tight, giving a false sense of precision. For large sample sizes, so-called 
Robust Standard Errors (or quasi-maximum likelihood, QML, covariances and standard 
errors) by Bollerslev and Wooldridge (1992) can improve the estimates of standard errors in 
the presence of conditional heteroscedasticity. This option is advised when the residuals in 
the DGP are not conditionally normally distributed. In situations when the assumption of 
conditional normality do not hold, the (G)ARCH parameter estimates will still be consistent 

                                                 
6 According to for instance Lamont, Lumsdaine and Jones (1996) and Gallo and Pacini (1997) ∑(α+β) determines the GARCH model’s persistence. 
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given that the model is correctly specified. For reasons related to risk aversion it is advised 
that QML is applied for GARCH(1,1) models as well.7 

In order to be able to make the above interpretations regarding the GARCH coefficients, it 
is necessary to examine whether the stationarity constraints in Table 1 are satisfied or not. 
Since ht in Equation 2 represents the conditional variance, it must always be strictly positive. 
It is well known that the estimated volatility coefficients often exhibit negative or explosive 
estimates. Obviously, negative variances cannot be interpreted from an intuitive perspective 
and therefore such a model is completely misleading and useless. The constraints for the 
GARCH(1,1) parameters are as follows; the constant ω>0, the ARCH parameter 0≤α<1, 
GARCH parameter 0≤β<1, ∑(α+β)<1, and the unconditional variance UV>0 (see e.g. 
Franses, Dijk and Lucas (2004), Gourieroux (1997), Kim and Schmidt (1993), or Li, Ling, 
and McAleer (2003)). Thus, if  

(3)  
ω

UV = > 0
1- α - β

 
 
 

 

is satisfied, then the UV is well defined, which is implied by the constraints ω>0 and 
∑(α+β)<1. The constraint ω=1-α-β implies that the UV is equal to 1 for all simulated 
processes. These constraints are summarized below in Table 1. 

Table 1 – Stationarity constraints of the DGPs 

   

Factor Symbol Constraint 

ARCH parameter constraint α 0 ≤ α < 1 

GARCH parameter constraint β 0 ≤ β < 1 

Conditional variance constraint h h > 0  ∀ t 
Persistence constraint δ ∑(α+β) < 1 
Unconditional variance constraint σ2 If σ2 = (ω / (1 - α - β)) > 0 is satisfied, 

then the σ2 is well defined, which is 
implied by the constraints  
ω > 0 and ∑(α+β) < 1. 

Notice that the so-called stationarity constraints in Table 1 includes both constraints 
regarding non-stationarity of the GARCH parameters as well as non-negativity constraints 
for these parameters. Therefore, in the literature it is standard to refer to these GARCH 
constraints in Table 1 as “stationarity constraints” despite that this concept also includes 
constraints regarding parameter non-negativity. 

One of the main contributions of this paper is to present a completely new, but in practice 
more relevant, form of definitions for statistical size and statistical power analysis. Rejection 
of the null hypothesis is only registered when the stationarity constraints are satisfied so that 
it is possible to remedy the problem. Counting how many times ARCH-LM detects 
conditional heteroscedasticity simultaneously as the estimated parameters are negative or 
explosive is not relevant in reality. For instance, in financial economics or for option pricing 
models, detection of conditional heteroscedasticity is not meaningful unless the stationarity 

                                                 
7 Unless the QML approach is applied, the covariance matrix estimates will not be consistent which would result in incorrect standard errors. The QML 
correction does not affect the estimated coefficients only the estimated standard errors. Consequently, this adjustment does not affect the executed simulation 
studies since new simulated critical values are applied. However, when estimating GARCH(1,1) coefficients this correction adjusts the standard errors. See for 
instance Chan and McAleer (2003). 
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constraints are satisfied, since prices cannot be derived from a model with negative variances 
or explosive processes. Therefore a new form of relevant size and power concept is 
formulated in this paper. 

It is possible to constrain the estimated coefficients not to go beyond certain values. 
However, it is well known that such restrictions often lead to misleading values of the 
estimates. For instance, the EGARCH model proposed by Nelson (1991) specifies the left-
hand side of the conditional heteroscedasticity equation as the log of the conditional 
variance. Therefore, this implies that the leverage effect is exponential, rather than quadratic, 
and that forecasts of the conditional variance are guaranteed to be nonnegative. However, 
obviously, since the true DGP in the simulation experiment is generated from the most 
general and robust process, GARCH(1,1), estimating these processes with something other 
than a GARCH(1,1) model (e.g. an EGARCH or an IGARCH model) would be totally 
incorrect and irrational. 

3. The ARCH-detection procedures 
 
The following test procedures are defined or created in this paper and later applied in the 
Monte Carlo (MC) simulation section of this study:8 
 

• ARCH-LM (Used as a benchmark test in the MC study)9: Engle’s (1982) test can 
only be used to detect whether there exist ARCH effects or not. The test is biased in 
finite samples, and does not take into account whether the stationarity constraints are 
satisfied or not.  

 
• 2S-ARCH-LM (Used as a benchmark test in the MC study)10: This traditional two-

step approach can detect whether there exists ARCH noise in the residuals that is 
possible to remedy by using a stationary GARCH(1,1) model. This is an replication 
of the actual statistical power that a researcher has to face if the objective is to detect 
and solve the problem of conditional heteroscedasticity in the residuals. This two-
step approach replicates the current standard procedure that is followed by most 
econometric practitioners. Therefore, this test procedure can be used as a benchmark 
in comparison with the new suggested 2S-UARCH-LM method in this paper. In this 
paper it is illustrated that 2S-ARCH-LM is biased in finite samples, but it rules out 
models where the stationarity constraints are violated. 

 
• UARCH-LM (New test): This new test can only detect whether there exist ARCH 

effects or not. In contrast to the 2S-UARCH-LM test below, UARCH-LM does not 
take into account whether the stationarity constraints are satisfied or not. In this 
paper it is illustrated that the lagrange multiplier (LM) test version of the test statistic 
(based on Equation 1) in fact is not χ2-distributed in finite samples.11 Moreover, the 

                                                 
8 2S-(U)ARCH-LM test stands for Two-stage (unbiased) autoregressive conditional heteroscedasticity lagrange multiplier test, since in the first step the ARCH-
LM is executed, and in the next step we evaluate whether the stationarity constraints are satisfied. Since the 2S-ARCH-LM procedure exhibits severe size-
problems, new remedial critical values are simulated for 2S-ARCH-LM (2S-ARCH-LM is simply a replication of the currently most common procedure that is 
applied by practitioners, and is for practical reasons given a name in this paper since it is used as a benchmark model that is compared with the new approach). 
Besides new critical values, exactly the same procedure is used in the new test. However, since the new critical values make the 2S-ARCH-LM unbiased, the 
test new procedure is denoted 2S-UnbiasedARCH-LM or 2S-UARCH-LM. 
9 In this paper this ARCH-LM test is applied as a benchmark test in order to be able to compare the performance of the new UARCH-LM test. 
10 In this paper this the 2S-ARCH-LM test is applied as a benchmark test in order to be able to compare the performance of the new 2S-UARCH-LM test. 
11 This is demonstrated in the Monte Carlo simulations in Table 4. 
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omitted variable test statistic for the joint significance of all lagged squared residuals 
(the F-test version of the ARCH test) is not F-distributed in finite samples.12 
Therefore new unbiased critical values for these test statistics are presented in Table 
5.  

 
• 2S-UARCH-LM (New test)13: Unlike all previous tests, this new two-step test can 

detect whether there are significant ARCH effects in the residuals simultaneously as 
it can determine whether this noise is possible to remedy by using a stationary 
GARCH(1,1) model. Consequently, this approach requires that the stationarity 
constraints in Table 1 are satisfied. In this paper it is illustrated that the lagrange 
multiplier (LM) test version of the 2S-ARCH-LM test statistic (that is based on 
Equation 1) in fact is not χ2-distributed in finite samples.14 Moreover, the omitted 
variable test statistic for the joint significance of all lagged squared residuals (the F-
test version of the ARCH test) is not F-distributed in finite samples.15 Therefore new 
unbiased critical values for these test statistics are presented in Table 6. Unlike the 
critical values in Table 5 for the UARCH-LM test, these critical values takes into 
account whether the stationarity constraints are violated or not. This test is the main 
contribution of the paper since it is the only test that controls for whether the 
stationarity constraints in Table 1 are satisfied or not.  
 
In summary, the new 2S-UARCH-LM test is conducted as follows. First, based on 
Equation 1, we construct an ARCH test statistic. If this test do not reject the null 
hypothesis of no ARCH (based on the critical values in Table 6), we conclude that 
no autoregressive conditional heteroscedasticity is present in the tested series. 
However, if the ARCH test rejects the null hypothesis of no ARCH this is only a 
necessary, but not a sufficient condition to conclude that there are stationary and 
solvable autoregressive conditional heteroscedasticity effects. It is also necessary that 
the stationarity constraints from Table 1 are satisfied to conclude that we have 
detected stationary and relevant GARCH effects. If the GARCH coefficients in the 
data generating process violates the stationarity constraints in Table 1 there is no 
cure for the problem. If there is no remedy to the problem the entire exercise is 
pointless and this is also an indication that the true DGP probably does not follow a 
GARCH model, and consequently modeling this process using a GARCH model is 
probably a bad idea to solve the problem.  

 
The following test hypotheses are examined for the studied tests in this paper: 
 

Test hypotheses for ARCH-LM and UARCH-LM: 
 

(i) Under the null hypothesis, ARCH up to order q cannot be detected. 
(ii) Under the alternative hypothesis, ARCH up to order q can be detected. 

 
 

                                                 
12 Ibid. 
13 Furthermore, observe that the above two-step approaches do not suffer from massignificance since there are if-statements that evaluate the constraints 
instead of p-values. 
14 This is demonstrated in the Monte Carlo simulations in Table 4. 
15 Ibid. 
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Test hypotheses for 2S-ARCH-LM and 2S-UARCH-LM: 
 

(i) Under the null hypothesis, ARCH up to order q cannot be detected, OR  
ARCH up to order q can be detected simultaneously as the stationarity 
constraints in Table 1 are violated for the GARCH(1,1) model. 
(If the stationarity constraints are not satisfied we have not detected a model that contains 
meaningful or realistic parameters, and there is no remedy to potential autoregressive conditional 
heteroscedasticity problems). 

(ii) Under the alternative hypothesis, ARCH up to order q can be detected, AND 
the stationarity constraints in Table 1 are satisfied for the GARCH(1,1) model.  
(If the stationarity constraints are satisfied we have detected a model that contains meaningful 
and realistic parameters, which can be applied to remedy the detected autoregressive conditional 
heteroscedasticity problems). 

In summary, the main contribution of this paper is the new two-step approach that takes 
into account whether the stationarity constraints are satisfied or not. It is named the 2S-
UARCH-LM test and the test procedure is summarized below. 

Step 1: Estimate the ARCH detection test in Equation 1. Compare this 2S-
UARCH-LM test statistic to the new unbiased simulated critical values found in 
Table 6.  

(i): If the null hypothesis of no ARCH(q) is not rejected, conclude that there is 
no presence of autoregressive conditional heteroscedasticity in the tested series.  

or 

(ii): If the null hypothesis of no ARCH(q) is rejected, go to Step 2.  

Step 2: Estimate a GARCH(1,1) model on the examined series in Step 1.  

(i): If the stationarity constraints in Table 1 are not satisfied, conclude that there 
is no remedy to the ARCH problem. (Furthermore, this violation is also an indication 
that the true DGP does not follow an autoregressive conditional heteroscedasticity process). 

or 

(ii): If the stationarity constraints are satisfied, conclude the existence of a 
autoregressive conditional heteroscedasticity process, and that it is possible to 
remedy this noise problem by using a GARCH(1,1) model.  

In this paper it is illustrated that it is important to take into consideration whether 
autoregressive conditional heteroscedasticity models contain stationary and meaningful 
coefficient estimates or not, when the rejection frequencies of a test are evaluated. The 2S-
ARCH-LM and 2S-UARCH-LM approaches are much closer to the real-world situations 
that econometrics practitioners face, since it is not interesting to evaluate whether we have 
significant ARCH effects if these effects are based on e.g. negative variances or explosive 
GARCH parameters. Thus, this new 2S-UARCH-LM approach is suggested in order to 
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obtain a more relevant size and power evaluation of the test’s ability to detect and remedy 
autoregressive conditional heteroscedasticity problems.  
 
4. The Monte Carlo simulation design 
 
Monte Carlo simulations are applied in order to evaluate the statistical size and the statistical 
power properties of different forms of ARCH tests.  
 
If the estimated statistical size is not equal to the nominal size this implies that a test is 
biased in the size. There are two categories of size-biased tests. Either the test rejects the true 
null hypothesis more often than what the nominal size stipulates (overrejection), or the test 
rejects fewer times than it should (underrejection). If the estimated size is unequal to the 
nominal size, it implies that we too often or too infrequently draw the conclusion that the 
series contains ARCH, given that there is no ARCH under the null hypothesis.  

The Monte Carlo experiment has been executed by generating data from the DGP in 
Equation 2. Definitions of the variable names and the parameter sample space of Equation 2 
are available in Table 2. 

Table 2 – The varying factors used in the size and power simulations’ DGPs 

 
Factor Symbol Design 

Nominal size π0 0.01, 0.05, 0.10. 

Number of repetitions N 50 000 for the sizes, 5 000 for the powers. 

Number of observations T 50, 100, 150, 200, 250, 500, 1 000, 1 500,  
2 000, 2 500, 5 000. 

ARCH parameter α 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 
0.80, 0.90 as long as the stationarity 
constraints are satisfied. 

GARCH parameter β 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 
0.80, 0.90 as long as the stationarity 
constraints are satisfied. 

The GARCH model’s long-term average ω ω = 1 - α - β. 

White noise process for the innovations η  ηt~iidN(0,1). 

Furthermore, the nominal sizes of 1 %, 5 %, 10 % are chosen since they are the most 
commonly applied significance levels. 50 000 repetitions were selected for the size, and 5 000 
replications were chosen for the power. The estimated error margin of the size ( π̂ ) is based 
on a 95 % binomially distributed confidence interval: 

(4)  
N

)π̂(1π̂
Zπ̂

−
±  

This is an acceptable simulation error margin with a 95 % confidence interval for the size, 
and if the estimated size is outside this interval the test is defined as a size-biased.16 The 
statistical size problem is important since a statistical size that is too low leads to reduced 
power for the test (that is, the probability of rejecting a false null hypothesis will be reduced 
if the actual size is lower than the stipulated nominal size). On the other hand, if the actual 

                                                 
16 This is an evaluation approach applied in, for instance, Edgerton and Shukur (1999). 
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size is too high this leads to a highly misleading type-1 errors (that is, the probability of 
rejecting a true null hypothesis is too high). Therefore, in direct accordance with previous 
research in various areas of statistical literature, I consider an unbiased size to be a very 
important feature for a statistical test17. 

The initial starting value of ht in the Monte Carlo simulations is set to h0=1. The number of 
start-up values for the DGP (prior that the estimation measurement process is initialized) is 
200, which should be considered as more than usual and therefore sufficient for this type of 
study. 

5. Results and analysis 
 
5.1 The stationarity constraints 
 
As previously mentioned, a general problem with GARCH-errors in the data generating 
process is that even if we simulate true clean GARCH(1,1) processes, the stationarity 
constraints are often not satisfied for an estimated GARCH(1,1) model (see Table 3 below). 
In Table 3, based on simulated data generating processes, the “percentage share of satisfied 
stationarity constraints” measures how often the estimated GARCH-models satisfy all the 
stationarity constraints from Table 1.18 Despite that the GARCH(1,1) model usually is 
considered to be the most general and robust model in the ARCH-family, it is remarkable 
how often the stationarity constraints are violated. For a sample size of 50 observations, the 
stationarity constraints are violated in at least the majority of the cases in Table 3. It is also 
illustrated that the GARCH(1,1) model very often fails to estimate pure ARCH-models or 
GARCH(p,0) models. In fact, when the true GARCH parameter (β) is zero the 
GARCH(1,1) estimates often exhibit negative betas (β).19  

                                                 
17 The general decision rule in statistical hypothesis testing is that we usually only draw conclusions if a test is significant, while if it is insignificant we say that 
the test is inconclusive (which implies that we do not have enough statistical evidence to be able to reject the null hypothesis). Inconclusive does not imply that 
we believe in the null hypothesis, at least if we exclude unit root tests. Consequently, somewhat simplified, power problems may lead to too many inconclusive 
tests (with no decisions), while size problems leads to too many incorrect decisive conclusions. Since this is the usual practice in statistical hypothesis testing, it 
is necessary that the size is unbiased. 
18 If, in repeated simulations, the coefficient estimates of the GARCH(1,1) model always satisfy all the stationarity constraints in Table 1, then the “percentage 
share of satisfied stationarity constraints” is 100 (%). Therefore, optimally, this share should be 100 (%) since we only simulate pure stationary GARCH(1,1) data 
generating processes with no violated constraints, and then we should of course expect the estimated GARCH(1,1) models to obtain coefficient estimates that 
are stationary. However, if the estimation process does not work optimally this may result in a certain fraction of the estimated GARCH(1,1) models with 
coefficients that violates the stationarity constraints in Table 1.  
19 Moreover, there are many examples of high ARCH-component values (α) that can be found in for instance, Brooks et al. (2001), Journal of International 
Financial Markets, Institutions and Money, 11, p. 221, Kim K. and Schmidt P., (1993), “Unit Root Tests with Conditional Heteroscedasticity”, Journal of Econometrics, 
59, 287-300, Li W.K., Ling S., and McAleer M., (2003), “Estimation and Testing for a Unit Root Process with GARCH(1,1) Errors”, Econometrics Reviews, 18, 
722-729. 
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Table 3 – Percentage shares of satisfied stationarity constraints for different DGPs20
 

 

GARCH-parameters T 

α β 50 100 150 200 250 500 1 000 1 500 2 000 2 500 5 000 

0.0 0.0 12.92 17.51 19.92 20.94 21.99 24.50 26.61 27.79 28.32 28.62 30.94 

0.1 0.0 19.74 29.54 36.26 39.78 42.72 48.78 52.76 54.32 53.32 52.26 52.80 

0.1 0.1 20.72 31.66 39.02 43.46 47.04 54.96 61.12 64.98 67.16 68.58 74.14 
0.1 0.2 21.76 33.56 41.96 47.40 51.86 61.68 70.82 75.46 78.96 81.84 89.62 

0.1 0.3 22.90 35.86 45.22 51.30 56.42 68.30 78.34 83.50 86.74 90.38 96.30 

0.1 0.4 24.54 39.06 48.74 55.92 60.88 74.14 84.46 89.54 92.66 95.06 99.06 
0.1 0.5 26.14 41.94 52.90 60.60 65.56 80.06 89.64 93.86 96.02 97.80 99.64 

0.1 0.6 27.62 45.30 57.36 65.06 70.62 84.66 93.02 96.30 97.82 98.68 99.80 

0.1 0.7 28.94 49.48 62.26 70.12 76.18 89.44 95.28 97.52 98.34 99.02 99.64 
0.1 0.8 28.02 52.72 67.72 76.40 82.14 94.26 97.42 98.60 99.42 99.12 99.80 

0.2 0.0 24.56 37.16 43.32 46.00 47.76 48.66 50.46 50.60 51.52 52.12 54.16 

0.2 0.1 27.24 42.30 50.50 55.02 58.06 64.02 71.42 75.86 79.90 83.02 91.42 

0.2 0.2 30.20 48.16 57.24 63.30 67.92 77.36 86.62 90.82 93.80 95.94 99.36 
0.2 0.3 33.52 53.28 64.48 71.24 75.84 87.08 94.16 97.44 98.62 99.42 99.96 

0.2 0.4 36.48 59.12 71.48 77.94 82.68 94.06 98.28 99.36 99.84 99.86 100.0 

0.2 0.5 39.42 64.84 78.10 84.38 88.12 97.36 99.38 99.88 99.90 99.96 100.0 
0.2 0.6 41.74 70.50 83.54 90.20 93.22 99.20 99.86 99.96 100.0 100.0 100.0 

0.2 0.7 40.74 73.34 87.02 94.14 96.42 99.82 99.98 100.0 100.0 100.0 100.0 

0.3 0.0 27.96 40.38 45.12 46.60 46.60 45.62 50.80 52.00 53.74 54.62 58.36 
0.3 0.1 32.56 49.82 58.02 61.86 64.04 70.64 81.30 86.72 90.10 93.32 98.02 

0.3 0.2 37.38 58.28 68.88 74.46 77.74 87.44 94.98 98.12 98.96 99.66 100.0 

0.3 0.3 41.88 66.46 77.58 83.24 86.84 96.00 99.20 99.82 99.96 99.98 100.0 
0.3 0.4 45.60 73.70 85.18 90.48 93.20 98.72 99.92 99.98 100.0 100.0 100.0 

0.3 0.5 47.84 78.74 90.38 94.90 97.04 99.82 99.98 100.0 100.0 100.0 100.0 

0.3 0.6 47.34 78.58 90.18 94.92 97.28 99.68 100.0 100.0 100.0 100.0 100.0 

0.4 0.0 30.06 41.60 44.62 44.98 44.32 43.64 52.32 54.28 56.22 57.08 62.44 

0.4 0.1 36.22 54.20 63.08 67.12 70.36 77.86 88.56 93.38 95.54 97.42 99.76 

0.4 0.2 42.04 66.04 76.20 81.94 85.46 94.32 98.68 99.70 99.92 99.98 100.0 

0.4 0.3 46.54 73.92 85.22 90.58 93.32 98.68 99.90 99.98 100.0 100.0 100.0 
0.4 0.4 49.70 79.42 90.58 95.00 97.36 99.82 99.98 100.0 100.0 100.0 100.0 

0.4 0.5 48.74 77.00 86.56 91.36 93.70 98.32 100.0 100.0 100.0 100.0 100.0 

0.5 0.0 30.12 40.72 42.52 43.04 42.98 42.40 54.52 56.58 58.14 59.84 66.34 
0.5 0.1 38.84 57.90 66.58 71.98 75.48 84.62 93.98 97.38 98.66 99.48 100.0 

0.5 0.2 44.72 70.08 80.30 87.42 90.26 97.38 99.66 99.94 100.0 100.0 100.0 

0.5 0.3 47.42 75.62 86.32 92.58 95.24 99.56 99.98 100.0 100.0 100.0 100.0 
0.5 0.4 47.82 73.36 81.66 86.34 89.64 95.88 100.0 100.0 100.0 100.0 100.0 

0.6 0.0 29.80 38.84 40.92 41.34 41.86 41.68 55.98 58.94 60.84 62.56 69.90 

0.6 0.1 38.64 59.10 68.76 75.66 79.50 90.10 97.06 99.00 99.62 99.98 100.0 

0.6 0.2 43.56 68.98 79.68 86.80 90.64 98.42 99.90 99.98 100.0 100.0 100.0 
0.6 0.3 45.20 67.94 76.62 81.22 85.24 93.18 100.0 100.0 100.0 100.0 100.0 

0.7 0.0 27.68 36.08 38.36 39.24 40.56 40.56 58.92 62.12 64.46 66.46 75.48 

0.7 0.1 37.48 56.86 66.78 74.72 79.72 92.28 98.82 99.74 99.94 100.0 100.0 
0.7 0.2 41.32 61.08 69.42 75.60 79.88 89.54 99.96 100.0 99.98 99.98 100.0 

0.8 0.0 25.24 32.16 33.50 34.90 37.26 38.44 63.70 68.00 70.94 73.42 82.50 

0.8 0.1 35.52 50.12 57.64 65.32 69.64 83.56 99.58 99.90 100.0 100.0 100.0 
The first column represents the ARCH-parameters, and the second stands for the GARCH-parameters. The table exhibits results for 50, 100, 
150, 200, 250, 500, 1 000, 1 500, 2 000, 2 500, and 5 000 observations. 5 000 repetitions are executed for the power, and 50 000 replications for  
the size. 

 

                                                 
20 The stationarity constraints are presented in Table 1. 
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We can also see that for low values of the ARCH-parameter (α), the stationarity constraints 
are often violated. Furthermore, as expected, the higher the number of observations the 
more likely is the GARCH(1,1) model to satisfy the stationarity constraints. However, in 
some cases for low (G)ARCH magnitudes not even extremely high samples sizes, for 
instance 5 000 observations, are not enough. For example, we can see that an estimated 
GARCH(1,1) model fails to satisfy the stationarity constraints, for a simulated GARCH 
process with α=0.1 and β=0.1, in as many as 25 % of the cases. Moreover, this study does 
not present simulations of near integrated processes or degenerate cases. However, for both 
of these types of processes the stationarity-constraint issue is even more problematic. 
 
In summary, the most interesting finding from Table 3 is that the stationarity constraints are 
very often not satisfied. If the stationarity constraints fails to be satisfied, there is no remedy 
to potential autoregressive conditional heteroscedasticity problems even if we would know 
that the true process in fact follows a GARCH(1,1) process. 
 
5.2 The statistical sizes of the ARCH-LM, 2S-ARCH-LM, UARCH-LM, and the 2S-
UARCH-LM tests 
 
Below in Table 4, a Monte Carlo simulation size analysis for the four tests, based on 50 000 
replications, is presented. The nominal sizes are set to 5 % and the estimated error margin of 
the size is based on the 95 % binomially distributed confidence interval presented in 
Equation 4. Based on this formula in Equation 4, if the actual size is too far apart from the 
nominal size, a test is defined as biased. 
 
Observe that the 2S-ARCH-LM test is the benchmark procedure that is created to replicate 
the usual testing procedure that currently is the standard approach among most econometric 
practitioners, while the 2S-UARCH-LM test is the main new contribution in this paper.21 
 
Table 4 – Statistical sizes of (U)ARCH-LM and 2S-(U)ARCH-LM (in percent) 

 

 ARCH-LM 2S-ARCH-LM UARCH-LM 2S-UARCH-LM 

T F χ2 F χ2 F χ2 F χ2 

50 2.93 3.03 5.99 6.15 5.09 (UB) 5.11 (UB) 5.18 (UB) 5.19 (UB) 

100 3.75 3.81 6.69 6.80 4.85 (UB) 4.81 (UB) 4.97 (UB) 5.12 (UB) 

150 3.98 4.01 6.84 6.87 4.91 (UB) 4.89 (UB) 5.06 (UB) 5.09 (UB) 

200 4.17 4.20 6.55 6.59 4.83 (UB) 4.87 (UB) 5.17 (UB) 5.11 (UB) 

250 4.29 4.31 6.63 6.66 4.97 (UB) 4.91 (UB) 4.89 (UB) 4.85 (UB) 

500 4.46 4.47 6.34 6.35 5.06 (UB) 4.91 (UB) 4.83 (UB) 4.83 (UB) 

1 000 4.70 4.71 5.88 5.89 5.05 (UB) 4.92 (UB) 4.85 (UB) 4.82 (UB) 

1 500 4.64 4.65 5.49 5.50 5.07 (UB) 5.17 (UB) 5.12 (UB) 5.04 (UB) 

2 000 4.85 (UB) 4.86 (UB) 5.45 5.46 5.11 (UB) 5.14 (UB) 4.89 (UB) 4.86 (UB) 

2 500 4.85 (UB) 4.85 (UB) 5.22 (UB) 5.22 (UB) 4.92 (UB) 5.07 (UB) 5.13 (UB) 5.09 (UB) 

5 000 4.96 (UB) 4.96 (UB) 5.00 (UB) 5.00 (UB) 4.94 (UB) 5.02 (UB) 5.08 (UB) 4.81 (UB) 

(UB) stands for “UnBiased test”, while the shaded areas symbolize biased tests. The above figures are presented in percentage terms for 5 % nominal sizes.  

Moreover, note that the error margins are different for every test. 

 

                                                 
21 ARCH-LM is the (biased) benchmark test for situations when violations of the stationarity constraints are of no importance, while UARCH-LM is the same 
test but with new unbiased critical values. 
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Based on the 95 % binomially distributed confidence intervals computed from Equation 4, 
the ARCH-LM and the 2S-ARCH-LM test are always outside the error margins (i.e. biased 
tests) except for very large sample sizes, while the UARCH-LM and the 2S-UARCH-LM 
tests are always within the error margins (i.e. unbiased tests). Roughly speaking, the fewer the 
number of observations, the more severe size-problems are exhibited in Table 4. 
 
The analysis of ARCH-LM’s size demonstrates severe underrejection of the true null 
hypothesis with a size as low as 2.93 % for 50 observations. Thus, this rejection frequency is 
42 percent [=(100(2.93/5)-1)-100] lower than what is stipulated by the nominal size. On the 
other hand, for 2S-ARCH-LM, the peak of the size problem seems to be located at 150 
observations.22 Despite that the true null hypothesis contains no conditional 
heteroscedasticity, the econometric practitioner finds conditional heteroscedasticity 36 % 
[=(100(6.87/5)-1)-100] more often than what is stipulated by the nominal size of 5 % (if the 
evaluation method controls for the violations of the stationarity constraints). Thus, this 
examination demonstrates that 2S-ARCH-LM in fact leads to a severe overrejection of the 
true null hypothesis. Nevertheless, one should note that there are many different factors that 
in an interactive manner affect the size, and therefore it is not obvious that the size should 
decrease or increase monotonously as a function of the number of observations.  
 
The size problems for ARCH-LM and 2S-ARCH-LM are of such high magnitude (see Table 
4) that it is necessary to create a remedy to the problem. The ARCH-LM test that is used to 
detect autoregressive conditional heteroscedasticity severely underrejects the true null 
hypothesis in finite samples, while an overrejection is present for the 2S-ARCH-LM test. 
Thus the result in Table 4 indicates that this standard approach (2S-ARCH-LM) in reality 
leads to a severe overrejection of the true null hypothesis in finite samples. The overrejection 
of the 2S-ARCH-LM test generally decreases as the number of observations increases to a 
large sample size. For the ARCH-LM test an analogous, but inverted, pattern is exhibited 
where a sequentially decreasing underrejection is observed as the number of observations 
increases. 
 
The solution to the size-bias problem is not based on increasing the sample size to many 
thousands of observations, since these sample sizes are rarely available in for instance 
international economics, macro economics or regional economics. On the contrary, the 
solution is based on the UARCH-LM test and primarily on the 2S-UARCH-LM test which 
are evaluated in Table 4. According to the evaluation method, we can see that at least 2 000 
observations are necessary in order to avoid bias for the ARCH-LM test while around 2 500 
observations are necessary to obtain an unbiased 2S-ARCH-LM test. In direct contrast to 
these previous tests, the UARCH-LM test and the 2S-UARCH-LM test are always unbiased 
for all sample sizes. 
 

                                                 
22 In some fields of economics 150 observations  is a relevant, relatively large and not uncommon sample size, such as for instance in macro economics. 
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5.3 The new critical values of the UARCH-LM, and 2S-UARCH-LM tests 
 

The following critical values in Table 5 and Table 6 should be used for the UARCH-LM and 
the 2S-UARCH-LM tests, at the 1 %, 5 %, or 10 % significance levels, in order to avoid bias.  
 

 

 

Table 5 – Unbiased critical values of UARCH-LM 
  

 UARCH-LM UARCH-LM UARCH-LM 

 1% 5% 10% 

T F χ2 F χ2 F χ2 

50 6.3322495 5.8178715 3.2217240 3.1433505 2.2387635 2.2279080 

100 6.6047965 6.3112405 3.4896125 3.4378840 2.4091260 2.3992115 

150 6.7266350 6.5198110 3.5281365 3.4923200 2.4671495 2.4594385 
200 6.7233875 6.5675035 3.5900320 3.5615750 2.5141585 2.5076795 

250 6.6248145 6.5040115 3.6286765 3.6050960 2.5634790 2.5576905 

500 6.5472510 6.4881260 3.6600780 3.6479420 2.6006085 2.5974820 
1 000 6.6426715 6.6119435 3.7564565 3.7498635 2.6497360 2.6480140 

1 500 6.4996060 6.4801540 3.7331130 3.7288020 2.6246830 2.6235900 

2 000 6.6342450 6.6189010 3.7864680 3.7830865 2.6580665 2.6571915 
2 500 6.6456150 6.6332840 3.7841410 3.7814415 2.6617375 2.6610330 

5 000 6.6169520 6.6108460 3.8319280 3.8305240 2.7010840 2.7007050 

The table is based on 50 000 Monte Carlo simulations. 

 
 
 
 
Table 6 – Unbiased critical values of 2S-UARCH-LM 
  

 2S-UARCH-LM 2S-UARCH-LM 2S-UARCH-LM 

 1% 5% 10% 

T F χ2 F χ2 F χ2 

50 9.1804835 8.0071172 4.5053736 4.2862186 3.0715212 3.0057905 

100 8.6168023 8.0769674 4.6293866 4.5096137 3.0743744 3.0413692 
150 9.1731693 8.7518379 4.5827972 4.5047121 3.0813130 3.0591122 

200 8.7003763 8.4169739 4.4912270 4.4356979 3.0427695 3.0269083 

250 8.4040056 8.1932827 4.5066509 4.4617351 3.0322056 3.0196872 
500 7.9623371 7.8683220 4.3710681 4.3503964 2.9488889 2.9432919 

1 000 7.6366461 7.5937999 4.1738238 4.1647613 2.9130139 2.9103544 

1 500 7.2803952 7.2548395 4.0300070 4.0245574 2.7302491 2.7289195 
2 000 7.2549584 7.2359365 4.0284820 4.0243985 2.7089211 2.7079608 

2 500 6.9601647 6.9463769 3.9165919 3.9135903 2.6650496 2.6643406 

5 000 6.6473484 6.6411744 3.8589650 3.8575310 2.6115635 2.6112440 

The table is based on 50 000 Monte Carlo simulations. 
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As expected, the critical values are equivalent for the F- and χ2-versions test for 5 000 
observations. The UARCH-LM test must be applied, instead of the ARCH-LM test, if the 
number of observations is lower than 2 000 observations. The 2S-UARCH-LM should be 
used instead of the 2S-ARCH-LM procedure, if the number of observations is lower than  
2 500 observations. These recommendations are based on the Monte Carlo simulation 
results in Table 4. 
 
Furthermore, in order to ascertain that the critical values in Table 5 and Table 6 in fact are 
correct, 50 000 simulations were conducted for the size with continuously randomly selected 
random seeds.  
 
5.4 The power properties of the UARCH-LM, and 2S-UARCH-LM tests 
 
Since the pure ARCH-LM test is biased, there is not much point in estimating the power of 
this test in this study.23 Instead, the unbiased version of the test, UARCH-LM, is evaluated. 
UARCH-LM uses the new simulated critical values from Table 5, and the power of the test 
is presented in Table 7. This is the statistical power of detecting autoregressive conditional 
heteroscedasticity, regardless whether there is a possible solution to the problem or not.  
 
Analogously, for the same reasons as above, the power of the 2S-UARCH-LM test is 
evaluated instead the biased 2S-ARCH-LM test. 2S-UARCH-LM uses the new simulated 
critical values from Table 6, and the power of the test is presented in Table 8. This is the 
statistical power of detecting autoregressive conditional heteroscedasticity, when we take into 
account whether there is a possible solution to the problem or not. 

                                                 
23 If one would allow a test to be severely size-biased it is pointless to evaluate the power of this test. In fact it is very easy to construct a test with 100 % power 
if this test always rejects the null hypothesis. The cost would be that the power is misleading due to a deceptive type-1 error, and consequently this would not 
be a meaningful test. 
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Table 7 – Statistical power of the UARCH-LM test for different DGPs (in percent) 
 

GARCH-parameters T 

α β 50 100 150 200 250 500 1 000 1 500 2 000 2 500 5 000 

0.1 0.0 10.92 16.08 21.98 26.52 31.56 52.16 78.62 91.24 96.52 98.86 100.0 

0.1 0.1 11.06 16.20 22.26 26.66 31.82 52.68 78.82 91.38 96.72 98.90 100.0 

0.1 0.2 11.18 16.54 22.84 27.00 32.28 53.28 79.14 91.56 96.74 99.00 100.0 
0.1 0.3 11.30 16.64 23.04 27.38 32.48 53.82 79.56 91.82 96.86 99.00 100.0 

0.1 0.4 11.52 16.92 23.26 28.08 33.12 54.34 80.06 92.00 97.10 99.02 100.0 

0.1 0.5 11.50 17.18 23.76 28.56 33.96 55.30 80.82 92.52 97.38 99.14 100.0 
0.1 0.6 11.44 17.48 24.12 29.04 34.52 56.36 82.26 93.34 97.76 99.40 100.0 

0.1 0.7 11.60 17.88 24.80 30.54 36.42 59.04 84.80 94.44 98.36 99.60 100.0 

0.1 0.8 11.06 18.46 26.40 32.58 39.52 64.84 89.28 96.92 99.26 99.88 100.0 

0.2 0.0 20.56 35.98 49.12 59.84 68.96 92.08 99.60 100.0 100.0 100.0 100.0 

0.2 0.1 21.08 36.62 49.88 60.28 69.22 92.40 99.68 100.0 100.0 100.0 100.0 

0.2 0.2 21.30 37.10 50.50 61.30 69.86 92.54 99.72 100.0 100.0 100.0 100.0 

0.2 0.3 21.54 37.42 51.16 62.00 70.44 92.92 99.76 100.0 100.0 100.0 100.0 
0.2 0.4 21.80 38.18 51.90 63.02 71.30 93.32 99.78 100.0 100.0 100.0 100.0 

0.2 0.5 21.46 38.92 53.00 64.22 72.34 94.00 99.80 100.0 100.0 100.0 100.0 

0.2 0.6 21.38 39.98 54.30 65.74 74.06 94.94 99.88 100.0 100.0 100.0 100.0 
0.2 0.7 20.76 40.84 56.34 68.30 77.22 96.32 99.94 100.0 100.0 100.0 100.0 

0.3 0.0 31.26 54.18 71.28 81.90 88.84 99.22 100.0 100.0 100.0 100.0 100.0 

0.3 0.1 31.32 55.20 72.26 82.12 89.24 99.28 100.0 100.0 100.0 100.0 100.0 
0.3 0.2 31.84 55.56 72.86 82.66 89.32 99.36 100.0 100.0 100.0 100.0 100.0 

0.3 0.3 31.98 56.24 73.20 83.42 89.68 99.40 100.0 100.0 100.0 100.0 100.0 

0.3 0.4 32.06 56.78 73.88 83.86 90.12 99.52 100.0 100.0 100.0 100.0 100.0 
0.3 0.5 32.18 57.28 74.64 84.50 90.92 99.60 100.0 100.0 100.0 100.0 100.0 

0.3 0.6 31.84 58.66 75.48 85.96 92.26 99.68 100.0 100.0 100.0 100.0 100.0 

0.4 0.0 40.36 68.66 84.32 92.36 95.98 99.98 100.0 100.0 100.0 100.0 100.0 

0.4 0.1 40.64 68.96 84.98 92.74 96.06 99.98 100.0 100.0 100.0 100.0 100.0 
0.4 0.2 40.92 69.26 85.24 93.00 96.28 100.0 100.0 100.0 100.0 100.0 100.0 

0.4 0.3 41.54 69.54 85.90 93.08 96.76 99.98 100.0 100.0 100.0 100.0 100.0 

0.4 0.4 41.56 70.02 86.32 93.66 96.90 99.98 100.0 100.0 100.0 100.0 100.0 
0.4 0.5 41.32 70.80 86.48 93.58 97.08 99.96 100.0 100.0 100.0 100.0 100.0 

0.5 0.0 48.34 77.50 91.28 96.64 98.62 100.0 100.0 100.0 100.0 100.0 100.0 

0.5 0.1 48.52 78.30 91.34 96.90 98.66 100.0 100.0 100.0 100.0 100.0 100.0 
0.5 0.2 49.02 78.92 91.72 97.02 98.76 100.0 100.0 100.0 100.0 100.0 100.0 

0.5 0.3 49.22 79.42 92.12 97.02 98.74 100.0 100.0 100.0 100.0 100.0 100.0 

0.5 0.4 48.58 79.76 92.32 97.02 98.78 99.96 100.0 100.0 100.0 100.0 100.0 

0.6 0.0 55.08 83.52 95.00 98.36 99.48 100.0 100.0 100.0 100.0 100.0 100.0 

0.6 0.1 54.68 84.02 95.18 98.56 99.50 100.0 100.0 100.0 100.0 100.0 100.0 

0.6 0.2 54.32 84.86 95.40 98.50 99.56 100.0 100.0 100.0 100.0 100.0 100.0 

0.6 0.3 54.44 85.12 95.34 98.54 99.56 100.0 100.0 100.0 100.0 100.0 100.0 

0.7 0.0 60.32 88.22 96.90 99.20 99.76 99.98 100.0 100.0 100.0 100.0 100.0 

0.7 0.1 60.00 88.02 97.16 99.24 99.80 99.98 100.0 100.0 100.0 100.0 100.0 

0.7 0.2 59.60 88.32 96.98 99.18 99.72 100.0 100.0 100.0 100.0 100.0 100.0 

0.8 0.0 64.22 90.26 97.58 99.36 99.82 99.98 100.0 100.0 100.0 100.0 100.0 

0.8 0.1 64.40 90.80 97.94 99.46 99.80 99.98 100.0 100.0 100.0 100.0 100.0 

The first column represents the ARCH-parameters, and the second stands for the GARCH-parameters. The table exhibits results for 

50, 100, 150, 200, 250, 500, 1 000, 1 500, 2 000, 2 500, and 5 000 observations. 5 000 repetitions are executed for the power estimations. 
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Table 8 – Statistical power of the 2S-UARCH-LM test for different DGPs (in percent) 
 

GARCH-parameters T 

α β 50 100 150 200 250 500 1 000 1 500 2 000 2 500 5 000 

0.1 0.0 12.36 16.72 22.17 27.15 30.71 48.71 74.93 89.05 95.59 98.48 100.0 

0.1 0.1 12.45 17.31 22.55 28.07 30.91 50.00 76.04 90.12 96.40 98.73 100.0 

0.1 0.2 12.32 17.52 23.36 28.14 31.89 51.01 77.01 91.00 96.45 98.87 100.0 
0.1 0.3 13.10 18.01 23.44 28.11 33.07 51.89 77.51 91.41 96.72 98.96 100.0 

0.1 0.4 13.04 17.77 23.68 28.36 33.08 52.77 78.55 91.50 96.78 98.98 100.0 

0.1 0.5 13.24 18.17 23.44 28.91 33.68 52.99 79.37 92.09 97.22 99.15 100.0 
0.1 0.6 13.40 18.28 24.20 29.66 33.81 54.50 81.12 93.09 97.59 99.31 100.0 

0.1 0.7 13.55 18.88 24.90 30.69 35.21 56.98 83.69 94.31 98.33 99.58 100.0 

0.1 0.8 12.85 18.97 26.43 32.49 38.67 62.49 88.37 96.88 99.22 99.88 100.0 

0.2 0.0 20.77 34.39 47.00 57.91 64.57 89.48 99.50 99.96 100.0 100.0 100.0 

0.2 0.1 21.07 35.65 47.33 59.11 65.62 90.16 99.56 99.97 100.0 100.0 100.0 

0.2 0.2 21.72 36.92 48.67 59.34 66.64 90.98 99.68 100.0 100.0 100.0 100.0 

0.2 0.3 21.96 37.61 49.78 60.39 68.22 91.69 99.73 100.0 100.0 100.0 100.0 
0.2 0.4 21.98 37.55 49.97 60.94 68.60 92.11 99.74 100.0 100.0 100.0 100.0 

0.2 0.5 22.73 37.60 50.22 61.96 69.36 92.44 99.76 100.0 100.0 100.0 100.0 

0.2 0.6 23.00 38.16 51.16 63.37 71.55 93.51 99.86 100.0 100.0 100.0 100.0 
0.2 0.7 20.72 38.07 52.98 65.01 73.84 95.61 99.94 100.0 100.0 100.0 100.0 

0.3 0.0 30.54 49.83 66.22 77.77 85.45 98.51 100.0 100.0 100.0 100.0 100.0 

0.3 0.1 31.45 51.02 67.87 78.98 86.91 98.70 100.0 100.0 100.0 100.0 100.0 
0.3 0.2 31.14 51.89 68.79 80.31 87.68 98.97 100.0 100.0 100.0 100.0 100.0 

0.3 0.3 31.14 53.05 69.81 80.51 87.70 99.13 100.0 100.0 100.0 100.0 100.0 

0.3 0.4 31.75 53.62 70.27 81.01 87.96 99.25 100.0 100.0 100.0 100.0 100.0 
0.3 0.5 31.40 53.67 70.88 81.85 88.56 99.40 100.0 100.0 100.0 100.0 100.0 

0.3 0.6 30.12 53.12 71.06 82.66 89.72 99.58 100.0 100.0 100.0 100.0 100.0 

0.4 0.0 37.13 62.07 79.78 89.37 93.86 99.91 100.0 100.0 100.0 100.0 100.0 

0.4 0.1 38.32 64.39 81.26 90.58 95.17 99.92 100.0 100.0 100.0 100.0 100.0 
0.4 0.2 38.77 65.63 82.47 91.34 95.34 99.98 100.0 100.0 100.0 100.0 100.0 

0.4 0.3 39.02 65.83 82.54 91.43 95.56 99.98 100.0 100.0 100.0 100.0 100.0 

0.4 0.4 38.55 64.92 82.23 91.47 95.71 99.98 100.0 100.0 100.0 100.0 100.0 
0.4 0.5 36.93 63.97 82.09 91.29 95.37 99.92 100.0 100.0 100.0 100.0 100.0 

0.5 0.0 43.43 71.91 87.72 94.84 97.30 100.0 100.0 100.0 100.0 100.0 100.0 

0.5 0.1 44.34 73.51 88.56 95.36 98.15 100.0 100.0 100.0 100.0 100.0 100.0 
0.5 0.2 44.54 74.20 89.32 95.74 98.29 100.0 100.0 100.0 100.0 100.0 100.0 

0.5 0.3 43.78 73.87 89.37 96.05 98.28 100.0 100.0 100.0 100.0 100.0 100.0 

0.5 0.4 43.66 72.93 88.64 95.32 98.10 99.96 100.0 100.0 100.0 100.0 100.0 

0.6 0.0 47.72 78.17 91.64 97.24 98.90 100.0 100.0 100.0 100.0 100.0 100.0 

0.6 0.1 49.22 79.56 92.29 97.91 99.14 99.98 100.0 100.0 100.0 100.0 100.0 

0.6 0.2 49.13 80.40 92.90 97.95 99.14 100.0 100.0 100.0 100.0 100.0 100.0 

0.6 0.3 48.36 79.19 92.38 97.49 99.13 99.98 100.0 100.0 100.0 100.0 100.0 

0.7 0.0 51.66 82.71 94.42 98.47 99.61 100.0 100.0 100.0 100.0 100.0 100.0 

0.7 0.1 52.77 84.10 95.00 98.66 99.62 99.98 100.0 100.0 100.0 100.0 100.0 

0.7 0.2 51.45 84.09 94.64 98.65 99.55 100.0 100.0 100.0 100.0 100.0 100.0 

0.8 0.0 55.86 85.82 95.70 98.74 99.73 100.0 100.0 100.0 100.0 100.0 100.0 

0.8 0.1 55.12 85.91 96.11 99.17 99.74 99.98 100.0 100.0 100.0 100.0 100.0 

The first column represents the ARCH-parameters, and the second stands for the GARCH-parameters. The table exhibits results for  

50, 100, 150, 200, 250, 500, 1 000, 1 500, 2 000, 2 500, and 5 000 observations. 5 000 repetitions are executed for the power estimations. 
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As can be seen in Table 7, the power is low for lower number of observations and for lower 
magnitudes of ARCH-errors (α). To some limited extent we can observe that a higher 
persistence (α+β) increases the power of the test, even if α definitely is the dominating factor 
in this context. For 1 000 or more observations, given that α is higher than 0.1, the power 
always reaches approximately 100 percent. In Table 8 it is evident that the power of the 2S-
UARCH-LM test follows the same pattern as the UARCH-LM test. 2S-ARCH-LM exhibits 
higher power for the lowest spectrum of GARCH-parameters since it rules out unrealistic 
models that do not satisfy the stationarity constraints.  
 
In summary, it is necessary to apply both of these tests, UARCH-LM and 2S-UARCH-LM, 
but under different circumstances. The UARCH-LM can replace the traditional and biased 
ARCH-LM test, since UARCH-LM is unbiased and more powerful. These tests can only 
detect conditional heteroscedasticity but cannot distinguish whether the stationarity 
constraints are satisfied or not. Consequently, it is possible that the detected autoregressive 
conditional heteroscedasticity is unfeasible to model or interpret due to negative or explosive 
coefficient estimates. We can only draw conclusions regarding whether there exist some 
noise problems in the residuals, but there may be no cure for the problem. 
 
On the other hand, 2S-ARCH-LM is a two-step procedure created to mimic a realistic 
testing procedure that currently is the standard approach among most econometric 
practitioners. If the test procedure detects conditional heteroscedasticity for which there is 
no remedy, this finding has limited value for a practitioner. This is the reason why 2S-
ARCH-LM is a more meaningful procedure in practice compared to the ARCH-LM or the 
UARCH-LM tests. However, the above simulations demonstrate that this 2S-ARCH-LM 
approach leads to biased size due to severe overrejection of the true null hypothesis. 
Therefore, the unbiased 2S-UARCH-LM test procedure is suggested in order to remedy this 
size-bias problem and due to the fact that it controls for violations of the GARCH 
coefficient stationarity constraints.  
 
6. Conclusions 
 
Monte Carlo simulations of sample sizes of 50 to 1 500 observations indicate that the 
statistical size is severely biased for ARCH-LM’s tests. Consequently, the F- or the χ2-
distribution tables cannot be applied in finite samples for the respective versions of the test. 
We can see that it is necessary to use at least 2 000 observations to avoid bias for the ARCH-
LM test. On the other hand, if an economics practitioner tests for autoregressive conditional 
heteroscedasticity effects using an ARCH-LM test with the restraint that the stationarity 
constraints should be satisfied within a GARCH(1,1) framework, 2 500 observations are 
necessary to expect an unbiased result.24  
 
Since sample sizes of these very large dimensions usually are not available in many areas of 
economics, we cannot rely on the supply of large data sets to obtain unbiased test results. 
Therefore, two new test approaches are presented in this paper; the UARCH-LM test and 
the 2S-UARCH-LM test. If the sole purpose of the study is to detect the presence of ARCH 
in small or medium sized samples, the UARCH-LM test is proposed. However, if the aim is 

                                                 
24 In this paper, this approach is illustrated by the benchmark procedure named 2S-ARCH-LM. 
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to detect and remedy the problem of autoregressive conditional heteroscedasticity, 2S-
UARCH-LM is recommended.  
 
Thus, the main contribution of this paper is the new test named the 2-Step Unbiased 
ARCH-LM (2S-UARCH-LM) test. In contrast to all previous ARCH tests, this new test 
takes into account whether or not we can remedy the autoregressive conditional 
heteroscedasticity problem that is identified by the applied ARCH-detection test. If the 
primary objectives of the study are to detect and remedy the problems of conditional 
heteroscedasticity (e.g. to obtain more efficient standard errors by modeling a GARCH 
model), or to interpret GARCH parameters (and make a statement about financial risks), it is 
of crucial importance that the stationarity constraints of the GARCH estimates are not 
violated (for instance due to negative variances). The 2S-UARCH-LM test procedure only 
declares that relevant autoregressive conditional heteroscedasticity effects are identified 
when the ARCH test is significant and the stationarity constraints are satisfied in a 
GARCH(1,1) framework. If not both of these conditions are satisfied this new test does not 
consider this series as an actual or relevant autoregressive conditional heteroscedasticity 
process. Only if both conditions are simultaneously satisfied we can recognize that there is a 
remedy to the problem, and solving the noise problem in the residuals is usually the sole 
purpose behind the entire exercise of ARCH-detection tests.  
 
If we only take into account the traditional ARCH-LM test, it is obvious that the test 
severely underrejects the true null hypothesis. However, when we apply the 2S-ARCH-LM 
test which aims to replicate the realistic standard procedure which is utilized by most 
practitioners (including checking whether the stationarity constraints are satisfied) we find 
severe size overrejection for medium and low sample sizes. For example, under some 
circumstances, despite that the true null hypothesis contains no conditional 
heteroscedasticity, simulations demonstrate the econometric practitioner can be severely 
deluded since autoregressive conditional heteroscedasticity is identified 36 % [=(100(6.87/5)-
1)-100] more often than what is stipulated by the nominal size of 5 %. Obviously, since 
GARCH models are used as a base in many investment decisions, and since the model often 
is applied to adjust misleading standard errors in many areas of economics, this is a serious 
and relevant problem. 
 
In summary, if the purpose of the study is solely to detect conditional heteroscedasticity, this 
can be determined by using the UARCH-LM test. On the other hand, if the aim is to detect 
conditional heteroscedasticity with the requirement of satisfied stationarity constraints, the 
2S-UARCH-LM test should be applied. Unlike any other tests, the 2S-UARCH-LM 
procedure controls for violations of the stationarity constraints, simultaneously as it exhibit 
considerably better size and power properties compared to Engle’s standard test for 
conditional heteroscedasticity.25 
 

                                                 
25 Engle’s (1982) ARCH-LM test is the undisputed standard test for detection of autoregressive conditional heteroscedasticity. 
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