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Abstract The Lunar Laser Ranging experiment has been active since 1969 when

Apollo astronauts placed the first retroreflector on the Moon. The data accuracy of a

few centimeters over recent decades, joined to a new numerically integrated ephemeris,

DE421, encourages a new analysis of the lunar physical librations of that ephemeris, and

especially the detection of three modes of free physical librations (longitude, latitude,

and wobble modes). This analysis was performed by iterating a frequency analysis

and linear least-squares fit of the wide spectrum of DE421 lunar physical librations.

From this analysis we identified and estimated about 130 ∼ 140 terms in the angular

series of latitude librations and polar coordinates, and 89 terms in the longitude angle.

In this determination, we found the non-negligible amplitudes of the three modes of

free physical libration. The determined amplitudes reach 1.296” in longitude (after

correction of two close forcing terms), 0.032” in latitude and 8.183” × 3.306” for the

wobble, with the respective periods of 1056.13 days, 8822.88 days (referred to the

moving node), and 27257.27 days. The presence of such terms despite damping suggests

the existence of some source of stimulation acting in geologically recent times.

Keywords: Moon, Physical Librations, spin-orbit synchronous resonance.

1 Introduction

At first appearance, the Moon seems to be unchanging and rotating close to its mini-

mum energy state. Analyses of Lunar Laser Ranging data reveal a lunar rotation not

quite at minimum, even without the influence of oceans or a significant atmosphere. It

has been recognized for three decades (Calame 1976a, 1976b, 1977) that the amplitudes
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of two of the free libration modes exceed 1 arcsec. The damping times for these two

modes are estimated as 2 104 and 2 106 years (Williams et al. 2001) for the longitude

and wobble modes, respectively, so there must be some source of stimulation acting in

geologically recent times. A third mode is much smaller and consequently more elusive.

A clear determination is needed. As a first step toward a better understanding of lunar

free librations, this paper makes an accurate determination of amplitudes, periods, and

phases of the free libration modes along with the large amplitude forced librations.

There are three modes of free librations for a solid Moon. They correspond to the

dynamical normal modes of the Moon in spin-orbit resonance when its spin is displaced

from its dynamical equilibrium position. The period of the free rotational modes of

the solid Moon can be calculated in linear first order theory (see e.g. Eckhardt 1981;

Moons 1982; Williams et al. 2001; Varadi et al. 2005). One is in longitude, with rotation

parallel to the equatorial plane of the Moon, and has a period of 2.9 years. For the

second mode, the latitude mode, the axis normal to the lunar equatorial plane traces

out a small cone. That motion in space is retrograde with a period near 81 years. The

third mode of free libration is related to the motion of the axis of figure about the

rotation axis. As seen from the lunar body reference frame, the axis of rotation traces

out an elliptical path with a period around 75 years. This motion is analogous to the

Earth’s Chandler wobble, but as seen from the inertial reference frame the period is

around 27 days (Newhall & Williams 1997). As emphasized in Bois (1995), the free

librations at 2.9 and 81 years are the result of the spin-orbit resonance problem of the

Moon around the Earth and do not correspond to the free Eulerian modes of rotation

of a body alone in space. While the wobble mode is analogous to the Chandler wobble,

the expressions for the frequency and ratio of axes of the elliptical path are different

by a factor of 2 so that mode is also modified by the synchronous spin-orbit motion

of the Moon.

While the periods of the free modes can be calculated analytically, the determina-

tion of their amplitudes requires data analysis. The first valid determination of the free

librations is due to Calame (1976a, 1976b, 1977). More recent determinations have been

made by Jin and Li (1996), Newhall & Williams (1997) and Chapront et al. (1999).

Calame (1976a, 1977) fit Lunar Laser Ranging data using both an analytical series and

a JPL numerical integration. Jin and Li (1996) fit Lunar Laser Ranging data. Chapront

et al. (1999) and Newhall and Williams (1997) determined the amplitudes and phases

by comparing an analytical representation to the Euler angles in a JPL ephemeris.

Therefore, the free librations depend on the orbital and lunar physical model and the

method of fit. The models and fits have improved with time and we expect the free

librations embedded in the Euler angles to also improve.

Several later determinations of the amplitude, period and phase of the librations

from a numerical ephemeris (Newhall andWilliams 1997; Chapront et al. 1999; Chapront

and Francou 2005) are done using DE403. The DE403 integration was done in 1995 and

used a tidally flexing solid Moon. The present paper extracts the physical librations

from the modern lunar Euler angles of DE421. The lunar orbit and physical librations

are significantly improved in DE421 relative to DE403 (Williams et al. 2008a; Folkner

et al. 2008). DE421 numerically integrated the rotation of both lunar solid mantle and

fluid core. Lunar geophysical parameters for tides, fluid core, core flattening, dissipation

and gravity field were fit or input. To generate the lunar ephemeris of DE421, 38 yr of

Lunar Laser Ranging data were fit with a weighted rms residual of less than 2 cm at the

end (Williams et al. 2008a; Folkner et al. 2008). As a first step toward understanding
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the origin and evolution of lunar librations, this paper focuses on extracting the free

librations from the recent DE421 Euler angles.

In this paper, we follow the method of Newhall & Williams (1997) improved by

some refinenements described in Section 4. Before that Section, we describe briefly

the geometry of the physical librations and then the calculation of the free periods.

In Section 5, we present the physical libration series resulting from our new analysis

focusing on the free librations and finally we conclude.

2 Geometry of the physical librations

The physical librations are small and are extracted from the three Euler angles de-

scribing the orientation and spin rotation of the Moon. The Euler angles come from

the recent JPL ephemeris called DE421 (Folkner et al. 2008; Williams et al. 2008a).

This accurate ephemeris is obtained by jointly fitting a numerical model of the lunar

rotation along with orbits of the Moon, the Sun, the Earth and planets. The dynam-

ical model contains relativistic Earth-Moon interactions, gravitational harmonics for

the Moon (up to degree 4), Earth (zonal), and Sun (J2), the tides on Earth and Moon,

and an oblate fluid lunar core. The lunar orbit and rotation are fit to Lunar Laser

Ranging data from 1970 to 2007 with adjustable parameters for moments of inertia,

gravity field, tides, dissipation, interaction with a fluid core, and initial conditions for

both solid mantle and fluid core (Williams et al. 2001, 2008b). For recent years the

lunar range residuals are less than 2 centimeters and the Moon’s Euler angles are good

to a few milliarcseconds. Periodic terms well separated in frequency can typically be

determined to about 1 milliarcsecond (Williams et. al. 2001).

The three Euler angles (ψ, θ, ϕ) express the transformation between the mean Earth

equatorial reference frame with equinox at J2000 (OXY Z) and the selenographic ref-

erence frame (Oxyz), where O is the lunar center of mass. The Euler angles are ψ

the angle along the J2000 mean Earth equatorial plane, θ the nutation angle that ex-

presses the inclination of the figure axis Oz with respect to the normal to the mean

Earth equator OZ and ϕ the rotation angle expressed along the lunar equatorial plane.

The libration angles are designated by Iσ, ρ, and τ and are defined as small cor-

rections to the lunar Cassini laws (Eckhardt 1981; Newhall & Williams 1997). How-

ever, the libration angles are defined with respect to the mean ecliptic of date and

not the mean Earth equatorial reference frame with equinox at J2000 as in the nu-

merical ephemeris. Thus, the Euler angles (ψ, θ, ϕ) expressed in the J2000 equato-

rial Earth reference system were transformed to the Euler angles (ψ′, θ′, ϕ′) expressed

with respect to the ecliptic of date by applying the four successive rotation matrices

R3(−ΛA)R1(πA)R3(ΠA)R1(ǫ), where Ri denotes the rotation matrix around an x-axis

if i = 1, and around a z-axis if i = 3. The angles ΛA, πA,ΠA, ǫ represent the ecliptic

longitude from the mean equinox of date along the moving ecliptic to the intersec-

tion with the fixed ecliptic, the inclination of the moving ecliptic on the fixed ecliptic,

the longitude of the ascending node of the moving ecliptic of date upon fixed ecliptic,

and the Earth’s obliquity at J2000, respectively (Lieske et al. 1977; Simon et al. 1994;

Hilton et al. 2006). Thus, the libration angles are defined as

θ′ = I + ρ ψ′ = Ω + σ ψ′ + ϕ′ = π + λ+ τ, (1)

where Ω is the ascending node of the mean orbit with respect to the mean ecliptic

plane of date and λ is the mean longitude. I represents the tilt of the mean equator of
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the Moon to the mean ecliptic equal to about 1.543 degrees (see Figure 1). The tilt θ′

of the equator to the ecliptic is in the opposite direction of the orbit inclination. So the

angle θ′ is small implying that the sum of ψ′ and ϕ′ is better determined than either

angle alone. Consequently, σ is multiplied by I to get the smaller Iσ. τ is the libration

in longitude and ρ and Iσ are referred to as the latitude librations.

Fig. 1 Representation of the Euler angles (ψ′, θ′, ϕ′) with respect to the ecliptic of date
(OX′Y ′Z′).

The physical librations in latitude are also well described by using the two com-

ponents (lunar body frame) of the unit vector pointing towards the mean pole of the

ecliptic of date on the lunar equatorial plane (p1,p2) defined as

p1 = − sin θ′ sinϕ′ (2)

p2 = − sin θ′ cosϕ′ (3)

These two variables are coupled together (see Eq.7) and are often described in the

analytical theories (see e.g. Eckhardt 1981; Moons 1982; Petrova 1996).

3 Determination of the free periods

The lunar physical librations have three free rotational modes: one in longitude and

two for pole direction. The free librations come from the solutions of the rotational
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differential equations reduced by using the first Cassini law and linearized with respect

to small quantities.

The equations governing the rotation of a solid Moon are the classical Euler-

Liouville equations
d[I ]ω

dt
+ω × [I ]ω = T (4)

where [I ] is the variable tensor of inertia composed of a rigid part, a centrifugal part

and a tidal part (see Williams et al. 2001). ω is the rotation vector and T is the sum

of the external torques acting on the Moon. The main torque is created by the point-

mass Earth acting on the Moon’s dynamical figure developed in spherical harmonics

of second degree. It is expressed as

T =
3Gm

r3
u× [I ]u (5)

with G the gravitational constant, m the mass of the Earth, and u the unit vector

toward the Earth in the Moon’s reference system.

At first order, whithout fluid core, tidal distortion or dissipation, the homogeneous

linearized equations governing the rotation of the spin-orbit resonant Moon are

p̈1 − (1− β)nṗ2 + 4βn2p1 = 0

p̈2 + (1− α)nṗ1 + αn2p2 = 0 (6)

τ̈ + 3γn2τ = 0

where p1, p2 represent the pole position normal to the ecliptic plane in the Moon

reference system and α = (C−B)/A, β = (C−A)/B, γ = (B−A)/C, with A < B < C

the principal moments of inertia. n is the lunar mean motion. For the linearized case,

the last differential equation is decoupled from the first two. The eigenfrequencies of

this system are
√
3γn for the libration in longitude, 2

√
αβn for wobble and (1 + 3

2
β)n

for the Moon referenced libration in latitude (equivalent to 3

2
βn for the space referenced

frequency). The elastic deformation and presence of the core alter these periods by small

amounts (Williams et al. 2001). The free periods correspond to the eigenfrequencies of

the linear system.

4 The fitting method

The lunar rotation exhibits combined forced and free librations and we determine in

the same fit the two types of librations. The libration angles and polar coordinates are

shown in Figures 2 and 3 for 1070 yr. The libration angles and polar coordinates are

fit with a combination of polynomial and periodic terms. The periods of the forced

libration components are known because they arise from periods present in the lunar

orbit from (i) Earth-Moon-Sun effects, with periods related to the Delaunay arguments

of lunar theory (Chapront-Touzé & Chapront 1983; Chapront et al. 2002), and (ii)

planetary effects (Bretagnon 1982; Eckhardt 1982). The arguments of the physical

libration terms φi(t) are composed of Delaunay and planetary angles, expressed as

time polynomials, and the frequencies are their derivatives.

The amplitudes of the periodic forced libration terms depend on both the strength

of the torque applied to the aspherical Moon and how close the forcing period is to

the resonant periods of the rotation, the free periods. The strength of a torque term
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Fig. 2 Temporal evolution of the libration angles over 1070 years.

can be variable in time, as for example due to the eccentricity of the Earth-Moon orbit

around the Sun, which varies with time and alters the amplitude of the librations. We

represent these variations by introducing Poisson terms, linear terms in time in the

amplitudes. The analytical form of the librations is thus assumed to be composed of

Fourier and Poisson series (with varying frequencies through the Delaunay arguments)

and polynomials. The polynomial coefficients are used to represent small corrections

to the uniform rotation of the Moon and very long period effects. Therefore the fit

function takes the following form

f(t) =

m∑

j=1

ajt
j +

n∑

i=1

[(Ci + ǫci t) cos (φi(t)) + (Si + ǫsi t) sin (φi(t))] (7)

where the adjustable coefficients are aj , the polynomial coefficients, (ǫci , ǫ
s
i ) the Pois-

son coefficients, and (Ci, Si) the Fourier series coefficients. The arguments φi(t) are

combination of Delaunay arguments, planetary angles, free libration terms of the form

ωit+αi, or simply ωit for terms with unidentified origin. The polynomial expression of

the Delaunay arguments come from the recent determination of Chapront et al. (2002),

while for the planetary arguments we used Bretagnon (1982). The origin of the time t

is 1st January 2000 at 12h.

The fitting method is based on the sequential use of frequency analysis and least-

squares reduction methods. The frequency analysis had been developed by Laskar

(1988; 2005) for the use of Celestial Mechanics and it allows accurate determination of

the frequencies and associated amplitudes contained in the problem. The least-squares

method is required to take into account varying frequencies and amplitudes in the
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Fig. 3 Ecliptic pole precesional cone over 1070 years. Units are arcseconds.

fit. Between the frequency analysis and the least-squares fit, the empirically derived

frequencies are identified with the frequencies of the φi(t) expressions. The combination

of the two methods is iterative in order to converge toward robust values and to allow

for non-linearity introduced by the fit for the free frequencies.

In the first step, we performed a frequency analysis directly on the three libration

angles and two polar components. The initial frequency analysis provided a set of 30

frequencies for Iσ and ρ, and only 5 frequencies for τ , p1, and p2. The identification

for the angle τ is more difficult because there are many planetary terms, including long

period terms which are strongly correlated with the polynomial terms. We identified

the empirical frequencies with the well-known frequencies of the lunar theory by using

(Eckhardt 1982; Chapront et al. 2002). The angle I = 5553.6 arcseconds is large, so the

leading libration term for both p1 and p2 presents a very large amplitude (Eckhardt

1981; Moon’s 1984) and a non-negligible Poisson term.

The Poisson term generates spurious frequencies in the frequency analysis per-

formed over the entire time-span of 1070 years. In order to identify these spurious

terms, we analyze the time-series by using a slide frequency analysis over 260 years.

A linear regression for the amplitude allows a first estimate of the Poisson coefficients

and indicates if the Poisson term is necessary or not in the fit process. The second

step consists of using the least-squares method to fit the formal expression (7) to the

libration angles with adequate Poisson terms. The frequencies used in the function (7)

have been determined in the first step. Then we compute the residuals for this solution.

In the third step, we apply the frequency analysis to the residuals of the previous

step. We obtain 143 frequencies for Iσ, 134 frequencies for ρ, 89 frequencies for τ , 143

frequencies for p1, and 130 frequencies for p2. The improvement of the analysis by
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taking into account the polynomial and Poisson terms is obvious. The large number

of frequencies improve the fit significantly over the previous determination of Newhall

& Williams (1997), which was based on a set of 30 frequencies. The longer time span

(1070 years against 718 years) gives better frequency resolution.

In the fourth step, we search for the major Poisson terms, corresponding to an

increase superior to 1 mas over one thousand years, and finally the last step consists in

fitting by the least-squares method the formal solution composed of Fourier, polyno-

mial, and Poisson terms to the residuals from step four. Then, we compute the residuals

of this solution, shown in Figures 4 and 5.

-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05

 0  200  400  600  800  1000  1200

I∆
 σ

 (
as

)

-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04

 0  200  400  600  800  1000  1200

∆ 
ρ 

(a
s)

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0  200  400  600  800  1000  1200

∆ 
τ 

(a
s)

T (years)

Fig. 4 Residuals of the librational angles over 1070 years.

5 Physical libration series

In this section, we analyze the series obtained in the previous section that are available

in supplementary material in electronic format where, we have listed the first terms of

the series in Tables 1 to 10. The series are formed by polynomial (shown in Table 2),

Fourier, and Poisson terms and the arguments are polynomials (see function 7). The

physical librations could be classified in three different groups based on the origin of

their periods. The first group is related to the main lunar problem, Sun-Earth-Moon,

and the frequencies are combination of purely Delaunay arguments. For the second

group, the precessing node and planetary interaction present arguments dependent on

Ω, the precessing node, and the mean longitudes of the planets. The first two groups
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Fig. 5 Residuals for the two polar components p1, p2 over 1070 years.

are conventionally defined as the forced librations of the Moon and they are described

in detail by Eckhardt (1981), Moons (1982), Chapront et al. (1999), and Williams

et al. (2001). The third group depends on lunar free frequencies, about 1056 days, 81

years and 75 years. The last group is the main objective of this paper and they will be

described separately in following sections.

The physical librations can also be arranged in different groups based on the origin

of the librations (Bois 1995). Such classification is more convenient for studies dedicated

to the physical mechanisms and for comparison studies of the rotation of celestial

bodies.

5.1 Forced librations

The number of periodic terms, Poisson terms, the residual values and the minimum

amplitude extracted from our iterative process are listed in Table 1. According to the

number of terms isolated and identified and the residual values, the fits for Iσ, ρ, p1, and

p2 are better than the fit for τ . The main limitation in τ is due to the presence of many

terms involving the mean longitudes of the planets. Some, the 9 century great inequality

and 18 and 19 century terms (Eckhardt 1982), have such long periods that they are

approximated with the polynomials over the 1070 years time-span of the ephemeris.

The polynomials associated with each libration angle or polar component are listed in

Table 2. During the fitting procedure a preliminary value of I=5553.60965 arcseconds

was used. With the correction in the table a final value of 5553.595 arcseconds is derived

for year 2000. The reference polynomials for orbital mean node and mean longitude
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come from Chapront et al. (2002), so any incompatibilities between those polynomials

and DE421 will show up as polynomial corrections for Iσ and τ . Long period planetary

terms will also be absorbed by the polynomial corrections. The constant for Iσ is

associated with dissipation in the Moon (Williams et al. 2001). The constant terms

for p1 and p2 arise from gravity field coefficients above second degree. Along with

the τ constant, they are of interest for the transformation between the DE421 lunar

principal axes of this paper and the mean Earth/mean rotation axes typically used for

cartography. See Williams et al. (1996, 2008a) for examples of transformations.

The slowly changing planetary eccentricities and inclinations and the slow motion

of their nodes and perihelia require Poisson terms. For p1 and p2, the main limitation

is related to the large difference of amplitude between the first (largest) term and the

following libration terms. Indeed, the ratio of the amplitude of the largest over the next

largest amplitude is 45 and 73 for p1 and p2 respectively. As a consequence, a small

error in the determination of the amplitude of the first libration term and especially

in its Poisson coefficient causes interference in the fit process.

Table 1 Statistical values in the fit process of the online Tables in electronic supplementary
materials.

Iσ ρ τ p1 p2
Number of frequencies 143 134 89 143 130
Number of Poisson terms 28 33 38 22 27
rms (mas) 9.7 7.4 35.6 4.9 4.1
Minimum amplitude (mas) 1.7 1.9 7.2 1.2 1.2

The largest Poisson terms for Iσ and ρ in electronic supplementary materials Tables

1 to 4 are associated with the lunar node Ω. There are multiple terms with similar

periods that cannot be separated with the 1070 year span, so the Poisson terms account

for the slightly different frequencies. Perturbations from the Earth’s J2 depend on the

node referred to the moving equinox, the angle used in the Tables, while the moving

ecliptic plane causes terms with a slightly different period and a different phase. Small

effects from the planets would involve the difference between the lunar and planetary

nodes. For τ , the large Poisson term for the annual term is because the eccentricity

of the Earth-Moon orbit about the Sun is shrinking. The large 273 year Venus-Earth-

Moon term depends on planetary perturbations that have changing amplitudes and

phases, which can be represented with multiple terms for very long time spans.

Table 2 Polynomial coefficients aj for the libration angles. The first coefficient is for the
constant term, followed by linear, quadratic and finally cubic terms.

constant linear quadratic cubic
(as) (as/cy) (as/cy)2 (as/cy)3

Iσ -0.249 0.0189 -0.0036 2.45 10−4

ρ -0.014 3.201 10−4 -1.504 10−4 1.375 10−5

τ 67.753 0.3162 -0.1034 7.434 10−3

p1 -78.513 1.075 10−5 -6.604 10−6 6.663 10−7

p2 0.290 2.411 10−4 -6.364 10−5 4.586 10−6
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Finally, we compare our series with the forced physical librations computed ana-

lytically or numerically by Eckhardt (1981), Chapront et al. (1999) and revised version

of Chapront and Francou (2005), and Newhall and Williams (1997).

The pole direction p1, p2 In Eckhardt (1981) the lunar libration theory is solved for the

main lunar problem (Earth-Sun-Moon system). So the Eckhardt solution coincides with

our first group composed of only Delaunay arguments. Allowing for different constants,

we obtain good agreement for the amplitude of each libration coefficient, but we find

one discrepancy. Above the truncation level of the Eckhardt series, we find only one

additional term D + l′ − 2F (27.10 days).

Chapront and Francou (2005) produced polar coordinates series of the Moon based

on the analytical theory of Moons (1982) and improved by Chapront et al. (1999).

These series contain terms related to the main lunar problem, planetary terms, and free

librations. At the same truncation level (1.2 mas), our series have fewer terms because

the frequency analysis cannot separate frequencies spaced too close (roughly at 1.6 10−5

rad.days−1 separation). Nevertheless the comparison gives very good agreement except

about ten terms that are present only in our series or in Chapront and Francou series.

Although we did not clearly identify the origin of these discrepancies, we suspect that

these terms are related to the presence of the Poisson coefficients.

The orientation of the Moon Iσ, ρ The spectral behavior of Iσ and ρ has been studied

in Newhall & Williams (1997). They determined the first 30 terms in the series. The

agreement between the series is very good and the slight differences are due to the

arguments of the test function that depend on polynomials in the present study, a

larger number of Poisson coefficients, and obviously a different ephemeris.

The libration in longitude τ The fit of the libration in longitude τ is made difficult

by the presence of many planetary terms. We compare with the Newhall & Williams

(1997) series and we find a very good agreement at the same truncation level, as in the

Iσ and ρ comparison.

5.2 Free libration in longitude

Figure 6 shows the resulting spectrum composed of forced and free librations for the

lunar libration in longitude for the main terms (the complete spectrum with a log-log

scale is shown in Fig. 7(c)). The three largest libration amplitudes result from the

eccentric Earth-Moon orbit around the Sun (365.26 days), the anomalistic orbit period

of the Moon around the Earth (27.55 days), and half the argument of perigee period

(1095.17 days). The 10th largest term, 1.808 arcseconds amplitude with a 223.5◦ phase,

is a candidate for the free libration in longitude with a period measured at 1056.21

days. Indeed, this term is a combination of the free libration in longitude and two close

forced terms identified by Eckhardt (1982) at 1056.416 (−21V e+ 23Ea+ 2D− l) and

1056.342 days (V e− 2Ea−D+2l−F ). A difficulty in removing the contribution from

these two forced terms results from the fact that the amplitudes of the two forced terms

depend on the value of the free period. Thus, we untangle the free and the forced terms

by fitting the combined period, amplitude and phase with a free period amplitude and

phase while keeping the dependence of the forced amplitudes on the free frequency.
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The resulting free libration in longitude has a period equal to 1056.13 days with an

amplitude of 1.296” and a phase of 207.01◦ at the JD of 2000.

τfree = 1.296” sinU(t) (8)

where the angle U in degrees is

U(t) = 207.01◦ + 360◦
(t− 2451545.0)

1056.13
(9)

Fig. 6 Spectrum of the libration in longitude. The presence of the free libration candidate is
indicated by the arrow and the black box. The frequency of the candidate is 1056.2 days.

5.3 Libration in latitude and wobble

The free latitude mode of the Moon is very small with an amplitude around 0.03

arcseconds. This mode is detected thanks to both the 11 centuries long time series of

DE421 and the quality of the fit. This small mode has a 24.156 yr period prograde

motion when referred to the moving node using ρ and Iσ

ρfree = 0.032” cosV (t) (10)

Iσfree = 0.032” sinV (t) (11)

V (t) = 160.81◦ + 360◦
(t− 2451545.0)

8822.88
(12)
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but the motion of the rotation axis is retrograde with an 80.86 yr period as viewed

from the inertial frame.

The wobble mode is large enough to cause many terms in ρ and Iσ and is more

easily expressed in the selenographic reference system p1, p2. In this case, the rotation

axis of the Moon describes a small cone of semi-axes 8.18 arcseconds by 3.31 arcseconds

with respect to the body polar axis with a period of 74.626 years.

p1wobble = −3.306” sinW (t) (13)

p2wobble = 8.183” cosW (t) (14)

W (t) = 161.60◦ + 360◦
(t− 2451545.0)

27257.27
(15)

In the Tables 7 and 9 of the electronic supplementary materials, the wobble presents

out-of-phase terms of ∼ 0.001” that reflect an increased noise level due to high correla-

tion (0.7 ∼ 0.8) with the librational combination of −D+ l− 3Ea+4Ma or 26561.273

days. The beat period of the two frequencies is 2899 years that’s about three times

longer than the time span of the ephemeris.

5.4 Free Core Nutation

Table 3 lists the periods and the amplitudes of the free libration modes that were found.

The DE421 integration included a fluid core with an oblate or flattened core/mantle

boundary (CMB). This adds a fourth possible free mode, a retrograde precession of

the pole in space, commonly called the free core nutation by analogy with the Earth’s

rotation. This mode would mainly affect the fluid core, but there would also be a small

response of the mantle. With the DE421 CMB flattening the period in space would be

about 197 years. The FCN period depends on the orbit period and CMB flattening.

Expressed in days

PFCN ∼ 27.32/fc (16)

where fc is the DE421 CMB flattening of 3.8 10−4. With the ρ and Iσ angles from

the DE421 integration, it should show up as a prograde period near 7500 days. A

libration term at 7367 days was identified with a forced term predicted by Eckhardt

(1982). A candidate pair of terms for the free core nutation occur at 7481 days in Iσ

and 7468 days in ρ with amplitudes of 0.045 and 0.054 arcseconds, respectively. The

equivalent terms in p1 and p2 have periods of 27.312 days with amplitudes of 16 mas.

Therefore, the amplitudes are different in the two representation. A careful check shows

that the 7481 days and 7468 days candidates are strongly (0.95) correlated with the

7367 days term. Indeed, the beat period between these periods is around one thousand

years, which corresponds to the time span of the ephemeris. The amplitudes of the

FCN candidates in Iσ and ρ are overestimated due to a strong correlation and the

amplitude related to p1 and p2 seems more realistic. These numerical results apply

to DE421, but the real values of the flattening, FCN amplitude and period are very

uncertain.

5.5 Libration Spectra

Figures 7(a,b,c,d,e) present plots of physical libration and polar coordinates amplitudes

vs periods corresponding to the Tables available in electronic forms. The free libration
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Longitude Longitude Latitude Wobble
blend mode mode mode

Period (days)
This paper 1056.21 1056.13 8822.88 27 257.27
Newhall et al. (1997) 1056.20 1056.12 8826. 27 258.
Chapront et al. (1999) 1056.13 - 8804. 27 259.29
Amplitude
This paper 1.808” 1.296” 0.032” 8.183x3.306”
Newhall et al. (1997) 1.807” 1.37” 0.022” 8.19x3.31”
Chapront et al. (1999) 1.812” - 0.022” 8.182”
Phase at JD 2451545.0
This paper 223.5 207.0◦ 160.8◦ 161.60◦

Newhall et al. (1997) 223.8◦ 208.9◦ 246.4 161.82◦

Chapront et al. (1999) 224.3◦ - 250.3◦ 161.77◦

Table 3 Periods (days), amplitudes and phases (degrees) of the free librations determined
from the ephemeris DE421 and comparison with the values obtained in the Newhall and
Williams (1997) and Chapront et al. (1999) analyses.

periods are resonances for the forced physical librations. For τ , forced terms at short

periods are much reduced compared to their orbital counterparts, long periods have

amplitudes similar to the terms in orbital longitude, and terms near the resonant period

of 1056 days are magnified. Consequently, electronic Tables and Figure 7 show many

terms from 1 yr to 273 yr. While there are also many terms near a month, these

angular amplitudes are three orders-of-magnitude smaller than their orbital longitude

counterparts. Periods shorter than a month are even more strongly suppressed. The

motion of the lunar pole is described by the Iσ and ρ pair and the p1 and p2 pair. The

resonances correspond to the two free modes at 8822.88 d prograde for Iσ and ρ and

the wobble mode at 27257.27 d for p1 and p2. When the wobble mode is converted to

Iσ and ρ it gives multiple periods including 27.185 d and 27.239 d.

6 Discussion and Conclusion

In this paper, we have determined the amplitudes, phases and periods of the three free

libration modes. Table 3 shows the periods and amplitudes for each free libration mode.

The results of this paper are compared to two other studies. The second row gives the

results of Newhall and Williams (1997) who analyzed DE403; we used unpublished

material from that study to get phases and add digits. The bottom row shows the

results obtained by Chapront et al. (1999) using DE403. The comparison is in very

good agreement for the wobble mode. The three studies also agree for the blend of

forced and free longitude terms. This paper and Newhall and Williams (1997) agree

after extracting the free libration in longitude mode from the blend, but Chapront et al.

(1999) did not untangle the forced and free terms of the larger amplitude blend. We note

also that we used a longer time series so our periods are expected to be more accurate

than in Chapront et al. (1999), although some difference could result from different

numerical values in the calculation of the free periods. The amplitude of the latitude

mode is small and the phase is different for this paper using DE421 and the two older

studies using DE403. The determination of the latitude mode in this paper is consistent

for the sine and cosine components of the ρ and Iσ librations and we conclude that the

latitude mode in DE421 has been recovered. The Newhall and Williams (1997) study
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also shows consistency of components for DE403, and that study agrees with Chapront

et al. (1999). The accurate determination of the physical libration initial conditions

during the Lunar Laser Ranging data fit is a separate question. The integration model

for DE403 had a solid Moon with tidal deformation while the DE421 model included

an oblate fluid core. A fluid core will cause a free mode and small changes in the slow

motion of the lunar pole in space (see Sidereal Terms in Williams et al. 2001) that may

change the fit of the 81 year free latitude mode using the shorter span of Lunar Laser

Ranging data (38 years for DE421, 25 years for DE403). While the detection of the

latitude mode in this paper is valid for the DE421 physical librations, the amplitude and

phase may be sensitive to the lunar interior model used to fit the Lunar Laser Ranging

data so that different physical libration integrations have different values. Caution is

also advised for the candidate free core nutation (FCN) terms. While the amplitude

of about 16 milliarcseconds is substantial and those terms occur in DE421, the real

value of the core/mantle boundary flattening, and consequently the FCN frequency, is

still very uncertain (Williams and Boggs 2009). Analysis of another ephemeris with a

different flattening would test the candidate terms.

Each normal mode is characterized by a damping time scale. Based on the DE421

tide and core dissipation values given in Williams et al. (2008b) and the expressions in

Williams et al. (2001), the damping times are 2 104 yr for the longitude mode, 1.5 105

yr for the 81 yr latitude mode, and 2 106 yr for the wobble mode. As a consequence,

the observational detection of free librations requires recent excitation mechanisms

compared to the damping times.

Some possible excitation mechanisms have been explored in the past without sat-

isfactory explanation. It has been shown that a recent meteoroid impact is an unlikely

source of such excitation Peale (1975). Eckhardt (1993) proposed an excitation pro-

cess related to a resonance crossing of the longitude normal mode (of 2.9 years) and

a close forced frequency. During the evolution of the lunar orbit, the free and forced

frequencies change slowly and can cross. However, the mechanism excites only the li-

bration in longitude mode. Yoder (1981) proposed an alternative mechanism, based

on turbulent fluid core interaction, to excite the wobble mode. The new determination

of the amplitudes of the free librations invites new investigation of their excitation

mechanisms.
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6. Chapront-Touzé M. and Chapront J., 1983, ‘The lunar ephemeris ELP 2000’, Astronomy

& Astophysics 124, 50-62.
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vatory, http://www.imcce.fr/Equipes/ASD/trip/trip.html

17. Hilton, J. L., N Capitaine, J. Chapront, J. M. Ferrandiz, A. Fienga, T. Fukushima, J.
Getino, P. Mathews, J.-L. Simon, M. Soffel, J. Vondrak, P. Wallace, and J. Williams, 2006,
‘Report of the International Astronomical Union division I Working Group on precession
and the ecliptic’, Celestial Mech. and Dyn. Astron. 94 (3), 351-367, doi: 10.1007/s10569-
006-0001-2.

18. Jin, W., and J. Li, 1996, ‘Determination of some physical parameters of the Moon with
lunar laser ranging data’, Earth, Moon and Planets 73, 259-265.

19. Laskar, J., 1988. Secular evolution of the Solar System over 10 million years. Astron.
Astrophys. 198, 341–362.

20. Laskar, J., 2005. Frequency Map analysis and quasi periodic decompositions. In: Benest,
D. , Froeschler, C., Lega, E. (Eds.), Hamiltonian Systems and Fourier Analysis. Cambridge
Scientific Publishers, Cambridge.

21. Lieske, J. H., Lederle, T., Fricke, W., & Morando, B. 1977, ‘Expressions for the precession
quantities based upon the IAU /1976/ system of astronomical constants’, Astronomy &

Astophysics 58, 1
22. Moons, M. 1982, ‘Analytical theory of the libration of the Moon’, Moon and Planets 27,
257-284.

23. Newhall, X.X, and Williams, J.G., 1997, ‘Estimation of the Lunar Physical Librations’,
Celestial Mechanics and Dynamical Astronomy 66, 21-30.

24. Peale S., 1975, ‘Dynamical consequences of meteorite impacts on the moon’, Journal of

Geophysical Research 80, 4939-4946.
25. Petrova N., 1996; ‘Analytical extension of lunar libration tables’, Earth, Moon and Planets
73, 71-99.

26. Simon, J. L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G., & Laskar, J.
1994, ‘Numerical expressions for precession formulae and mean elements for the Moon and
the planets’, Astronomy & Astophysics 282, 663-683.



17

27. Varadi, F., S. Musotto, W. Moore, and G. Schubert, 2005, ‘Normal modes of synchronous
rotation’, Icarus 176, 235-249.

28. Williams, J. G., X X Newhall, and J. O. Dickey, 1996, ‘Lunar moments, tides, orientation,
and coordinate frames’, Planetary and Space Sci. 44, 1077-1080.

29. Williams, J. G., D. H. Boggs, C. F. Yoder, J. T. Ratcliff, and J. O. Dickey, 2001, ‘Lunar
rotational dissipation in solid body and molten core’, J. Geophys. Res. Planets 106, 27933-
27968.

30. Williams, J. G., and J. O. Dickey, 2003, ‘Lunar Geophysics, Geodesy, and Dy-
namics’, in Proceedings of 13th International Workshop on Laser Ranging, eds. R.
Noomen, S. Klosko, C. Noll, and M. Pearlman, NASA/CP-2003-212248, pp. 75-86,
[http://cddisa.gsfc.nasa.gov/lw13/lw proceedings.html]

31. Williams, J.G., D. H. Boggs, and J. T. Ratcliff, 2006b, ‘Lunar Interior Results and Possi-
bilities’, Abstract No 1229 of Lunar and Planetary Science Conference XXXVIII.

32. Williams, J.G., Turyshev, S.G., Boggs, D.H., and Ratcliff, J.D., 2006a, ‘Lunar Laser
Ranging Science: Gravitational Physics and Lunar Interior and Geodesy’, in Advances in
Space Research 37, The Moon and Near-Earth Objects, 67-71, doi: 10.1016/j.asr.2005.05.13
[arXiv:gr-qc/0412049]

33. Williams, J. G., D. H. Boggs and W. M. Folkner, 2008a, ‘DE421 Lunar Orbit, Physical
Librations, and Surface Coordinates’, JPL IOM 335-JW,DB,WF-20080314-001, March 14,
2008.

34. Williams, J. G., D. H. Boggs, and J. T. Ratcliff, 2008b, ‘Lunar Tides, Fluid Core and
Core/Mantle Boundary’, Abstract No. 1484 of Lunar and Planetary Science Conference
XXXIX.

35. Williams, J. G. and D. H. Boggs, 2009, ‘Lunar Core and Mantle. What Does LLR See?’, in
Proceedings of 16th International Workshop on Laser Ranging, SLR – the Next Generation,
ed. Stanislaw Schillak, 101-120

36. Yoder, C. F., 1981, ‘The free librations of a dissipative moon’, Phil. Trans. R. Soc. Lond.

A 303, 327-338.



18
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(d) (e)

Fig. 7 Figures (a,b,c,d,e) show the spectrum of librations for different angles, Iσ, ρ, τ and polar
orientation p1 and p2. The corresponding Tables are available in the electronic supplementary
materials.


