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A cost-effective algorithm for the solution of engineering problems 

with particle swarm optimization 
 

Giordano Tomassetti* 
 
Vibro-acoustics and Smart Structures Lab, Italian Aerospace Research Centre, 

Capua, Italy 

 
 

A hybrid particle swarm optimization algorithm is proposed for the cost-effective 
solution of single objective constrained engineering problems. The algorithm implements 
original strategies aimed to reduce computational effort of optimizations when dealing 
with real-world problems. Taking inspiration from evolutionary algorithms, a selection 
mechanism among particles is proposed allowing significant reductions in the solution 
cost. To enlarge the exploration space, a multi-start approach is frequently adopted, 
randomly reinitializing the swarm; the injection of optimized particles -obtained in 
previous runs- into the successive randomly generated starting swarms has been 
investigated as an expedient to accelerate convergence to the optimal solution. In order to 
avoid the algorithm to remain trapped into local minima, an innovative scheme has been 
proposed to update the inertia factor multiplying the previous velocity of the swarm. The 
proposed algorithm has been validated using standard engineering and purely 
mathematical problems commonly recognized as valid benchmark functions in 
specialized literature. 
 
Keywords: particle swarm optimization; constrained optimization; nonlinear objective function; 
nonlinear constraints. 

 

1. Introduction 

 

In practical engineering optimization problems cost function and constraint 

evaluations represent one of the most time-consuming aspects of the design. This is 

because the objective functions or the limitations to the design space are frequently 

evaluated by evoking some external code (finite elements analyses or other 

computationally intensive programs). These programs dramatically increase the 

optimization time inducing the international scientific community to make an effort to 

develop cost-effective algorithms.  

Particle swarm optimization (PSO) is frequently preferred to genetic 

algorithms (GA) for its intrinsic ability to rapidly drive the design into a minimum. 

On the other hand, while GA guarantee a deep exploration of the design space, PSO, 
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as originally formulated by Kennedy and Eberhart in 1995 easily falls into local 

minima. The idea of simulating the graceful choreography of birds in a flock can be 

mathematically modelled to imitate the psychosocial behaviour of these animals using 

cooperation to obtain a shared asset. In the original formulation, a swarm of M 

particles –each representing, with its position in the N-dimensional hyperspace, one of 

the possible design parameters- is randomly initialized within the feasible region. For 

the sake of clarity, throughout the present article the expression kxi
j indicates the i

th 

particle dimension for the jth particle at the kth iteration. At each kth iteration, each jth 

particle position kXj
=[

k
x1

j
, 

k
x2

j
,…, 

k
xN

j
] is then updated into k+1

X
j
=[

 k+1
x1

j
, 

k+1
x2

j
,…, 

k+1
xN

j
] on the basis its own flying experience (the personal best design –pbest– the 

single particle j found up to the present kth iteration) and its companions flying 

experience (the best design –gbest– the entire swarm found up to the present kth 

iteration). The entire swarm X made up of volume-less particle is moved according to 

the following equations: 

( ) ( )XXVV kkkk gbestrcpbestrcw −⋅+−⋅+⋅=+
2211

1                                                       (1) 

XVX
111 +++ += kkk

                                                                                                          (2) 
 

where w is an inertial constant (controls the balance between global and local 

exploration representing an inertial term to the movement of the individual), c1 and c2 

are the so-called learning factors representing the weighting of the stochastic 

acceleration towards the personal best and the global best, respectively. r1 and r2 are 

two random numbers independently generated. In this work, uniformly distributed 

pseudorandom numbers (obtained using a Mersenne Twister algorithm) are referred to 

as “random” numbers. The random seed is reinitialized each time a random number is 

needed. 
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The most common problem encountered by optimization methods also affects 

PSO. Despite having demonstrated to be an effective algorithm, with PSO it is quite 

difficult to identify a global minimum even when the problem strictly requires a 

global exploration and the detection of a global extreme. Parsopoulos and Vrahatis 

(2002) proposed a stretching technique performing a two-stage transformation of the 

cost function to stretch it allowing the optimizer to escape from local minima. On the 

other hand, to avoid the optimizer to remain trapped into local minima, Battiti et al. in 

2005 presented the “Affine Shaker algorithm”. The term “shaker” refers to the brisk 

movements of the search trajectories of the local minimizer, while “affine” means the 

affine transformation executed on the local search region considered for the 

generation of the successive point for the individual along its trajectory.  

In its primordial formulation, PSO did not take into consideration constraints 

to the design space. However, almost all engineering problems are characterized by a 

number of constraints often representing the feasibility of the design process. In 

structural optimization, for example, constraints often express the allowable stresses 

inside each structural component. Sometimes, when constraint equations stand for the 

limits for material properties, constraint violation can signify that the optimizer is 

trying to solve a problem having no physical meaning. When dealing with 

commercial finite elements codes, this can induce the solver to crash, interrupting the 

optimization process. Moreover, in complex practical engineering design, 

optimization is frequently used simply to drive the design into the feasible space and 

the minimization of the cost function becomes of secondary interest. This usually 

happens when the designer has already in mind a first-attempt configuration that 

could be infeasible and needs to re-enter the feasible space. For these reasons, an 

efficient constraint handling technique is essential for the use of PSO in engineering 
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optimization. The most common approach in PSO community (as well as for GA, 

Coello Coello 1999) is to handle constraints using penalty functions. Unfeasible 

swarms are penalised by adding a term to the fitness. The penalty is proportional to 

the constraint violation along any dimension of the hyperspace. 

The efficiency of any evolutionary algorithm is strongly influenced by its 

behaviour to terminate a run (Jain et al. 2001). In an iterative process, termination 

criteria influence the effectiveness in identifying a possibly optimal solution to the 

problem. A large number of criteria have been proposed so far in specialised 

literature. In practical engineering, a termination criterion should determine the end of 

a search process as soon as the algorithm is not sufficiently efficient. When the search 

process degenerates into a random search with no significant improvements, the 

efficiency of the algorithm is exhausted and further computation only leads to an 

undesirable solution cost increase (Zielinski and Laur 2007).  

Many studies have demonstrated the improvements in performance obtained 

by hybridizing PSO algorithms implementing some of the principles used for GA. 

Angeline, in 1998, proposed a tournament selection based on the comparison of each 

individual’s fitness with k other individuals in the swarm. Positions and velocities of 

the best half of the swarm were used to replace the worst half. In 2008, Grundy and 

Stacey proposed the implementation of mutation and hill climbing mechanisms in a 

PSO algorithm obtaining encouraging results in low and moderate dimension 

problems. On the other hand, van den Bergh and Engelbrecht (2004) demonstrated a 

significant improvement of the performances by introducing a cooperative behaviour 

using multiple swarms to optimize different components of the solution vector 

cooperatively. Tillett et al. (2005) investigated whether natural selection can enhance 

the ability of PSO algorithms to escape from local minima. Richards and Ventura 
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(2003) studied the effect of swarm size and sociometry on the effectiveness of PSO 

schemes. Dynamic sociometry proved to be effective in some situations but not all. 

 

2. Dealing with constraints 

 

When dealing with real engineering problems, an efficient approach to constraint 

handling is crucial to improve the effectiveness of the optimization process. In general 

terms, any engineering optimization problem can be defined by the following 

formulation: 

 

{ } N

Nxxxwheref ℜ∈= ...),(min 21XX                                              (3) 

phgtosubject h ,...,2,1,0)( =≤X                                                                (4) 

Nixxxwhere
U

ii

L

i ,...,2,1, =≤≤
                                                                   (5) 

 
Constraints are commonly classified into “geometrical” and “physical” 

limitations to the design. Geometrical constraints are limitations directly expressed in 

terms of upper and lower bound of the design variables. Physical constraints are 

restrictions expressed on physical quantities that need to be numerically evaluated. 

Real-world limitations are frequently multiple, non-linear and non-trivial constraint 

functions on the design reducing the feasible space to a small subset of the 

hyperspace. In these design processes, function and physical constraint evaluations 

are frequently obtained by evoking one or more external solvers. Constraint violation, 

both geometrical and physical, may induce the solver to crash or, in some 

circumstances, to give non-physical results thus leading the optimization process to a 

numerical solution that has nothing in common with the real problem. For example, 

this happens when infringing the design space means trying to solve a non-linear 

structural problem using a linear finite element model. 
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Consequently, most authors devised a penalty function to estimate the 

infeasibility level of design candidates. As mentioned before, the basic adopted 

approach (Coello Coello 1999) is to add a penalty term to the fitness value of 

infeasible solutions. Though in the author’s experience, troubles are frequently 

encountered in extending this approach to structural optimizations because constraints 

often require to be strictly honoured. In fact, fitness values in infeasible solutions are 

sometimes impossible to be evaluated. The most intuitive approach to bypass this 

obstacle is adding a penalty term P(
pres

X) for the present candidate pres
X to the last 

feasible fitness value f(last feas
X) identified before constraint violation. In mathematical 

terms: 







⋅+
=

unfeasibleifPrf

feasibleiff
f

prespresfeaslast

prespres

pres

XXX

XX
X

),()(

),(
)(                                      (6) 

 

where pres
X is the design vector at the present iteration, last feas

X is the last design 

vector respecting all constraints, r is a multiplying factor set to amplify constraint 

violation in the penalty evaluation. When constraints are infringed, fitness value at 

present iteration is calculated summing two terms: fitness value estimated in the last 

feasible iteration (f(last feas
X) already known and requiring no further function 

evaluation) and a penalty P(
pres

X) expressing the distance from constraints boundaries 

[X
L
 X

U
]. The penalty function P(

pres
X) has the following expression: 

 

( ) ( )[ ] [ ]

[ ]










∈

∉−+−

=

∑

∑

=

=

ULpres
p

j

pres

j

ULpres
N

i

i

presU

ii

presL

i

pres

ifg

ifxxxx

P

XXXX

XXX

X

,,))(,0min(

,,,0min,0max

)(
2

1

1

22

         (7) 

 

The presented approach to constrained optimization has the advantage of avoiding 

useless -sometimes impossible- cost function evaluation in unfeasible design points 
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while providing an opportune fictitious value for the fitness to be used by the swarm 

to move further. In case of constraint infringement, the fitness value is artificially 

derived to induce the swarm to re-enter the design space as rapidly as possible.  

 

3. Swarm size reduction (SSR) 

 

Taking inspiration from GA, PSO algorithms have frequently been hybridized by 

manipulating the swarm in order to accelerate the convergence of the individuals to 

the optimum. The increase in convergence speed is not the only aspect that can be 

positively affected by swarm modifications. When thinking about complex time-

consuming function evaluations, a selection mechanism between particles may be 

introduced to avoid calculation of fitness in two distinct cases. Figure 1 shows a 

simplified schematic of a two-dimensional search space with a single constraint (solid 

line). Dashed curves represent lines along which the objective function is constant. 

With reference to Figure 1, when an individual of the swarm (bee # 6 in Figure 1) is 

too far from the presumed global best (the honey jar in Figure 1), probably its 

elimination from the swarm could be taken into consideration. On the other hand, if 

two particles are too close to each other (bees # 1 and # 2 in Figure 1), it may be 

computationally effective to eliminate the worst (bee # 2) of the two allowing only the 

best one (bee # 1) to proceed towards the global best. Bee # 3 is flying in the 

infeasible region. So, its fitness is calculated adding a penalty function as explained 

before. Bees # 4 and # 5 are not close enough to take into consideration the 

elimination of one of them, despite they have a similar value of the fitness because 

they lay on the same dashed curve. 

On the basis of these practical considerations deriving from common sense, a 

tournament selection is introduced in the algorithm, allowing the swarm to eliminate 
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particles thought to give small contribution to the search process. In the commonly 

used metaphor of bees moving around in a swarm, the selection mechanism simulates 

the behaviour of insects fighting one another when they get too close to each other 

looking for the same food. To the author’s knowledge of PSO literature, the SSR 

approach is original while many others have proposed a cooperative approach to the 

search process (van den Bergh and Engelbrecht 2004). This approach echoes the 

selection of individuals representing the basis of GA enabling PSO to drastically 

reduce the computational cost of the algorithm without excessively worsening the 

quality of the solution.  

The consumer theory of microeconomics and the game theory (von Neumann 

and Morgenstern 1944) can help understanding the inspiration for the SSR 

methodology. Imagine you are a consumer and you are able to form binding 

commitments with all the other consumers operating on the same market. In analogy 

with PSO hypotheses (each particle makes its information available to their 

neighbours and they are also able to see where their neighbours have had success), it 

is assumed that communication among consumers is allowed and perfect. This means 

that any consumer is perfectly informed about any other’s choice and he acts, 

according to a defined strategy, as a consequence of this knowledge. As long as the 

temporal horizon for purchasing is infinite, the best strategy for each consumer will be 

to act according to the commitment to maximize the collective benefit. This is 

analogous to what happens to the particles in the swarm. Particles strictly act 

according to a social behaviour (a set of rules). Now imagine the temporal horizon of 

the market is unexpectedly reduced. In the analogy with PSO, this represents the 

change of the optimization strategy when the number of function evaluations to 

converge to an improved -even if not optimal- solution has to be reduced. In this case, 
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consumers will be caught in a bind of having to buy something as soon as possible 

and they will probably be worried about failing to reach the initially defined 

communal goal of the swarm. In this case, the most rational choice will probably be to 

defect from the cooperative strategy preferring an antagonistic behaviour aimed to 

immediately maximize each own utility. In other terms, the classical cooperative PSO 

approach is to be preferred when no restrictions are posed on the temporal horizon of 

the swarm to find the optimum. When the market turns from static (no limits on the 

number of objective evaluations) into a dynamic one approaching to the closing time 

(the need for containing the solution cost of the optimization) consumers (i.e. 

particles) rational choice is to eliminate the less promising candidates giving 

opportunities only to the most talented ones. 

SSR is summarised by the following equation and described in Figure 2: 

 

Bdel

kk

and

ff

and

Nixxxx

if
BA

L

i

U

i

B

i

A

i

⇒
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XX                                                               (9) 

 
Equations (8) and (9) simply express the conditions for eliminating one particle 

(particle B, for example). After a predetermined number of iterations k0, the swarm 

will probably have already detected a promising movement direction. Preliminary 

tests showed that k0 = 10 is a reasonable choice. Now, it may happen that two 

Page 9 of 53

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

particles (A and B) have very similar positions in the search space, as expressed by 

Equation (8). On the contrary, it may also happen that one (or more) particles are 

positioned relatively far from the rest of the swarm, as expressed by Equation (9). In 

both these cases, the SSR allows the swarm to eliminate particles thought to give 

small contribution to the search process. In fact, when particles A and B are very close 

to each other, the elimination of the worst of the two is probably a reasonable choice 

if the solution cost has severely to be contained. On the opposite, after a number of 

iterations k0, it may happen that one particle has got behind the rest of the swarm. In 

this case, this particle is probably moving in the hyperspace without effectively 

contributing to the search process. So, a rational option may be to purge it. 

In Equations (8) and (9), at each iteration, each particle position is compared 

to each other in the swarm to identify if a single particle (B) is too far from another 

particle (A) or if two particles (A and B) are too close to one another. Coefficients 0.1 

and 0.4 shown in equations (8) and (9) were determined after preliminary tests. When 

two particles are too far or too close one another, the worst -in terms of fitness- is 

eliminated from the swarm. 

As described in Figure 2, SSR implements a tournament selection based on 

pairwise comparison between each individual and all the others. The comparisons 

between couples of particles are performed until exhaustion of individuals. To 

guarantee a minimal number of individuals in the swarm, SSR applies only as long as 

the present number of individuals equals at least half of the original population size 

(initial swarm size). At the end of each iteration, a number of particles is eliminated. 

So the number of surviving individuals at the end of the optimization can be defined 

as the final swarm size.  
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Concerning constraint participation in the selection mechanism, SSR is 

applied only to individuals respecting both side and physical constraints. This is in 

order not to interfere with the penalty method which is expressly devoted to guide the 

search process to reduce constraint violation.  

 

4. Particle injection (PI) 

 

One of the goals of modern heuristic is to combine exploration and exploitation of the 

search space. The exploration is responsible for the enlargement of the spectra of 

scanned regions in the hyperspace, while exploitation is devoted to the deep analysis 

of the most promising subsets of the design space. An ideal optimization algorithm 

should be able to detect the potentially optimal regions in very few iterations and 

analyze them thoroughly to efficiently find the global optimum. To increase the 

algorithm exploration capabilities one can alternatively use more individuals or 

implement a multi-start process. Both these solutions may compromise the algorithm 

efficiency causing the solution cost to rise unjustifiably. An interesting strategy could 

be a multi-start approach treasuring information obtained by previous runs to quickly 

select the areas to scan more deeply.  

When activating the particle injection (PI) subroutine, a particular kind of 

multi-start approach is implemented (Figure 3). In the ordinary multi-start search, at 

the beginning of each restarting a new randomly positioned swarm is generated. But 

previous restarts had already detected a best design candidate. The “injected particle” 

is the best candidate found during the previous multi-start process, up to the present 

run. The basic idea of PI technique is to make use of the swarm knowledge of the 

search-domain. This knowledge is represented by the best design candidate that is 

“injected” -i.e. directly positioned among the rest of the randomly initialized swarm. 
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This should guarantee diversity (because of the multi-start approach) and an 

appropriate use of previous swarm flying experience to speed up the numerical 

process. As expressed by Equation (10), the best particle is injected in only half of the 

optimization restarts.  

In order to enlarge the number of different scanned subsets of the design 

space, a common choice is to repeatedly initialize the search process starting from 

different sets of randomly generated initial particles positions. When activating PI, 

this is done trying not to disperse the “knowledge” accumulated up to now. The best 

optimum found among previous numerical search campaigns is considered the best 

candidate to be a global optimum. Using an ordinary multi-start technique, the flying 

experience of preceding swarms - that have moved around in the design space in the 

previous optimization runs - is useless to the present optimization run. On the contrary 

it could be made available to the present swarm in order to speed up the detection of 

promising regions without renouncing the advantages given by the multi-start 

approach in terms of improvements to the exploration capabilities. If a particle, in any 

preceding optimization runs, finds a promising candidate subset of the hyperspace, the 

successive swarms will keep the memory of this knowledge and this will hopefully 

help future swarms to get faster to the optimum. 

Obviously, sharing the flying experience among successive generations of 

swarms could lead to a stagnation of particles in a previously detected promising area 

thus causing difficulties in exploring new areas. The approach chosen in this study is 

to use particle injection in only half of the optimization runs in order to avoid the risk 

of compromising the diversity of swarms, that is, the exploration capabilities of the 

algorithm. The initialization procedure can be expressed by: 
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where [start k th run
X] is the starting swarm made up of M particles for the kth 

optimization run. If k is an odd number -including the first optimization run when a 

global best has not been yet detected - the particles positions are randomly generated 

within the geometrical constraints [X
L
 X

U
]. If k is an even number -i.e. starting from 

the second optimization run- one of the starting particles is not a random position 

vector but it is the “injected” one. This particle will hopefully drive the swarm to 

rapidly direct to a promising subset of the design space without loosing new regions 

exploration capabilities because of the randomly initialized rest of the swarm.  

 

5. Inertia weight 

 

An opportune parameters choice is fundamental to increase the overall efficiency of 

the optimization process. This is particularly true when using PSO based algorithms. 

In fact, a judicious identification of the parameters can avoid the swarm explosion 

effect caused by the deleterious effects of randomness as well as the risk of a 

premature convergence. As previously mentioned, the cognitive and social parameters 

c1 and c2 respectively quantify the memory of previous best position and the 

neighbours’ performance. In this study, these parameters have been considered fixed 

with the purpose of comparing results obtained here to those of other authors. 

However, the effect of parameters on the algorithm effectiveness has been 

investigated and discussed in Section 8.2. 
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The inertia weight w is used to balance global and local search. A large inertia 

weight facilitates a global search while a small one facilitates a local search. Most 

authors have then proposed to linearly decrease the inertia weight from a relatively 

large value to a relative small one (Battiti et al. 2005). In this way, the algorithm tends 

to show a more global exploration capability in the first iteration and a more accurate 

exploitation aptitude getting closer to the end of the run. Other researchers (Hu et al. 

2004) have proposed a randomized inertia weight set to [0.5 + (random/2.0)]. In the 

presented algorithm a different approach has been adopted, described by the 

following: 

( )









>
=
−

⋅−+

=+
=

1,
)1(

)1(

1,
2

5.0

121 kif
kgbest

kgbest
www

kif
rand

w
k                                                            (11) 

 

The inertia weight w is firstly initialized according to the randomized approach to [0.5 

+ (random/2.0)]. Starting from the second iteration, kw is evaluated according to the 

ratio between the global best gbest at the previous iteration (k-1) over the global best 

gbest at the first iteration (k=1). w1 and w2 are the inertia weight initial and final 

values. According to Shi and Eberhart (1999), w1 and w2 have been respectively fixed 

to the value 0.9 and 0.4. 

There is a reason for preferring this approach to the update process of the 

inertia weight. In the adopted algorithm, the iteration number is not a correct measure 

of the number of iterations driving the design to the optimal solution. When one 

particle infringes the geometrical constraints, its fitness value is fictitiously evaluated 

as a boundary violation measure. These iterations are accounted for but they do not 

strictly contribute to the swarm movement towards the optimum because they are only 

aimed to re-enter the feasible space. Reducing the inertia weight according to these 
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artificially induced movements did not seem -in the author’s judgement- a concrete 

step further in the search process. A valid alternative to quantify the optimum 

approaching was identified in measuring how different from the first iteration global 

best is from the previous iteration global best. In other terms, instead of reducing w 

according to the increase of iteration numbers, w is reduced on the basis of the 

decrease of the most recent global best with respect to the first iteration one. Of 

course, the described approach is appropriate for minimization problems but the 

reader can readapt it to maximizations by simply inverting the ratio between the 

global bests in Equation (11). 

 

6. Numerical experimental setting 

 

In order to evaluate pros and cons of the presented algorithm, four engineering design 

problems have been chosen and two types of tests have been performed. The four 

engineering benchmark problems have been solved trying to reproduce the settings 

described by other researchers in previously published experiments. All selected 

benchmark problems are characterised by nonlinear objective functions and/or 

nonlinear constraints. 

The two sets of tests were aimed to evaluate the solution quality and the 

convergence speed of the proposed algorithm. Solution quality is measured in terms 

of difference between the obtained results and the best known optimal values of the 

objective functions for the four benchmark problems. Convergence speed is measured 

comparing the number of objective function evaluations needed to reach a certain 

threshold of fitness with values available in literature. 

A brief description of the four benchmark engineering problems follows. 

 

Page 15 of 53

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

6.1 Design of a pressure vessel 

 

This benchmark problem takes into consideration the design of a compressed air 

storage tank (Figure 4) working at a pressure of 3,000 psi (2.07 × 107
 Pa) with a 

minimum volume of 750 ft
3
 (21.2 m

3). The tank is capped at both ends with two 

hemispherical heads. The objective is to minimize the total cost, including forming 

the welding. Design variables are: x1 thickness of the shell, x2 thickness of the head, x3 

the inner radius and x4 the length of the cylindrical portion of the vessel. x1 and x2 are 

integer multiples of 0.0625 in (0.15875 cm, the available thickness of rolled steel 

plates) while x3 and x4 are continuous variables. 

The problem is stated as: 

Minimize: 

 

3

2

14

2

1

2

32431 84.191661.37781.16224.0)( xxxxxxxxxXf ⋅+⋅+⋅+⋅=
                          (12) 

 

Subject to the following physical constraints: 
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xxxXg
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                                                              (13) 
 

The geometrical constraints are as follows: 1 × 0.0625 ≤ x1 and x2 ≤ 99 × 0.0625, 10.0 

≤ x3 and x4 ≤ 200.0. When dealing with integers, x1 and x2 are truncated to integers, as 

done by Hu et al. (2003). Although discrete problems have recently been addressing 

interests in the scientific community, a rigorous implementation of integer variables in 

PSO algorithms still represents a challenge by itself (Garcia and Perez 2008) and it is 

not among the aims of this article. Furthermore, even if this is not to be considered the 
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best possible approach, truncation to the nearest integer value has been chosen by all 

the authors this article compares its results to (Cagnina 2008, Hu 2003, Coello 1999, 

Akhtar 2002) in Section 8. 

 

6.2 Welded beam design 

 

The second benchmark example deals with a typical engineering design problem 

originally described by Deb in 1991 as benchmark test for optimization algorithms. 

Minimize the fabrication cost of a welded beam (Figure 5) subject to constraints on 

shear stress τ, bending stress σ, buckling load Pc and end deflection δ. The four design 

variables x1, x2, x3 and x4 are all continuous and represent the geometrical parameters 

of the bar (respectively h, l, t and b).  

The optimization problem is summarised as: 

Minimize: 

( )2432

2

1 0.1404811.010471.1)( xxxxxXf +⋅+⋅=
                                                      (14) 

 

Subject to the following physical constraints: 
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where: 
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and the following parameters are used: P = 6000 lb (26,689 N), L = 14 in (356 mm), 

E = 30 × 106
 psi (2.068 × 1011 

Pa), G = 12 × 106
 psi (8.27 × 1010 

Pa), τMAX = 13,600 

psi (9.38 × 107
 Pa), σMAX = 30,000 psi (2.07 × 108

 Pa), δMAX = 0.25 in (0.635 cm). 

The side constraints for the design variables are expressed by: 0.125 ≤ x1 ≤ 2.0, 0.1 ≤ 

x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.0. 

 

6.3 Weight of a tension/compression spring 

 

The minimization of the weight of a tension/compression spring (Figure 6) subjected 

to constraints on minimum deflection, shear stress, surge frequency is mathematically 

described as follows. 

Minimize: 

( ) 2

123 2)( xxxXf +=
                                                                                                  (17) 

 

subject to:  
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in the optimization process x1 = d (the wire diameter), x2 = D (the mean coil 

diameter), x3 = N (the number of active coils). Side constraints are: 0.05 ≤ x1 ≤ 2.0, 

0.25 ≤ x2 ≤ 1.3, 2.0 ≤ x3 ≤ 15.0. 

 

6.4 Speed reducer  

 

The weight of a speed reducer (Figure 7) is minimized with constraints on bending 

stress of gear teeth, surface stress, transverse deflections of the shafts and stresses in 

the shafts (Golinski 1973). This example is reported by other researchers to challenge 

various optimization algorithms. Design variables are: face width (x1), module of 

teeth (x2), number of teeth in the pinion (x3), length of the first shaft between bearings 

(x4), length of the second shaft between bearings (x5), diameter of the first (x6) and 

second shaft (x7). All design variables are continuous with the exception of x3 which 

is truncated to nearest integer value. The optimization problem is stated as follows: 

Minimize: 
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            (19) 
 

subject to: 
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and with the following side constraints: 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 

≤ x4 ≤8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5. 

 

7. Solution quality: numerical results and discussion 

 

Solution qualities of the optimizations performed with the proposed algorithm have 

been quantified by comparing the obtained solutions with the best optima found by 

different authors. Conditions described by Hu et al. (2003) -briefly referred to as Hu 

in the following- have been considered as the experimental set up for solution quality 

tests. According to this article, the swarm size is 20, maximum generation is 10,000, 

in all the experiments. Differently from Hu, the initial population is not repeatedly 

initialized until all randomly positioned particles meet all the constraints. In fact, this 

approach only caused a numerical explosion of the solution cost without giving 

significant improvement to the solution quality. However, not having initialized the 

swarm to the feasible space should represent a pejorative condition for the presented 

algorithm. Nevertheless, this aspect has proved not to be a real problem to the solution 
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quality nor to the convergence speed. According to Hu, the learning rates c1 and c2 

were set to 1.49445 while the maximum speed Vmax was set to the dynamic range of 

the particle along each dimension. As described by Hu, eleven runs were executed for 

each of the four problems and the best solution for each is reported in the following 

tables (Table 1 to Table 4). Optimal design variables, constraints in the optimum and 

the optimal objective are indicated and compared to the best solutions found in 

literature. To the end of faithfully reproducing Hu’s experimental conditions, the 

particle swarm size reduction (SSR) and particle injection (PI) have been deactivated 

for these runs. Nevertheless, very similar results were obtained by activating the 

mentioned SSR and PI subroutines of the algorithm but they are omitted for the sake 

of brevity. Results obtained with the proposed algorithm were also compared with a 

number of mathematical test functions -namely Ackley’s function, Grienwagk’s 

function, De Jong’s sphere function and the Alpine function (Molga and Smutnicki 

2005)- giving acceptable results. These results are omitted since the emphasis of this 

work is focused on the reduction of engineering problems solution cost. However, a 

statistical analysis of the convergence speed for the mathematical test functions is 

reported in Section 8.1. 

The comparison of the objective functions in the optima (Table 1 to Table 4) 

proves the presented algorithm’s capabilities to closely approach the best known 

optima available in literature. In all the four benchmark problems, the differences 

between the optima found in this work and in literature are negligible. 

Some statistics about the objective function is reported in Table 5. For each 

row -i.e. each benchmark problem- Table 5 shows the mean, the worst and the 

standard deviation for the optimal values found over eleven runs. As mentioned 

before, best objective functions over eleven runs are reported in Tables 1 to 4 with 
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details about design variables and constraints in the optima. Table 5 also shows 

statistics reported by Coello Coello (1999) with respect to the first three reported 

engineering problems. 

Table 5 shows an improvement in the mean optimal objective values with 

respect to Coello Coello’s (1999). Nevertheless, the higher standard deviation values 

seem to indicate that the implemented algorithm is less robust than Coello Coello’s. 

The results (from Table 1 to Table 4) coincide with the best ones available in 

literature allowing to consider the proposed algorithm (integrated or not with SSR and 

PI subroutines) as a validated PSO optimizer to face the challenging aspect of 

increasing the convergence speed when dealing with real-world optimization 

problems. 

 

8. Convergence speed: numerical results and discussion 

 

In the frame of this study, the convergence speed of the algorithm can be simply 

defined as the rapidity for the objective function to slope down a specified threshold. 

The rapidity is expressed in terms of number of objective functions evaluations and 

compared to data available in specialised literature.  

The importance of convergence speed in solving real engineering problems -as 

mentioned in the preceding sections- is strictly connected with the severe restrictions 

posed by a large number of problems requiring long computational time for each 

objective calculation. An almost immediate improved solution to a real problem -even 

if it’s not the best possible- is often preferred to a more accurate, possibly optimal 

solution available after an unsustainable CPU time. 
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Literature review revealed a scarcity of data about convergence speed -as it 

has just been defined- for engineering problems. Most articles are centred on the 

improvement of the solution quality.  

Cagnina et al. (2008) and others referred to Akhtar et al. (2002) -briefly 

referred to as Akhtar in the following- and compared the four presented benchmark 

problems solution quality. Cagnina definitely improved the solutions for these 

problems and obtained statistics about them by 30 independent runs per problem with 

24,000 function evaluations per run. 

Since the mentioned Akhtar’s article is one of the few presenting data about 

the number of cost function evaluations for the four selected problems, the basic 

approach to estimate the convergence speed was to iterate the optimization process 

until Akhtar’s optimal objective function values are obtained. The solution cost is 

then compared with the values reported by the same author (Table 6). In other terms, 

the convergence criterion is substituted by a termination condition based on the 

achievement of the optimal solutions reported by Akhtar. 

Since the comparison for the convergence speed is based on Akhtar’s data, the 

experimental conditions described by this author were faithfully reproduced. First of 

all, only three out of the four benchmark problems have been compared because 

Akhtar did not analyse the tension/compression spring problem. Of course, it was 

impossible to exactly reproduce the specifications described by Akhtar because he 

proposed a social interaction model among society leaders that is quite different from 

the scheme adopted in the present article. However, as other authors did, Akhtar’s 

solution cost can be used as a valid reference. To imitate his numerical specifications, 

10 multi-start tests were performed for each benchmark problem and the execution 

was stopped as soon as the fitness reached 2.4426 for the welded beam design, 
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3,008.08 for the speed reducer and 6,171.00 for the pressure vessel. Each single run of 

the 10 multi-start tests was stopped as the fitness fell below the respective threshold or 

the number of iterations exceeded 100 (Figure 8). In case the single run was 

terminated because of the achievement of the desired fitness threshold, even the 

respective multi-start test was terminated and the solution cost was accounted for. 

Otherwise, if the single run terminated for iteration overflow, a restart of it was 

evoked. In this last case, the continued search process could take advantage or not of 

the best optimum found up to that moment, depending whether the PI subroutine was 

activated or not. Obviously, in case of restarting, all the preceding runs solution costs 

were summed to the last one to determine a total solution cost. At the end of the 10 

multi-start tests, the average cost function evaluations number was calculated and 

compared with Akhtar’s values. For the sake of precision, the obtained solution costs 

were also compared with those found calculating the average over 100 runs. A 

convenience in implementing the SSR was recorded as well. Solution costs averaged 

over 100 runs have been discussed in Section 8.1 and 8.2 where PSO parameters and 

swarm size effects have been investigated (Table 8 and 9). 

The comparison was made by alternatively activating and deactivating the 

SSR and the PI subroutines (see the different columns of Table 6) in order to isolate 

the two proposed techniques effects on the algorithm convergence speed. 

Table 6 shows a significant reduction of the average number of objective 

functions evaluations with reference to Akhtar’s. For each of the three benchmark 

problems analysed by the mentioned author, the presented algorithm proved to be able 

to increase the convergence speed. Even if it was not considered in Akhtar’s article, 

the fourth problem –the tension/compression spring problem- gave analogous results. 

Of course different tendencies are highlighted by each benchmark problem. To call 
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attention to the lower solution costs in Table 6 for each row, these values have been 

bolded. Giving a short look at Table 6, the reader may notice a concentration of bold 

numbers -i.e. lower solution costs- in the first two columns (SSR+PI activated and 

SSR-only activated). 

For the welded beam design problem, the proposed algorithm yields the best 

results since the threshold of 2.4426 is reached in about 8% (at the most) of the 

iterations necessary to Akhtar. For this benchmark problem, the best technique is to 

activate only the SSR subroutine. This gives an average solution cost of 881.3 vs. 

19,259 experienced by Akhtar. 

The design of a pressure vessel problem gives an average solution cost 

(11,721) comparable to the reference value by Akhtar (12,630) when both the SSR 

and the PI subroutines are deactivated. A certain improvement was obtained by 

activating only the SSR (10,527) but the best average value is achieved when using PI 

only (7,802) or both SSR and PI (8,445). On the contrary to what was expected, the 

contemporary use of both SSR and PI causes a slight worsening of the results. 

Although Akhtar did not consider the tension/compression spring problem, it 

is interesting to notice that it gave an average solution cost of 8,139 with SSR and PI 

both deactivated. The termination criterion to stop the runs and count the number of 

objective functions evaluations was based on the optimal value of 0.0127 (i.e. about 

0.27% more than the best minima found in literature, see Table 3). For this 

benchmark problem the best average performance is obtained by using PI only 

(5,653). However, this value is not so far from the one achieved by activating both 

SSR and PI (6,094).  

For the speed reducer design problem, the algorithm achieves the best average 

attainment when both SSR and PI are active (5,420 vs. 19,154 by Akhtar). Similar 
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results were obtained when only the SSR is active (5,458). A relative deterioration 

was recorded when activating PI only or deactivating both SSR and PI. 

In order to give statistical significance to the comparison between solution 

costs reported in Table 6, standard deviations, minima and maxima are displayed for 

each benchmark problem. Despite the scarcity of rigours statistical analyses about 

engineering problems solution costs in technical literature, some considerations about 

data reported in Table 6 can be done. From the analysis of Table 6, being standard 

deviation commonly used to measure confidence in statistical means, one may 

conclude that the dispersion of the statistical population confirms an “acceptable” 

tendency of data points to be close to the mean value. It has to be underlined an 

intrinsic difficulty in defining what is “acceptable” without any possible comparison 

to analogous works in specialised literature. 

Also from the analysis of minima and maxima in Table 6, the reader may 

easily notice a similar trend to the one described for the mean values. In general 

terms, a convenience in the contemporaneous use of SSR and PI or in the use of SSR 

only can be clearly identified.  

With the unique exception of the welded beam design benchmark problem, the 

lowest standard deviation is always detected in correspondence to the SSR+PI or the 

only-SSR activated columns. But it has to be noticed how close the standard deviation 

for the last column of the welded beam is close to the one in the first column. It may 

be concluded that both SSR+PI and SSR-only are better clustered closely around the 

mean. This may be interpreted as a proof of robustness of the proposed SSR 

technique. 
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8.1 Convergence speed tests for mathematical benchmark functions  

 

Most of the times, optimization engineers are required not to determine their real-

world problem global optimum taking days of calculation but they are asked to find 

an improved configuration in a reasonable CPU-time. From an engineering point of 

view, a non-relaxable constraint is always represented by time spent for computations. 

Most precisely, this limitation should be expressed in terms of a desirable restriction 

to the number of cost function evaluations since this is synonymous with the 

optimization economic cost. In this frame, the present article proposes the SSR and PI 

techniques expressly devoted to the cost-effective solution of engineering optimization 

problems. It is a matter of fact that a relatively small improvement in the solution after 

hundreds of iterations, may have no importance at all, from an industrial point of 

view. On the contrary, when one switches his/her point of view to evolutionary 

computing, algorithmic performances are obviously analysed overall, sometimes even 

after hundreds (or thousands) of iterations. 

Nevertheless, a statistical analysis of results obtained for mathematical test 

functions may be interesting to evaluate the effectiveness and efficiency of the 

proposed algorithm. To do this, the numerical approach proposed in many works to 

compare plots representing the cost function vs. the iteration number and 

consequently discuss the results may be adopted. But this may be not coherent with 

the aims of this article because no direct stress is given on solution costs. 

Four mathematical test functions (Molga and Smutnicki 2005) have been 

selected (Ackley’s, Griewangk’s, Sphere and Alpine functions) and an objective 

function threshold has been fixed as termination criterion.  

Ackley’s function is a multimodal test function having the following 

expression: 
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where a = 20, b = 0.2, c= 2π. Search area is restricted to the subset - 32 ≤ xi ≤ 32. It 

has a global minimum f(x) = 0 for xi = 0, i = 1,…,n. 

Griewangk’s function has the following definition: 
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Search domain is usually - 500 ≤ xi ≤ 500 and this function has a global minimum f(x) 

= 0 for xi = 0, i = 1,…,n. 

The sphere function is defined as follows: 
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Search area is generally restricted to hypercube - 5.12 ≤ xi ≤ 5.12 and a global 

minimum f(x) = 0 is located in xi = 0, i = 1,…,n. 

The Alpine function is defined as: 

 

∑
=

⋅+⋅=
n

i

iii xxxxf
1

1.0)sin()(                                                                                   (24) 

 

Search space is commonly identified by the hypercube - 10 ≤ xi ≤ 10 and a global 

minimum f(x) = 0 is located in xi = 0, i = 1,…,n. 

Results are shown in Table 7 in terms of statistics for the solution cost 

(necessary number of cost function evaluations to reach this threshold). In a similar 

way to that pursued for the engineering test problems (Figure 8), 100 multi-start runs 
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were performed for each considered benchmark function and the execution was 

stopped as the fitness reached the values reported in the second column of Table 7. 

When not terminated for cost function threshold reached, each single run -of the 100 

multi-start tests- was alternatively interrupted in case of iteration overflow. This 

happened as the number of iterations exceeded 500 (Figure 8). In Table 7, lower 

solution costs for each row have been bolded. 

The reader may notice termination criteria displayed in Table 7 are not 

excessively severe. The reason for this choice is that the attention here is mainly 

focused on fitness decreasing rate with respect to the solution cost. Even a local 

minimum detection may be acceptable as long as the calculation is “fast” enough. 

Optimization engineers may always reserve the opportunity to repeat the calculations 

-using a multi-start approach, for example- to enlarge the explored areas if a larger 

amount of resources is made available for the optimization phase.  

From the analysis of Table 7, the reader may easily notice the effectiveness of 

the SSR technique on the alleviation of the computational effort of PSO. In particular, 

the use of SSR only, seems to give more efficiency to the search process avoiding 

unnecessary objective function evaluations. Lower standard deviation values are 

concentrated on the SSR column to indicate the robustness of this technique 

implemented within the PSO algorithm. 

Table 7 also shows a deterioration in the solution costs when using PI only. 

This may be caused by a stagnation of the search process in previously determined 

local optima because of the injected particle or by a non-optimal choice of the max 

iteration number to restart the single numerical test (Figure 8). This problem becomes 

evident when dealing with mathematical test functions with a large number of local 

minima. At the moment, this aspect still needs further investigations.  
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8.2 PSO parameters and swarm size effect on algorithmic performances 

 

Learning factors c1 and c2 strongly influence PSO algorithmic behaviour since they 

weight the stochastic movements towards the personal best and the global best, 

respectively. Many different settings have been proposed recently (Cui et al. 2008) 

considering variations in the coefficients to speed-up the search process. Nevertheless, 

in the great majority of works about PSO, social and cognitive learning factors are 

chosen to be fixed and have the same value. 

Table 8 illustrates the effect of c1 and c2 variations on the solution costs for the 

four engineering benchmark problems. Adopting the same numerical procedure 

represented in Figure 8, averaged solution cost and standard deviation for c1 = c2 

varying from 1.00 to 2.00 are indicated in Table 8. In Table 8, mean values and 

standard deviations are calculated over a population of 100 multi-start tests. To give 

statistical significance to the comparison, values referred to c1 = c2 = 1.49445 (already 

displayed in Table 6 averaging over ten multi-start tests to reproduce Akhtar’s 

numerical specifications) are recalculated over 100 multi-start tests. Even in Table 8, 

lower solution costs for each row have been bolded. 

From Table 8, the reader may easily observe a deterioration of the algorithm 

effectiveness when PSO parameters are switched to c1 = c2 = 1.00. In general terms, 

when social and cognitive factors are reduced to 1.00, an increase in the 

computational effort is registered for all the benchmark test problems.  

Parameters increase to c1 = c2 = 2.00 caused a positive effect on the welded 

beam design and the speed reducer problems. In these cases, a decrease of the number 

of calculations may be perceived. However, this effect is opposed when one focuses 

his/her attention on the other two benchmark problems.  
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Once more, it has to be stressed how the lack of statistical analyses about 

engineering problems solution costs in specialised literature makes difficult to judge 

about the standard deviation. However, comparing the ratio between the standard 

deviations and the averaged solution costs for the different cases, c1 and c2 variations 

seems to have no significant impact on algorithm robustness. 

Richards and Ventura (2003) studied the effect of swarm size on PSO 

effectiveness for a number of mathematical test functions concluding that larger 

swarms tend to be more effective on functions having more numerous local minima. 

In their study, the population size ranged from 5 to 60 individuals and performance 

were measured in terms of solution quality.  

In Table 9, solution costs have been compared for 100 multi-start tests with 

20, 50 and 100 individuals respectively to analyse the effect of swarm size on 

algorithm effectiveness. In this numerical experiment, PSO parameters have been 

fixed to values c1 = c2 = 1.49445. Values reported for a swarm size of 20 particles are 

the same displayed in Table 8 (for the case c1 = c2 = 1.49445) and are here displayed 

again to facilitate the comparison with the other cases. Numerical test procedure is 

explained in Figure 8 and it is the same already used for the other solution cost 

experiments. To give more emphasis on lower solution costs for each row reported in 

Table 9, these values have been bolded. 

From the examination of Table 9, a clear trend in increasing the solution costs 

while increasing the swarm size is noticeable for both the design of a pressure vessel 

and the tension/compression spring problems. On the contrary, the welded beam 

design shows an opposite trend: solution costs decrease as the swarm becomes larger. 

It is not easy to judge about the effect of swarm size on the speed reducer problem 

since it seems to have no significant effect when SSR subroutine is active. On the 
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opposite, Table 9 shows a decrease in solution cost as the swarm size increases for the 

mentioned benchmark problem in case the SSR is not in use.  

Similar tendency effects are registered in evaluating the influence of the 

number of particles in the swarm on the standard deviations. 

 

9. Conclusions 

 

In this article original methodologies have been proposed for the aim of 

reducing the computational effort of real-world nonlinear engineering optimization 

problems. The results for all the considered benchmark problems demonstrated the 

effectiveness of the proposed techniques to significantly reduce the number of 

function evaluations to approach the minima.  

By itself, the simple concept of using a fictitious objective -given by the last 

feasible calculated objective plus a penalty function- avoids an unnecessary solution 

cost increase. Besides, this approach also avoids the analysis of possibly meaningless 

physical problems preventing computation when the design is out of geometrical 

boundaries.  

Exploration capabilities of PSO algorithms are frequently improved by 

repeating the optimization process more than once starting from randomly generated 

particles positions (multi-start approach). To the aim of reducing the solution cost, 

this aspect suggested to inject one particle in the best position found up to the present 

run in half of the successive optimization runs. The PI methodology represents an 

acceptable compromise between the need for new areas exploration and the desirable 

solution cost containment when dealing with real-world engineering problems. 

Further investigation is needed to implement PI for mathematical test functions 

characterized by a large number of local minima.  
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Taking inspiration from GA, a selection mechanism among particles (SSR) 

was introduced. This technique is inspired by the competition among individuals 

searching for a common food source. As explained by Economics, when resources are 

limited –a restricted number of optimal solutions- and the market moves into the 

closing phase -the necessity of containing the solution cost- consumers (i.e. the 

particles) generally abandon any cooperation strategy (that is flying in swarm) 

fighting each other to maximize their own satisfaction.  
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Figure captions 

 
Figure 1. Schematic of the selection mechanism among particles (SSR). 
 
Figure 2. Schematic diagram of the SSR technique. 
 
Figure 3. Schematic diagram of the PI technique. 
 
Figure 4 The pressure vessel design problem. 
 
Figure 5. The welded beam design problem. 
 
Figure 6. The tension/compression spring design problem. 
 
Figure 7. The speed reducer design problem. 
 
Figure 8. Schematic diagram of the numerical procedure for solution cost tests. 
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Table 1. Comparison of the solution quality for the welded beam design problem. 

 
This paper  Cagnina 

(2008) 
Hu (2003) 

Coello 

(1999) 
Deb (1991) 

x1 (h) 0.205729 0.205729 0.20573 0.2088 0.2489 

x2 (l) 3.470489 3.470488 3.47049 3.4205 6.1730 

x3 (t) 9. 036624 9.036624 9.03662 8.9975 8.1739 

x4 (b) 0.205730 0.205729 0.20573 0.2100 0.2533 

g1(X) -3.6E-9 -1.819E-12 0.0 0.337812 -5758.60377 

g2(X) -2.2E-10 -0.003721 0.0 -353.902604 -255.576901 

g3(X) -6.1 E-14 0.0000000 -5.5511E-17 -0.00120 -0.004400 

g4(X) -3.432984 -3.432983 -3.4329838 -3.411865 -2.982866 

g5(X) -0.235540 -0.235540 -0.2355403 -0.235649 -0.234160 

g6(X) -2.2E-09 0.0000000 -9.0949E-13 -363.232384 -4465.27093 

f(X) 1.724852 1.724852 1.72485084 1.74830941 2.43311600 
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Table 2. Comparison of the solution quality for the pressure vessel problem. 

 This paper  Cagnina (2008) Hu (2003) Coello (1999) Deb (1991) 

x1 (TS) 0.8125 0.8125 0.8125 0.8125 0.9375 

x2 (Th) 0.4375 0.4375 0.4375 0.4375 0.5000 

x3 (R) 42.098446 42.098445 42.09845 40.3239 48.3290 

x4 (L) 176.636596 176.636595 176.6366 200.0000 112.6790 

g1(X) -2.1E-10 -4.500E-15 0.0 -0.034324 -0.004750 

g2(X) -0.035881 -0.035880 -0.03588 -0.052847 -0.038941 

g3(X) -1.5E-04 -1.164E-10 -0.327 -27.105845 -3,652.876838 

g4(X) -63.363404 -63.363404 -63.3634 -40.0000 -127.321000 

f(X) 6,059.714337 6,059.714335 6,059.131296 6,288.7445 6410.3811 
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Table 3. Comparison of the solution quality for tension/compression spring problem. 

 This paper Cagnina (2008) Hu (2003) Coello (1999) 

x1 (d) 0.051644 0.051583 0.051466369 0.051480 

x2 (D) 0.355632 0.354190 0.35138949 0.351661 

x3 (N) 11.35304 11.438675 11.60865920 11.632201 

g1(X) -6.4E-06 -2.000E-16 -0.003336613 -0.002080 

g2(X) -5.3E-06 -1.000E-16 -1.0970128E-04 -0.0001100 

g3(X) -4.0516 -4.048765 -4.0263180998 -4.026318 

g4(X) -0.72848 -0.729483 -0.7312393333 -0.731239 

f(X) 0.012665 0.012665 0.0126661409 0.0127047834 
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Table 4. Comparison of the solution quality for the speed reducer problem. 

 This paper Cagnina (2008) Akhtar (2002) 

x1  3.5 3.500000 3.506122 

x2 0.7 0.700000 0.700006 

x3 17 17 17 

x4  7.3 7.300000 7.549126 

x5 7.8 7.800000 7.859330 

x6  3.350215 3.350214 3.365576 

x7  5.286683 5.286683 5.289773 

g1(X) -0.073915 -0.073915 -0.075548 

g2(X) -0.197999 -0.197998 -0.199413 

g3(X) -0.499172 -0.499172 -0.456175 

g4(X) -0.901472 -0.901471 -0.899442 

g5(X) -1.1E-15 0.000000 -0.013213 

g6(X) -6.3E-13 -5.000E-16 -0.001740 

g7(X) -0.7025 -0.702500 -0.702497 

g8(X) -9.9E-15 -1.000E-16 -0.0017388 

g9(X) -0.79583 -0.583333 -0.582608 

g10(X) -0.051326 -0.051325 -0.079580 

g11(X) -0.010852 -0.010852 -0.017887 

f(X) 2,996.348165 2,996.348165 3,008.08 
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Table 5. Statistical analysis for the solution quality tests. 

 

 This paper Coello Coello 1999 

 

Mean 

Optimal 

Obj. Funct. 

Standard 

Deviation 

Worst 

Optimal 

Obj. Funct 

Mean 

Optimal 

Obj. Funct. 

Standard 

Deviation 

Worst 

Optimal 

Obj. Funct 

Welded beam design 1.7460 0.0446 2.0792 1.7719 0.0112 1.7858 

Design of a pressure vessel 0.0127 7.0043E-05 0.0131 0.0127 3.939E-05 0.0128 

Tension/compression spring 6.0869E03 39.2722 6.4114E03 6.293E03 7.413 6.308E03 

Speed reducer 2.9965E03 0.9121 3.0020E03 N.A. N.A. N.A. 
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Table 6. Comparison of the number of objective function evaluations for engineering functions. 
                                                                             This paper Akhtar 2002 

 
Convergence 

criterion 

Average num. of obj. funct. evals 

Standard Deviation 

Min num. of obj. funct. evals 

Max num. of obj. funct. evals 

Optimal 

Objective 

Object. funct. 

evals 

SSR on on off off 

PI 
 

on off on off 
  

Welded beam design f(X) ≤ 2.4426 

940.5 

166.9 

67 

2,887 

881.3 

189.9 

55 

4,221 

1,385.0 

310.8 

103 

7,962 

982.4 

155.8 

112 

3,476 

2.4426 

 

19,259 

 

Design of a pressure 

vessel 
f(X) ≤ 6,171 

8,444.9 

1,420.2 

471 

36,360 

7,802.3 

1,320.1 

619 

25,162 

10,526.9 

1,695.6 

1,035 

34,547 

11,721.8 

2,271.2 

736 

65,874 

6,171 

 

12,630 

 

Tension/compression 

spring 
f(X) ≤ 0.0127 

6,093.6 

1,138.6 

494 

21,882 

6,874.2 

1,294.7 

480 

26,278 

5,653.4 

1,853.3 

813 

46,229 

8,139.1 

1,489.2 

618 

29,170 

N. A. 

 

N. A. 

 

Speed reducer f(X) ≤ 3,008.08 

5,420.2 

848.9 

377 

19,142 

5,458.2 

916.7 

484 

22,327 

10,313.9 

1,490.8 

540 

40,137 

11,371.6 

1,778.5 

605 

36,782 

3,008.08 
 

19,154 
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Table 7. Comparison of the number of objective function evaluations for mathematical functions. 

 Convergence criterion 

Average num. of obj. funct. evals 

Standard Deviation 

Min num. of obj. funct. evals 

Max num. of obj. funct. evals 

SSR on on off off 

PI 
 

on off on off 

Ackley  

(dimension = 30) 
f(X) ≤ 1E-3 

238,530 

16,678 

110,342 

582,564 

246,060 

16,279 

76,954 

597,749 

455,000 

37,862 

169,164 

1,152,523 

387,470 

27,614 

206,462 

1,104,774 

Griewangk 

(dimension = 30) 
f(X) ≤ 1E-3 

1,114,200 

174,020 

174,283 

5,930,814 

609,670 

63,053 

122,089 

2,058,378 

1,997,500 

255,300 

231,115 

8,742,315 

1,928,600 

159,560 

183,459 

5,847,714 

Alpine 

(dimension = 30) 
f(X) ≤ 1E-3 

1,731,300 

150,230 

223,797 

3,932,548 

933,090 

63,843 

179,321 

1,986,622 

2,586,000 

200,510 

350,155 

6,740,704 

2,770,600 

182,230 

781,835 

5,710,433 

Sphere 

(dimension = 30) 
f(X) ≤ 1E-3 

325,370 

21,671 

79,157 

652,663 

273,850 

21,310 

139,150 

829,375 

731,390 

49,548 

252,385 

1,676,363 

550,120 

26,580 

293,093 

972,296 
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Table 8. The effect of PSO parameters on engineering functions solution costs. Swarm size = 20. 

 
Convergence 

criterion 

 Average number of objective function evaluations 

Standard deviation 

SSR on on off off 

PI 
 c1=c2 

on off on off 

1.00 
2,166.3 

811.7 

1,083.8 

307.4 

1,569.0 

598.6 

2,061.8 

775.2 

1.49445 
798.2 

88.6 

983.3 

100.3 

1,209.6 

175.8 

976.7 

135.6 

Welded beam 

design 
f(X) ≤ 2.4426 

2.00 
673.7 

115.8 

430.8 

153.6 

658.8 

277.3 

850.6 

208.5 

1.00 
10,999.7 

3,045.1 
5,833.1 

1,598.1 

13,233.3 

3,210.4 

12,306.1  

3,484.0 

1.49445 
7,998.6 

816.2 

9,623.8 

941.0 

9,016.0 

788.8 

10,088.5 

1,069.9 

Design press. 

vessel 
f(X) ≤ 6,171 

2.00 
37,259.7 

8,010.6 

25,987.1 

5,998.2 

38,395.9 

7,140.0 

54,672.4 

17,839.9 

1.00 
5,269.2 

1,170.7 

7,381.2 

1,827.3 

9,865.1 

3,628.0 

6,739.9 

1,536.4 

1.49445 
8,145.9 

724.7 

5,815.0 

464.4 

8,032.7 

723.1 

6,817.0 

593.1 

Tens./compr. 

spring 
f(X) ≤ 0.0127 

2.00 
24,135 

5,297.2 

29,995.6 

8,659.4 
21,250.3 

5,164.2 

24,909.5 

8,013.8 

1.00 
96,735.1 

32,574.8 
83,793.7 

21,713.3 

245,156.3 

61,231.3 

428,204.5 

86,650.1 

1.49445 
4,427.1 
500.2 

5,023.5 

407.3 

8,671.4 

815.5 

11,169.6 

1,084.4 
Speed reducer f(X) ≤ 3,008.08 

2.00 
4,152.3 

1,145.6 
3,085.2 

806.3 

10,522.7 

2,584.1 

8,916.5 

2,908.5 
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Table 9. The effect of swarm size on engineering functions solution costs (c1=c2=1.49445). 

 
Convergence 

criterion 

 Average number of objective function evaluations 

Standard deviation 

SSR on on off off 

PI 
 

Swarm 

size on off on off 

20 
798.2 

88.6 

983.3 

100.3 

1,209.6 

175.8 

976.7 

135.6 

50 
646.2 

79.7 

691.9 

74.6 

964.9 

135.9 

853.4 

125.5 

Welded beam 

design 
f(X) ≤ 2.4426 

100 
607.9 

45.9 

751.3 

86.3 

953.3 

155.0 

785.6 

114.1 

20 
7,998.6 
816.2 

9,623.8 

941.0 

9,016.0 

788.8 

10,088.5 

1,069.9 

50 
10,897.3 

941.8 

7,678.6 

604.8 

11,958.6 

1,069.5 

18,162.5 

1,743.5 

Design press. 

vessel 
f(X) ≤ 6,171 

100 
15,141.4 

1,535.4 

16,627.1 

1,490.0 

20,544.0 

2,930.0 

23,881.1 

2,297.0 

20 
8,145.9 

724.7 

5,815.0 

464.4 

8,032.7 

723.1 

6,817.0 

593.1 

50 
6,890.2 

528.0 

9,652.4 

843.7 

11,217.7 

1,129.6 

10,324.0 

959.0 

Tens./compr. 

spring 
f(X) ≤ 0.0127 

100 
14,420.9 

1,330.0 

14,304.2 

1,334.4 

16,905.3 

1,595.2 

20,770.6 

2,172.4 

20 
4,427.1 
500.2 

5,023.5 

407.3 

8,671.4 

815.5 

11,169.6 

1,084.4 

50 
4,343.7 

359.3 

4,836.7 

407.2 

4,897.0 

428.7 

4,780.8 

446.2 
Speed reducer f(X) ≤ 3,008.08 

100 
4,303.7 

434.8 

5,828.3 

693.8 

4,804.3 

449.7 

5,733.2 

489.8 
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Schematic of the selection mechanism among particles (SSR).  
346x320mm (96 x 96 DPI)  
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Schematic diagram of the SSR technique.  
150x204mm (96 x 96 DPI)  
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Schematic diagram of the PI technique.  
182x206mm (96 x 96 DPI)  
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The pressure vessel design problem.  
199x77mm (300 x 300 DPI)  
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The welded beam design problem.  
104x73mm (300 x 300 DPI)  
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The tension/compression spring design problem.  
74x108mm (300 x 300 DPI)  
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The speed reducer design problem.  
412x269mm (96 x 96 DPI)  
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Schematic diagram of the numerical procedure for solution cost tests.  
167x147mm (96 x 96 DPI)  
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