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algorithm performance on a dynamic spacecraft 

autonomy problem 
 

Howard Tripp1     Phil Palmer2 
 

1. Abstract 

This article looks at the continuous on-board optimization needed for an autonomous nanosatellite platform to 
perform collectively within a distributed cluster. The spacecraft needs to continuously maintain its own local 
behaviour (defined with orthogonal chebyshev polynomials) using a genetic algorithm. The continual arrival of tasks 
and the external actions of other spacecraft mean that the problem is highly dynamic in nature. 

Standard genetic algorithms are based around convergence which dramatically reduces the population diversity 
hampering performance on both multi-modal and dynamic problems such as this. A new family of distribution 
replacement operators is presented which have the unique ability to explicitly (rather than probabilistically) control 
the population diversity in fitness (rather than genome) space. This turns out to be highly beneficial for this dynamic 
problem and out performs all other existing replacement operators. This result is mirrored and explained analytically 
using a simplified problem and a Markov model. 

 

Keywords: Genetic algorithm, dynamic problem, distribution replacement, Markov chain, spacecraft autonomy. 

2. Introduction 

There is increasing interest within the space community to move towards multiple platform distributed missions. 
Distributed missions have many potential advantages such as signal separation (e.g. large synthetic apertures), signal space 
coverage (e.g. multipoint sensing) and signal combination (e.g. data fusion) (Clement and Barrett, 2002). Concept missions 
of the future point towards missions involving larger numbers of smaller platforms working collaboratively for enhanced 
science return (Hinchey et al., 2005a). The elimination of single point failures and continuously upgradability of the 
factorization paradigm (Brown and Eremenko, 2006) provide further engineering  and economic advantages. However, 
there inherently becomes a point at which there are too many spacecraft for a single ground station to control, as is the 
current approach. Direct ground control also breaks down on longer range exploration missions such as missions to 
Mars and the asteroid belt. The only feasible solution is to shift more of the ground segment tasks up to increasingly 
intelligent autonomous spacecraft, hence reducing the costs and demands on the ground. This idea of autonomous 
operation has been receiving growing attention for example (Chien et al., 2004 , Muscettola et al., 1997, Carrel, 2007, 
Richards et al., 2001, Clement et al., 2004, Bonnet and Tessier, 2007). 

An autonomous group of spacecraft requires coordination, but standard terrestrial paradigms such as negotiation 
(e.g. (Schetter et al., 2000, Zetocha, 2000)), require high levels of inter-spacecraft communication, which is nontrivial in 
space. This article therefore focuses on a system based around the principles of stigmergy previous detailed in (Tripp and 
Palmer, 2008) however usage principals of swarm intelligence for spacecraft collaboration have also been proposed 
elsewhere (Hinchey et al., 2005b, Curtis et al., 2003). Stigmergy is an agent-based, behavioural coordination mechanism 
introduced by Grassé in 1960 (Grasse, 1960) inspired by natural living systems such as ant colonies and schools of fish. 
This approach endows the system with emergent properties that can causes self-organization (Karuna et al., 2004) as is 
the case with ant food foraging and collective fish “navigation” -- realistic models of which can be created using simple 
behaviours rules (White, 2005) – which allows for potential implementation on platforms that have limited capabilities 
such as nanosatellites (i.e. satellites with masses ~1kg). Coordination is achieved using infrequent communication via 
indirect  modifications to a common (digital) environment (Bonabeau et al., 1999)  (rather than by direct message 
passing) with decisions based on local information (Parunak et al., 2002). Essentially it is a compromise solution that 
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combines the benefits of minimal inter-satellite links (which are highly nontrivial in space) whilst critically freeing the 
ground station from the micromanagement of direct remote control. Further attractive features of the system are that it 
is inherently scalable to large numbers of spacecraft, and due to its simple behavioural algorithms is able to run on the 
small low-power nanospacecraft that are characteristic of the envisaged swarms.  

The system previously proposed in (Tripp and Palmer, 2008) (Figure 1) is hierarchical and "tree-like". Tasks to be 
performed by the cluster flow up from the ground station (root) along with some digital environment information and 
global performance metrics (goals). As the environment information and goals pass through the layers they are slightly 
modified by intermediate nodes (supervisors) based on their own local information. At leaf nodes, worker spacecraft 
perform tasks basing their choices on the environment information. They return completed tasks down the hierarchy 
along with some feedforward information about predicted future performance. Again this downstream information and 
tasks are modified and monitored by intermediary nodes. When this information reaches the ground station, it is subject 
to more processing before being looped back up, completing the cycle. Hence as the task and environment information 
flows around this loop it is modified by the various nodes that it passes through. Equally, this information is used to 
determine local behaviour and actions, giving the two properties that are needed for the indirect coordination of 
stigmergy.  

 

Discussion about the characteristics and performance of the system as a whole is beyond the scope of this article. 
The intention here is to investigate in detail the issues surrounding the on-board payload for a single worker spacecraft. 
After briefly outlining the design of the worker spacecraft architecture the remainder of this article is roughly divided 
into three sections. The first section looks at what an onboard “behaviour” actually is and how it’s appropriateness for 
different goals can be evaluated. The complexity of behaviour that is needed is investigated and verification of the 
implementation with analytical results is demonstrated (as well as benchmarking on realistic space hardware later on).  

The next section looks at the continuous search for optimal behaviour using a genetic algorithm. Current 
operators and genetic algorithm principles are presented along with discussions surrounding the limitations of their 
ability to maintain diversity when faced with his continually evolving dynamic problem. The family of distribution 
replacement operators is outlined that solve this problem by explicitly maintaining an arbitrary “diversity of fitness” 
profile. 

The third section introduces a simplified representative problem that can be solved using a markov chain as an 
analytical model for the genetic algorithm. This problem analytically demonstrates the effectiveness of distribution 
replacement. The final section introduces some more detail about the actual simulation problem and demonstrates that 
the results see with the markov analysis are mirrored in the actual optimization problem. 

3. Worker spacecraft 

The worker spacecraft ( 

Figure 2) has two main functional blocks, a higher level Task Ordering/Prioritization Agent (that this article is 
concerned with) and the lower level Scheduling & Operations Agent that is detailed and analyzed in complimentary work 
(referred to as the NEAT architecture) (Carrel and Palmer, 2005). The lower level NEAT architecture takes a 
(continuously evolving) set of tasks to be performed along with an associated priority for each task. Windows of 
opportunity are calculated (e.g. using orbital parameters) and resource requirements are broken down for each task.  A 
genetic algorithm then searches for an optimal ordering of the tasks, such that all resource and scheduling constraints are 
observed at all times. The ordering is continuously updated as new tasks are added and priorities changed, the final 
output is a low level real-time activity plan for the spacecraft to implement at any given moment. Hence the lower level 
NEAT architecture is responsible for enforcing all the real-time resource and scheduling constraints that are required for 
planning spacecraft operations, and also ensures that that the spacecraft always has “something to do” wherever possible. 

The work on NEAT makes a fundamental assumption: that the spacecraft is required to perform all the tasks that 
it is has been assigned. Hence NEAT is effectively bin packing to try and perform all tasks as quickly as possible (given 
the resourcing constraints and dynamic rescheduling due to failure etc). This article proposes extending the NEAT 
approach for use in multi-spacecraft collaboration, where there is a set of tasks that has to be performed collectively. The 
individual spacecraft is now no longer expected to perform every task it is aware of - only a subset of those tasks. The 
choice of the subset is determined by the higher level Task Ordering/Prioritization Agent that is the subject of this article. 
One approach would be for the spacecraft to negotiate amongst themselves to partition the tasks, for example (Curtis et 
al., 2003). In this case each of the spacecraft could then hand down their specific subset to the lower level NEAT 
architecture for scheduling. For reasons discussed in detail in previous work (Tripp and Palmer, 2008) this is 
problematic, mainly due to the high inter-spacecraft communications connectivity requirements and the complexity of 
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the negotiation protocol, in the dynamic environment. The approach taken here (in line with the principles of stigmergy) 
is that the tasks can be partitioned in a probabilistic rather than rigid manner. In this work the Task Ordering/Prioritization 
Agent generates an associated weighting level, for each of the tasks that is then used by NEAT when scheduling. In the 
single spacecraft case, NEAT assigned each of its tasks identical weightings - simple bin packing with no consideration 
for permutations. Now with the weightings assigned by the higher level, permutations become important and NEAT 
attempts to schedule the highest weighted tasks as early as possible3. This weighting effectively defines a desired ordering 
on the tasks, and as there are too many tasks for the spacecraft to complete in a given time only the subset of highly 
weighted tasks will be performed. Each of the spacecraft in the cluster can assign different local weightings to the tasks 
in the system so that each spacecraft attempts to perform a different subset, thereby achieving a partitioning of the tasks. 
This weighting function, or ordering, is referred to from here on as the Behaviour of the Worker spacecraft. NEAT 
attempts to schedule the tasks into this order as best as possible but given that there may be resource conflicts that need 
to be resolved, temporal dependencies and dynamic task failures this desired ordering is modified see Figure 3. This 
flexible approach allows the spacecraft to focus on the tasks that are "assigned" to it but also gives it the ability to 
perform other tasks if constraints and failures mean that it would otherwise be idle. This probabilistic weighting 
approach also has further advantages over a rigid negotiation approach as it allows the spacecraft to continuously evolve 
its plans in a dynamic environment with a low overhead. With a rigid contract style negotiation by contrast, any dynamic 
change requires re-negotiation between spacecraft, and hence in the worst case may result in frequent chaotic changes of 
the assigned tasks subset. These and other system level design decisions are discussed in previous work (Tripp and 
Palmer, 2008). 

A suitable behaviour (a probability distribution), is selected by using a genetic algorithm to search for the 
optimum partitioning given a set of input goals. The optimal behaviour is not fixed, but depends upon the set of tasks to 
be performed combined with the information contained in the feedback and feedforward environments. Having selected 
a behaviour (returning to Figure 1), this behaviour is then fed-forward, down the hierarchy. Tasks completed by NEAT 
are also returned down the hierarchy to be collated by the ground station before it periodically rebroadcasts the updated 
task list completing the loop.  

 

4. Behaviour implementation 

Consider the ground station, which has a set of continuously evolving tasks that need to be performed by the 
cluster of spacecraft.  It can be assumed that these tasks are independent (all dependencies are enforced later by NEAT 
see above). There are also a relatively large number of tasks in the system at any one time so as to keep the spacecrafts as 
busy as possible and avoid wasted “idle” time. Every task to be performed requires some spacecraft resources in the 
form of power, memory, propellant or simply on-board computation time etc.  Hence it is possible to take every 
behaviour and plot it on a multi-dimensional histogram with each axis representing the particular resource being 
considered.  The value of each of the histogram columns is the number of tasks with those specific resource 
requirements.  In this way the task list has been transformed into density distribution over a resource space. Naturally 
this model can be extended from a discrete histogram to a continuous distribution. 

This distribution over the resource space is a key tenant of the system. It allows for the allocation of tasks not 
based on the tasks themselves (as in a simple scheduling algorithm), but on the regions of the resource space that they 
occupy. The power of this transformation is that it frees the allocation algorithms from making decisions about 
individual tasks (whose complexity scales with the number of tasks).  Instead, as the bounds of the resource space are 
static and known, making allocation decisions based on resource space regions has a constant complexity independent of 
the number of tasks.  Additionally, a fixed resource space also provides a common environment where signs and signals 
can be left as is needed in a stigmergy system.   

Given this distribution over the resource space, a behaviour can now be defined as a probability distribution over 
it. In other words, it provides a probability of performing a particular task in a given region of the space.  Of course it 
would be possible to rearrange the regions of the space based on the probability to give a logical ordering presented 
previously.  This ordering is the order (schedule) in which tasks will be completed given the behaviour.  Naturally, if 
there are no tasks in a particular region, nothing can be performed. Equally if there are a large number of tasks in 
another region, the probability of performing one of those tasks increases.  Hence, the effective behaviour is in fact the 
task distribution multiplied by the behaviour distribution, suitably normalized as is shown in Figure 5. 

                                                           
3 This does not require significant modification to the NEAT model, as having been designed collaboratively with this approach, the 

weighting is already built in and hence is automatically handled by the genetic algorithm. 
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It is prudent to start with a simple system model to aid understanding of the fundamental processes.  Hence the 
resource space is initially limited to a single dimension.  This dimension could represent power or memory etc, but a 
good analogy is that of user priority.  Not all tasks are of equal value to the operator and this is indicated to the system in 
the form of a numerical value.  Without loss of generality this priority value can be normalized and restricted to the 
range [0,1]. 

In this simple model, the behaviour is now the familiar one-dimensional probability distribution.  In order not to 
limit the flexibility of the probability distributions that can be described by the system, orthogonal polynomials are 
considered.  Orthogonal polynomial sequences have the property that each polynomial in the sequence "does not 
interfere" with the other polynomials. In other words, each polynomial adds unique properties to the system, eradicating 
any representational redundancy. By starting with the lowest order polynomial in the sequence, adding additional 
polynomials improves the fidelity of the composite polynomial that can be generated, as can be seen in Figure 4 (right). 
The composite polynomial is simply a weighted sum of the basic polynomials in the sequence. As these basic 
polynomials have fixed definitions, a small vector of weighting parameters is sufficient to describe the entire system - a 
highly compact representation.  There are many different sets of orthogonal polynomials that have been derived by 
mathematicians. In this case the well-known Chebyshev polynomial sequence (Figure 4, left) is used that is commonly 
used for polynomial approximation. (Gautschi, 2004). 

4.1 Formal definition of behaviour 

A standard polynomial )(xfn  in the Chebyshev sequence (of degree n) has the following definition (Mason and 

Handscomb, 2003):  
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))arccos(.cos()(

≤≤−

≤≤−

=

xf

x

xnxf

n

n

 (1) 
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Now a sum of these sequential polynomials can be defined, each multiplied by a weight na . This vector of 

weights is the crucial part of the Chebyshev sequence. It allows different polynomials to exert their influence more or 
less strongly, and by summing together different weights of these polynomials, arbitrary distributions can be generated. 
Note the introduction of the square root of the weighting function which will become useful when these values are 
multiplied together later. 

∑
=

=
N

on

nn xfaw(x) )( x),aF(  (3) 

The behaviour of the spacecraft needs to be defined over a finite resource range and so without loss of generality 
this is chosen to be 10 ≤≤ r . Equally, the behaviour is in fact a probability distribution, and as such the sum of the 

distribution within the range must always equal 1. Hence we can define the behaviour ),( raB that is derived from 

),( xaF  with these two constraints. As the Chebyshev sequence is defined on a different range (as above), a change of 

variable is immediately required with 12 −= rx . A further restriction on our behaviour is that all values must be strictly 
positive at all points within the range, in order to be able to be interpreted as a valid probability distribution. This can be 

achieved by squaring the ),( xaF  function: 
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The normalizing constant λ has been introduced in order to satisfy the total sum equals one constraint, the value 
of which now needs to be determined. By using the orthogonality property of the Chebyshev polynomials with respect to 
their weight function (eq2) this equation can be expanded out and then substantially reduced in complexity (making sure 
to take special care with the first term): 
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This gives the final form of the behaviour definition: 
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The introduction of the normalizing constant λ means that the polynomial weightings are no longer absolute, but 
relative to each other. This creates an infinite set of weighting vectors that satisfy the solution to any particular problem. 
In order to return to unique solutions once again, some final constraints are placed on the possible values of the 
weightings, determined by the inspecting the form of the normalizing constant, λ: 

∑
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By drawing on some additional mathematics (outlined in the next section) the fitness function that can be 
achieved by all possible behaviours is presented for the two polynomial case (Figure 7). The infinite sets of solutions can 
clearly be seen extending radially outwards from (0,0). It is also possible to see the symmetry of the function for positive 
and negative values. The arc shown on the graph is the result of the application of the eq7 constraints, and indicates how 
this restricted set still covers all possible behaviours solutions. 

4.2 Choosing a behaviour 

So far a system has been presented that requires spacecraft to coordinate using simple behaviours (that is a 
mechanism for partitioning the set of tasks amongst the members of the cluster). The specifics of the problem showed 
that the definition of a behaviour can be abstracted to become a probability distribution. In order not to limit the 
flexibility of this distribution it was defined using orthogonal polynomials that provide the ability to control the fidelity of 
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possible behaviours by choosing the number of representative polynomials. Crucially this fidelity is delivered in a highly 
compact representation ideal for processing on small, hardware constrained spacecraft. 

Although mathematically, higher numbers of polynomials results in a more accurate behaviour, in reality it 
increases the search space for the genetic algorithm (see section 5). Hence, there comes a point, at roughly 6 polynomials 
(after 200 generations) that, the detrimental effects of the increased search space override the minor improvements in 
improved flexibility of higher-order polynomial series (Figure 6, left). Adding polynomials also increases the complexity 
of the fitness calculations that need to be performed which increases the cpu time per generation, further worsening 
performance. By using the results of hardware benchmarking, this can be extrapolated to a performance vs time graph 
(Figure 6, right) that highlights the diminishing returns of higher-order polynomials. The benchmarking was performed 
on a Leon3 processor using an evaluation board to accurately replicate the available computation power on-board a small 
(<5kgs) CubeSat spacecraft (Vladimirova et al., 2008) which is a realistic deployment platform for this system. 

 

The next step is to determine a metric that can be used to evaluate various behaviours; and from this metric 
devise a mechanism to intelligently identify the optimal behaviour. The search strategy for the optimal behaviour is 
discussed in detail in the remainder of this article. However, the crucial choice of metrics requires a much higher level 
overall system view, which to a large extent, is beyond the scope of this article (see (Tripp and Palmer, 2008) with more 
detail to follow in forthcoming publications). In essence however, it derives from the fact that where this article is 
considering the autonomy required within a single spacecraft, the choice of behaviours is related to the interactions of 
multiple collaborating spacecrafts working together as a team. Hence, the various behaviour selection strategies within 
the team have an impact at the collaborative system level, however this is independent of the actual lower-level search 
strategy for individual behaviours.  

As an overview however, each spacecraft has four "characteristics". Various weighting parameters are assigned to 
each of these characteristics so that the spacecraft behaviour is really a hybrid in the general case. By assigning a higher 
or lower degree of importance to each characteristic (possibly dynamically) the behaviour of the spacecraft changes; and 
by choosing different sets of behaviours for the members of the team various levels of coordination and performance 
can be achieved. The four characteristics are outlined as follows: 

• Greedy:  
This approach represents the selfish mode. A greedy spacecraft will try to do what is best for itself 

locally, with no consideration for others. Meaning it will attempt to perform the most valuable tasks 
currently in the system. This characteristic takes a behaviour, B, and the current task map, T,  as inputs: 
G(B,T) 

• Considerate:  
This is the feedback mode, where significant emphasis is placed on the result of previous historical 

performance. The considerate spacecraft will avoid regions of previous overlap (i.e. multiple spacecraft 
redundantly performing the same task). In other words, it considerately performs tasks which no one else 
is interested in (and hence most likely of low value). This characteristic takes a behaviour, the current task 
map, and the historical overlap information, H, (Figure 1) as inputs: C(B,T,H) 

• Proactive:  
This is the feedforward mode, where emphasis is given to predictions of future behaviour. The 

proactive spacecraft will attempt to avoid predicted regions of contention/overlap. In a sense this is also 
considerate but it is proactive rather than reactive. This characteristic takes a behaviour, the current task 
map, and the future predictions information, F, as inputs: P(B,T,F) 

• Obstinate:  
This is the ignorance or inertia mode where the spacecraft makes no use of any environment 

information and carries on regardless. An obstinate spacecraft will attempt to do exactly what it did in the 
past regardless. This characteristic takes a behaviour, the current task map and the history of its previous 
behaviours, BH, as inputs: O(B,T,BH) 

The dynamic goal parameters therefore translate into weightings for the four characteristics Greedy, Considerate, 
Proactive and Obstinate (g, c, p and o respectively). With suitable normalizations of the characteristic functions the 
overall fitness/metric of a particular behaviour can be evaluated (algebra as defined above): 

),,(.),,(.),,(.),(.),,,,,,,,( HH BTBOoFTBPpHTBCcTBGgopcgFHTBBM +++=  
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By setting any of the weightings to 100% a "pure" behaviour can be obtained. However generally, a behaviour is 
influenced by all the characteristics, usually with one dominating characteristic. How particular behaviour combinations 
work together, and how those collective behaviour sets can be varied over time for different collaborative performance 
is beyond the scope of this article. 

This function (eq8) depends on the task map, feedforward and feedback environment information as well as the 
previous behaviour history. As such, it is clear that a particular behaviour can never be considered as good, only good in 
relation to a particular system state. Hence a behaviour is not a fixed shape but changes dynamically in response to the 
system so as to maintain its particular characteristics. Unfortunately the introduction of this extra information into the 
behaviour fitness calculation means that the equations no longer conform to Parseal’s thereom (eq2) about orthogonal 
polynomials and hence a general analytical solution is not feasible. Without an analytical solution, the only remaining 
avenue is some kind of intelligent search for the optimal behaviour. 

5. Searching for a behaviour 

The external feedback, feedforward and task information are not under the control of spacecraft (to a first 
approximation). Equally, the weightings applied to each of the characteristics of the behaviour are assigned by the 
supervisor/ground station and the history of previous behaviours is a matter of record rather than a variable. Hence the 
only remaining free parameter for the spacecraft to vary is the behaviour polynomial, which is controlled by the 
Chebyshev polynomial weightings. Choosing a behaviour effectively means searching this parameter space for the 
optimal solution4. As the parameter space can be large and the evaluation of the fitness function requires significant 
processing, exhaustive search is immediately ruled out, leaving some kind of heuristic/intelligent search technique.  

As the problem is multimodal, the simplest hill climbing search (Pearl, 1984) is not suitable, due to its inability to 
escape from local optimum. The main difficulty however is the dynamic nature of the problem. New task arrivals, 
changing environment information, updated goals and recovering from failure all affect how the problem changes over 
time. Hence techniques such as neural networking that attempt to “learn” solutions to specific static problems are not 
readily applicable. Equally methods like tabu-search (Glover, 1989) that attempt to restrict revisiting of the search space 
are fundamentally based on assumptions of a static problem. If the optimal solution shifts to a previously visited area, it 
will never be found using tabu search. Simulated annealing (Kirkpatrick et al., 1983), although not limited to assumptions 
of static problems require a fixed "cooling" time with the final solution only available at the end. There would certainly 
be a need to extend the model to continuous "re-heating” and cooling cycle as the problem changes. It is likely that such 
extensions could be made to work, although it would seem to work against the fundamental characteristics of the 
technique and in the author's opinion seriously degrade it’s elegance. 

The approach taken here is based on the principles of evolutionary computation that has been studied for many 
years inspired by evolution in the natural world. There are many branches to evolutionary computing such as 
evolutionary strategies, artificial life and indeed the principles of the stigmergy and emergent self organization that form 
the basis of this entire spacecraft cluster collaborative architecture. For the purposes of this behaviour search however, 
genetic algorithms (GA) (Golberg, 1989) seem to provide techniques that can be most readily applied. 

5.1 Onboard genetic algorithms 

The first major advantage of a GA is that it is a continuous (and interruptible) process. For the real-time 
constraints that spacecraft systems frequently have, this ensures that the current "best solution" is always available on 
demand without having to wait for long blocking calls to complex calculations. Having extracted a solution the GA can 
resume its search for improved solution from the point it was interrupted rather than restarting from the beginning 
which is a further advantage. Such a system benefits from the fact it can operate continuously as a low priority 
background process without significant impact to real-time operations. The second major advantage is its natural ability 
to handle dynamic problems, due to the fact that each fitness function evaluation is effectively independent. Moreover, 
the system is memoryless (unlike tabu search) so that fitness evaluation has no dependency on the past. 

GAs maintain a population of candidate solutions. Each solution is assigned a fitness value according to some 
objective function (as was outlined above in section 4.2) and a new generation of the population is then created using 
selection, crossover and mutation operators to splice, mutate and/or copy individuals from the old population; this 
process is repeated until some termination condition is triggered. 

                                                           
4 A behaviour that has the highest metric score i.e. is the best realisation of the desired goal characteristic weightings. 
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As Wiegand (Wiegand, 2003) points out, there are essentially two different kinds of selection in GAs, parent 
selection for breeding new candidate solutions and survival selection to choose a subset of the population to be carried 
forward to the next generation. The importance of this distinction is almost never recognized and it is standard practice 
to perform both functions using a single Selection operator. Attempting to do two jobs with one operator results in the 
enviable trade-off that that neither job is performed optimally, and usually understood in terms of selection pressure 
(convergence to the best solution) being inversely proportional to population diversity (divergence to the best parents) 
(Lozano et al., 2004, Ortiz-Boyer et al., 2005). Furthermore, as will be seen in subsequent sections, for problems that are 
dynamic in nature, the diversity of the population is a crucial parameter. This can be understood by considering a 
population converging to a solution, which leaves it occupying only a small subset of the problem space. If the problem 
now transforms to a different fitness landscape, the optimal solution may now lie outside the region occupied by the 
population. Hence population diversity is crucial for countering the effects of a dynamic problem. For dynamic 
problems such as the one considered here, is it therefore sensible to explicitly “break apart” the classical genetic 
algorithms selection operator so that it’s “selection” and “diversity” performances can be chosen independently. From 
here on, parent selection (choosing individuals from the population to read and mutate) is referred to as selection. Survival 
selection (choosing individuals to form the subsequent generation) will be referred to as replacement. In essence, the 
separation of responsibilities is such that replacement seeks to maintain the optimal set of parents; selection seeks to match 
parents into breeding pairs optimally; and mutation/crossover seek to recombine those breeding pairs into new children 
optimally. 

The replacement operator is already a necessary part of a steady state GA (in each generation children are added 
to the existing population, before it is then pruned), see  

Figure 8. In fact it is the explicit use of a replacement operator (such as replace worst, replace parent, DeJong 
crowding etc.) that defines the difference between steady state and classical GAs. The reason that the steady state GA is 
not the “standard” GA is likely down to a lack of analysis on the replacement operator. Without the insight of the 
separation of responsibility between selection and replacement, the implementation of a replacement operator can seem 
an unnecessary overhead.  

5.2 Standard Replacement Strategies 

Consider  

Figure 8 where a steady state GA has a population of size N. In a single generation the selection, mutation and 
crossover operators splice and mutate individuals from the population to generate a set of children of size C. These 
children are added back resulting in an expanded population of size N+C. It is now the replacement operator’s task to 
choose C individuals from expanded population to delete, and once again return the population to size N. Standard 
approaches to this are as follows (Smith and Vavak, 1999): 

• Random – Remove C individuals randomly. 

• Truncation – Remove the C individuals with the lowest fitness scores. 

• Parent – Remove C parents chosen by the previous selection operator. 

• Oldest – Remove the C individuals with the longest time since evaluation. 

It can be seen that none of these operators explicitly control population diversity, or take any account of the child 
solution generated by the selection operator.  

5.3 Diversity driven replacement 

Some operators have been developed to try to maintain population diversity by considering the similarity of the 
individuals in the population rather than fitness. This similarity/diversity is normally determined by the Hamming 
distance between the two individuals (i.e. the number of bit flips required to transform one individual into the other in 
the binary representation): 

• DeJong Crowding – For each child, randomly select a subset of the old population (subset size defined as the 
crowding factor). Remove the individual from the subset that is the most similar to the child (De Jong, 1975). 

• Contribution to Diversity / Remove Worst (CDRW) – For each child, consider the subset of the old 
population with lower fitnesses. Remove the member of this subset with the lowest contribution to diversity 
(defined as minimum average Hamming distance from all other members of the population). Or, in the case 
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that the child has the lowest contribution to diversity, simply remove the individual with the lowest fitness 
(Lozano et al., 2004). 

A disadvantage of these two approaches is the additional computation involved in calculating the similarity 
between two individuals. This is a relatively minor overhead for DeJong Crowding (scales linearly with crowding factor), 
but the effect is much larger for CDRW which scales with the square of population size. In CDRW every child must 
compare itself with every individual in the population, and further, every individual in the population must have its 
contribution to diversity updated every time any individual is added or removed, which is a considerable overhead. 
Formal benchmarking work on realistic target hardware (not presented here) has shown that CDRW requires nearly 2 
orders of magnitude more computation time than the other operators, effectively ruling it out of further consideration. 

5.4 Distribution Replacement 

Distribution replacement (defined in more detail in previous work (Tripp and Palmer, 2007)) is a mechanism to 
explicitly control the fitness distribution of the population. Fundamentally distribution replacement controls diversity 
with respect to the fitnesses of population members, whereas the previous diversity driven replacements control it with 
respect to genome diversity (i.e. in hamming space). Distribution replacement is therefore able to guarantee relative 
fitness characteristics of the population, something that is not possible with other operators. As search is primarily 
interested in fitness, intuitively, this mechanism allows the maintenance of "useful" diversity rather than simply diversity 
per se. 

As the global maximum and minimum are unknown, the distribution of fitnesses is relative to maximum and 
minimum values currently discovered. During the course of the GA run as a range of fitnesses encountered increases, 
the distribution “stretches” to accommodate this increased diversity. The important point to note is that the fitness 
profile of the population is explicitly maintained and guaranteed, something that is not true of any other replacement 
operator. It is possible to select any distribution to conform the population to, for example, a uniform distribution where 
the probability of a discovered individual being in the population is independent of its fitness. Equally, a highly skewed 
distribution (that approximates Truncation) is possible where the probability of remaining in the population is strongly 
correlated to its fitness. For this work, these two distributions and a range of intermediary distributions are considered 
(Figure 9) chosen by using the highly flexible beta distribution5. 

There are a number of benefits of explicitly controlling the population profile for a dynamic problem. Firstly it is 
possible to avoid convergence (which effectively reduces the size of the population) and hence easily escape from local 
minima. Secondly the population always remains "well formed" for the subsequent selection operation, which helps to 
avoid some pathological cases6. Thirdly the shape of the population can be dynamically adjusted to match the 
characteristics of the problem (if appropriate feedback metrics are introduced). 

6. Analytic Markov modelling 

To explain the range of problems to which distribution replacement is suited, it is useful to be able to discuss it 
with in the context of a simplified problem. Furthermore, the argument can be made more powerful by developing an 
analytic model rather than relying purely on simulation. 

A suitable model used here is that of a Markov chain. Markov chains have the property that they are 
"memoryless", that the behaviour of the system is entirely determined by the current state. In the classic birth/death 
Markov chain the system state is an integer, n, representing the current number of individuals. Given this value, there is a 
probability of an individual dying which is a state transition to n-1. Equally there is a probability of a birth where the 
state transitions to the new state n+1. The equations for these state transitions determine the complete system. With 
appropriate mathematics, statistical measures of the system can be determined, such as the expected number of 
individuals and whether or not it is stable. 

The genetic algorithm can be modelled as a Markov chain (Nix and Vose, 1992) where the state in this case is the 
characteristics of the population. Given a particular population the probability of reaching an arbitrary child individual 
can be determined by considering the operators used in the GA. The system is memoryless in that given the population, 
the probability of jumping to the new child individual is the same irrespective of how we arrived at this population in the 
first place. 

                                                           
5 The beta distribution is controlled by two parameters α and β and hence is written as β(α,β) where α and β represent the 

values of alpha and beta respectively. The special case of α=β=1 [β(1,1)] is the uniform distribution. 
6 Such as loss of direction on plateaus of uniform fitness. 
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The first thing to consider is that individuals are comprised of two dimensions. The first is the genome 

dimension, g, that is the binary representation of the location of this individual in the problem space. The genome 
dimension is identical for all problems, and is normally itself comprised of multiple dimensions7. For this analysis the 

genome parameters will be represented as a single scalar value. The second dimension is the fitness dimension, f. The 

specific problem, defined by the objective function F(g), translates the genome into a fitness value that is to be 
maximized (along with its inverse): 

)(

)(

1
fFg

gFf

−=

=
 (9) 

The mutation and crossover operators work on individuals in the population modifying them in the genome 
dimension to generate new children individuals. It is therefore possible to define the probability of jumping from any 

individual to another individual. This is called the transmission probability and is the probability of jumping to g’ (or 

further) given an initial position (individual) g (Smith et al., 2001) : 
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Where: X is a random variable 
(10) 

The transmission probability works in the genome dimension, but it is really the fitness dimension that is of 
interest. Transforming the dimension is not straightforward, because the fitness function is a many-to-one function (a 
fundamental characteristic of multimodal problems or even functions with points of inflexion). In order to transform 

this into a transmission function from a particular fitness, T(f’,f), the set of all genomes, gi, with that particular fitness, G, 
is defined. From this set it is possible to determine the average transmission probability, tav(g’,f) to an arbitrary new 
individual. These average transmission probabilities can then be integrated to determine the expected transmission 

probability from a fitness f, to a new fitness, f’ (or higher). 
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Given an individual with a particular fitness, this function gives the probability of jumping to a new fitness. The 
genetic algorithm however, maintains a population of individuals. Distribution replacement has the explicit property that 
the fitness distribution of the population always remains constant, relative to the current maximum individual. Hence the 

characteristics of population, P, are entirely described by a single value, m, that is the maximum fitness of any individual 
in the population. In this work, the general beta distribution is used, ),( βαfI  - where α and β are free parameters 

controlling the shape of the distribution. This gives the probability of an individual with fitness, f, being in the population 
as:  

m

If
mfP

f ),(.
),(

βα
=  (12) 

By integrating the transmission function over the members of the population it is possible to define the 
probability of the maximum value in the population jumping to a particular fitness (or better). Integrating over the 
population needs to be performed with respect to a weighting function that represents the probability of a particular 
individual being selected by the selection operator. Three common selection operators (that give the probability of a 
particular individual in the population being selected) can be defined based on this definition: 

Ra
ndom 

),(),( mfPmfS =  (13) 

                                                           
7 i.e. one dimension for each of the function parameters that are to be optimized  
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It is now possible to construct a function that defines the probability distribution of a potential child solution 

based on the population. This is called C(f’,m), and is the probability of a child of fitness f’ (or higher) being generated 

given the current best individual, m, the selection operator, the replacement operator and the transmission function 
probability (mutation & crossover operators): 
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This definition uses the current maximum individual (at generation n) in the population to determine the 
probabilities of generating a new child member of arbitrary fitness. It is now possible to use this to calculate the 
probability of obtaining a new maximum value after one generation (one child per generation). As the population never 
loses the current best individual (elitism), children with a fitness lower than the current maximum, means the next 
maximum remains unchanged: 

df

mfCd
mfN

dfmfN

dfmfNfdfmfNm

m

n
n

m

n

n

m

n

m

n

n

n

n

n

)),((
),(

            :Where

),(

),(.),(.

0

1

=

+

=

∫

∫∫
∞

∞

+

 

         (15) 

This formula can now form the basis of a continuous Markov chain as it depends solely on the "memoryless" 
value of maximum, m, (using fixed selection, replacement and mutation/crossover operators). 

6.1 Simplified 1D random walk problem 

The Markov chain can now be put to work on a purely mathematical fitness function that has characteristics 
similar to the real behaviour choice problem that is of interest. This simplified problem is defined as follows: 
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This represents a simple  linear unimodal peak with the maximum value location defined by parameter a (see 

Figure 12). In order to make this problem dynamic, the value of a is altered so that the peak location continuously jumps 
to different values. The location of the peak can be considered as a bounded (reflected) random walk in the range [0,1]. 
The distance (and direction) of peak movement is defined to be a normally distributed random variable centred at µ=0 
and with the standard deviation, σ, defining how chaotically the peak jumps. 
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6.2 Effect of Replacement on Performance 

Putting it all together it is now possible to generate empirical performance measures. A suitable mutation rate 
(eq10) is defined by modelling the output of the real genetic algorithm mutation operator. The random selection 
operator (eq13.1) is used for the following results (although results are similar for the others). The Markov chain is also 
"discretized” for runtime implementation purposes. The results of Figure 10 show the performance of several different 
distribution replacement operators (previously defined in Figure 9) against a varying random walk standard deviation and 
number of generations between each jump (i.e. how rapidly it changes). As this is a simple problem, explicit values of 
performance, number of generations etc are not of significant interest. Rather it is the relative difference in performance 
that indicates the strength or weakness of the operators for various parameter combinations. 

The explanation for Truncation (actually it's approximation of the β(10,1) distribution) replacement’s 
performance is reasonably intuitive - Figure 10 (top left). As more time (generations) passes, Truncation’s performance 
improves, as is the case for all properly designed genetic algorithms. Equally, performance improves as the standard 
deviation of the random walk drops. Hence for a static problem (stdev = 0) Truncation does well, exactly the situation 
that it is has been designed for. As the standard deviation increases however, and the peak jumps around more 
significantly, Truncation falls into the loss of diversity trap.  

The loss of diversity trap can be explained by considering Figure 12. Take a single interval during which the 
problem remains static, represented by the (solid) red peak. Truncation replacement quickly “hill climbs” to the top of 
this peak pruning away the lowest individuals from the population. Given enough time the entire population is likely to 
converge to this single point (Thierens and Goldberg, 1994). Now, when the problem random walks (jumps) to the 
second, (dashed) blue peak, the entire population finds itself far away from the new global optimum. Hence, as the 
standard deviation of the peak jump distance increases, so does the probability that the converged population will find 
itself further away from the new peak after each jump. As it takes time (generations) to move up towards the new peak, it 
can be seen that the average probability of being at the global maximum rapidly falls off as the jump distance between 
subsequent peaks increases. Hence, although Truncation is good at finding instantaneous peaks, it does so at the cost of 
loss of diversity. This loss of diversity means that on the subsequent jump, it finds itself in the wrong place, and so on 
average over all the jumps, its probability of being at the global maximum is reduced. 

Uniform distribution replacement Figure 10 (bottom left) has the opposite property to Truncation. Uniform 
distribution maintains maximal (fitness) diversity at all times so its population is spread right from the peak to the base. 
Hence, after each jump the probability of one of the members of the population being close to the new peak is much 
higher. The downside is that if the problem remains static, maintaining this distribution reduces the selection pressure of 
the genetic algorithm. Or in other words it reduces the rate at which the population climbs the hill. This explains the 
significant drop in performance, at the front of the graph, on the static problem (stdev = 0). This is exactly the opposite 
argument to Truncation. Uniform distribution has sacrificed its ability to find the instantaneous best solution, but it's 
maximal diversity means that on average it always finds itself close to the global maximum after each peak jump. 

What is especially interesting, is that this improved performance of distribution replacement requires only a small 
average jump distance to really pay off. Only when the problem becomes highly static does Truncation become a more 
successful replacement strategy. This indicates that only a small amount dynamism is needed in an optimization problem 
before it is beneficial to use distribution replacement over Truncation. 

The graphs on the right-hand side of Figure 10 serve to highlight how this is not a binary choice but a continuous 
spectrum. Distribution replacement can be tuned to include more or less diversity, and inversely less or more selection 
pressure (as can be seen by reading round clockwise as the distribution transforms from Truncation to Uniform through 
the intermediate steps). It is even possible to see how this diversity profile can be optimized for different situations. For 
example replacement β(1.3,1) (bottom right) has maximal performance at roughly a standard deviation of 0.2. This is 
when the average jump distance becomes close to the mean distance from the global maximum of the distribution. I.e. 
the population is concentrated exactly where the peak is likely to jump to next. This fact serves to emphasize how 
distribution replacement is a tunable operator and can be subtly adjusted based on the characteristics of the problem, 
something no other replacement operator can provide. 

7. Simulation Results 

For more realistic simulations spacecraft perform tasks within the system, using the behaviour to guide their 
selection. Every task entering the system has an associated resource requirement. The number of tasks at each resource 
value forms a distribution in resource space, referred to as the task map. For implementation, the resource space is 
discretized into (100) bins and for simplicity of initial analysis only a single resource dimension is used. This resource can 
be considered as a user priority for particular tasks. However, this could equally be considered as the task power 
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requirements or perhaps the storage capacity in megabytes needed for various Earth observation images. For simulation 
purposes, a stochastic arrival pattern is defined for new tasks entering the system. These simulations consider resource as 
priority, so as a rough approximation to real satellite operations there is a skewed distribution of priorities so that there 
are larger numbers of low priority (i.e. background) tasks that continuously arrive (in fact a β(2,1) distribution). This is 
maintained to ensure that spacecraft are never idle, which is a significant waste of time and money. There is also a fixed 
set of repeated medium priority tasks that represents station keeping and other routine operations. As one of the fixed 
tasks is completed, it is immediately re-added into the system.  Occasionally there is a burst of high priority tasks in 
response to events that are of interest to the satellite operators (such as volcano activity). All tasks also need to be done 
in reasonable time. To ensure this and avoid task starvation, whilst tasks remain in the system, their priority is slowly 
increased, so that the task map appears to drift towards higher priority. There are a finite number of tasks that the cluster 
can maintain. As tasks are completed and removed there is a periodic broadcast by the ground station to “top up” the 
system with a new set of tasks to be added, based on the arrival pattern (which is called a task update). As such, over 
time, the taskmap falls into steady-state (in probabilistic terms, although in practice it is highly noisy). This “steady-state” 
is further disturbed by changes in spacecraft behaviour or bursts of tasks etc. 

The simulation runs for 100 task updates (up to 15% of the tasks completed in between updates). Each spacecraft 
is allowed 50 generations to choose its behaviour each update (250 fitness function evaluations). This limited amount of 
search time clearly means that the evolved behaviour is highly unlikely to be the instantaneous optimum. The effect of 
using these sub-optimal “transient” behaviours is to introduce additional dynamic noise into the problem. Although it is 
important to attempt to reduce this noise (by improving the performance of genetic algorithm operators), it is only a 
small contribution to the overall dynamism of the problem. This is because fundamentally the behaviour only provides a 
probabilistic ordering rather than a deterministic one anyway. There may be underlying scheduling and operational 
constraints in addition to simple task failures that affect which tasks are actually performed (see section 3). Additionally, 
the behaviour is intended to be continuously evolved in the background so that a particular instantaneous behaviour will 
only be used to select a small number of tasks. By the time that tasks that are of lesser significance to the spacecraft 
come to be performed, the underlying environment will have changed and the behaviour will have further opportunities 
to evolve. Hence, it is not fruitful to spend large amounts of time tweaking the parts of the behaviour covering tasks of 
lower significance, as this additional refinement optimization will add little if any benefit in practical terms. What is 
important is to choose operators that can rapidly evolve the behaviour towards a near optimal solution even if the 
performance in later stages subsequently plateaus. 

7.1 Distribution Replacement 

The simplified problem helps to explain the difference in performance of the different replacement operators. 
This result is also evident in the actual behaviour choice problem with the performance of different distribution 
replacement operators (those outlined in Figure 9) shown as the percentage differences between the performance of the 
specific operator and the Truncation operator, averaged over all 100 updates, shown with 95% confidence error bars. 
The results discussed below are for a single spacecraft attempting to be as greedy as possible (see section 4.2) in a cluster 
with four other spacecraft all of whom have a range of different behaviour characteristics. The real scenario results 
(Figure 11) match those of the analytical model (Figure 10), which show (for this highly dynamic problem) optimal 
performance for a uniform distribution, β(1,1). Performance also drops off smoothly as the distribution becomes a better 
and better approximation to Truncation, β(10,1), exactly as was seen in the Markov analysis.  

Figure 11 is a specific (although representative) instance of a simulation configuration as outlined above. 
Extensive coverage of different spacecraft cluster configurations is beyond the scope of this article but this relative 
performance is consistent across different numbers of generations, different goals and different task maps. For example, 
this can be seen in Figure 13 where the number of tasks completed by each spacecraft per update is varied (which is a 
proxy for varying the communications bandwidth). This effectively changes the amount of dynamism in the problem as 
the task map becomes less dynamic (which corresponds to the standard deviation axis in Figure 10). However, as can be 
seen from the graph Uniform distribution replacement still outperforms Truncation across the board. This is due to the 
fact that having five spacecraft in the system still represents a large amount of noise as they attempt to avoid each other, 
for example. This graph would seem to imply that standard Truncation would begin to be effective only in situations 
with only two (perhaps three) spacecraft completing a small number of tasks per update (i.e. high communication 
bandwidth). Such a situation would effectively be ideally suited to the current approach of direct remote control (and 
hence represents the current state of spacecraft systems rather than future systems as this work addresses). It might 
appear from the graph that improvement drops when large numbers (30%) of tasks are completed per update. Care must 
be taken when interpreting the graph as the performance is relative to the Truncation operator. Hence, for the different 
types of problem the absolute value of attainable fitness changes and the reduction of this absolute value at the higher 
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end, feeds through into a reduced relative performance improvement. It is therefore the changing characteristics of the 
fitness function rather than variation in operator performance that begins to have an effect at the higher end. 

Figure 14 also shows that this effect is not limited to a carefully chosen number of generations. In this case the 
number of tasks completed per update is once again set to 15%. The spacecraft is now given a variable number of 
generations in between updates in order to select the best behaviour (which corresponds to the generation axis in Figure 
10). This can be considered as simple model for improving the power of the on-board processing hardware. Again, it can 
be seen that uniform distribution replacement outperforms standard Truncation across the feasible range of generations 
per update. As the number of generations increase, the selection pressure effect begins to outweigh the diversity and 
relative performance starts to drop off as Truncation catches up. Of course, Truncation still gets trapped in the local 
maxima which reduces the impact of this effect. Fundamentally though this is an engineering problem with tight 
constraints on available computation time. 500 generations therefore represents a top bound on feasible capability (with 
50-100 generations a more realistic scenario), and so Truncation can never ever get the 1000s of generations it needs to 
become the operator of choice. What can also be seen from this graph is the plateauing of the operator's performance (as 
discussed above in section 7). Increasing the number of generations helps to enhance the performance in the early stages, 
but as more and more generations are allowed, the later stages of the search turn into minor refinement. This refinement 
is in many ways rendered meaningless by the dynamic nature of the problem and so performance plateaus. 

7.2 Other Operators 

Up to this point only distribution replacement and Truncation operators have been considered. Figure 15 now 
compares some other standard replacement operators for the same problem as well as a pure implementation of a classic 
genetic algorithm (that has no explicit replacement operator). Uniform distribution is clearly the best performer. Of the 
rest, replace the oldest performance well, as would be expected of an operator that has limited "memory". It's low inertia 
allows it to rapidly respond to the dynamic problem. CDRW also performs well as it is effectively an extension to 
Truncation that adds diversity if improved fitness’s cannot be found. Of course CDRW is an extraordinarily time-
consuming operator that would not be suitable for implementation on a small spacecraft.  

The performances of the DeJong Crowding (irrespective of the crowding factor chosen) and the Random 
replacement operator is surprisingly low. The explanation can be found by looking at the fact that although both are 
good at maintaining diversity, this is not guaranteed or necessarily useful. Generally the diversity is high, but it has highly 
variability as it is not being explicitly controlled (unlike distribution replacement). This effect is illustrated in Figure 16 
with Uniform distribution along with DeJong Crowding and Random replacement analyzed in a single update (an 
instantaneous static problem). Each GA is run for 1000 generations after the global optimum has been found8. In each 
case, the fitness distribution of the population is averaged across the 1000 generations and plotted along with its standard 
deviation as error bars. Uniform distribution comes out as a diagonal line conforming exactly to its CDF. Moreover, the 
standard deviation of this distribution is almost invisible on the graph. The population explicitly maintains a uniform and 
maximal distribution of fitness’s without wavering as it has been designed to do. Random and the DeJong Crowding by 
contrast have an average fitness profile that roughly corresponds to a Gaussian distribution CDF. This is the central limit 
theorem at work, sometimes the population is skewed one way, sometimes the other way but on average it mainly 
maintains mediocre mid-range individuals. This randomly varying skew is an effective strategy for escaping from local 
minima in a static multimodal problem. However in a dynamic problem, the added dynamism of the population 
distribution simply means that the probability of fortuitous alignment is further reduced. Uniform distribution 
replacement by contrast has a uniform probability irrespective of where the dynamic problem jumps to. This is the 
crucial difference between diversity and useful diversity, as distribution replacement controls diversity based on the 
fitness (rather than hamming distance like the others) it inherently includes more information about the problem space. 

A further point to note is that whereas Uniform distribution maintains individuals with even the minimal value, 
the other two operators have a very low probability of including these individuals in their population. This is the effect of 
the selection operator working against their diversity maintenance capabilities and hence reducing the diversity of the 
population, which in turn reduces their performance on the dynamic problem further. 

There is also a third factor contributing to their lower performance. At each update, the dynamic problems 
becomes a static optimization problem. At this point-high selection pressure is desirable, such as can be found with the 
Truncation and CDRW operators. However, DeJong Crowding and Random, with their Gaussian bell shaped population 
distribution, are effectively applying selection pressure to maintain mediocre individuals. Uniform distribution 

                                                           
8 As no further progress can be made the GA can now be considered to be in a steady-state condition 
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replacement by contrast not only has a better diversity, but also a larger number of higher fitness individuals in the 
population, which allows the selection operator to work more effectively i.e. a GA with a higher selection pressure.  

In effect, the Truncation operator loses out on the dynamic problem (due to its lack of diversity), but 
nevertheless it's improved selection pressure during the static period recovers some of the ground. The stochastic 
diversity driven replacement operators miss out during the static period as they have the minimum selection pressure of 
all the operators.  

Returning to Figure 15 the right-hand side shows three classical genetic algorithms using the Roulette Wheel 
(proportional), Rank and Random selection operators. These have been matched for number of fitness function 
evaluations along with crossover/mutation rates for a fair comparison with the other steady state genetic algorithms. The 
classic genetic algorithms are far worse at maintaining diversity - especially Roulette Wheel which is an extreme case of 
Truncation with the inherent massive loss of diversity. A classic Roulette wheel genetic algorithm has sacrificed 
performance in subsequent updates which outweighs any benefit of improvement in a single update. Rank selection has a 
lower selection pressure (and hence more diversity) and so performs much better. This in turn is followed by random 
selection (basic random search) which has the lowest selection pressure of all. Comparing the random classical GA with 
the random replacement operator demonstrates the impact of the selection and replacement operators working together. 
The classical Random GA is effectively random search. However, the steady state genetic algorithm with the Random 
replacement operator (and Rank selection operator working in tandem) has significantly worse performance and slightly 
lower diversity. This is due to the fact that they are effectively working against each other with the selection operator 
reducing the diversity of the population.  

Although not shown in this article’s results, a random restart strategy was also considered. In such a scheme the 
population (or a subset) is reinitialized after each problem jump. This reinitialization can either be to random locations in 
the problem space or to defined points. In principle, uniform random restart, with a replacement operator such as 
Truncation performs similarly to that of Random replacement. The problem is that although the restart can be controlled 
to be uniformly distributed in the diversity of its population. It cannot be controlled to be uniformly distributed in its 
fitness distribution (as that requires knowledge of the problem). Hence, restart is never able to control diversity based on 
the fitness, and faces similar problems to the other diversity driven replacement operators. Restart also falls down in 
situations where the problem only jumps a small distance, so that by chance it is similar to the previous update. In this 
case, distribution replacement can capitalize on the work it has done in the previous update, and spend its time "refining" 
rather than searching. Restart on the other hand always loses out in this case, and so overall its performance is reduced. 

8. Verification 

Nanosatellite cluster missions that are prohibitively expensive to deploy (for academic research purposes), hence 
in orbit verification has clearly not been possible. However it has been possible to benchmark the performance of the 
algorithms on realistic flight hardware to gain confidence in the feasibility of the proposed approach. Specific details of 
the simulations and evaluation is beyond the scope of this article (to appear in forthcoming publications). However, in 
summary the algorithm was benchmarked on the LEON3 microprocessor running at 40MHz9 under the RTEMS real-
time operating system (RTOS). 

The widely available LEON3 microprocessor has existing space heritage as part of the Venus Express imaging 
payload controller and has been adopted by ESA as the main CPU for future on-board computers (Fiethe et al., 2007). It 
incorporates multiple processor usage, fast AMBA2 AHB bus, 8/16/32-bit memory controller, 16-bit I/O and many 
peripherals and can run at up to 200 MHz, consuming around 250 mW. This processor is entirely suitable for 
implementation on the familiar CubeSat nanosatellite platform (Vladimirova et al., 2007). A further advantage being that 
this processor is commercially available technology and hence is economic well suited for implementation on budget 
constrained future nanosatellite cluster missions.  

The summary of the benchmarking tests showed that for realistic scenarios (100 generations, 5 children per 
generation and population of 50, evaluated with chebyshev n=6 and 100 evaluation points using a beta distribution 
replacement and roulette wheel selection), gave a total evaluation time of around 15 minutes. To put that into context, a 
standard LEO orbit is of the order of 100 minutes (i.e. ~15% of a single orbit time). Given this system is intended to 
perform as a low priority background process over several days (i.e. 10s of orbits), this overhead is clearly within 
acceptable bounds. Moreover it must be noted that the benchmarking experiments were performed using unoptimized 

                                                           
9 Well below the maximum speed for this processor, but selected to be in line with likely power budgets of the limited CubeSat 

platform. 
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"research simulation code”, rather than highly optimized flight software code that would be used in practice, and hence 
the actual likely performance would be significantly faster than indicated. 

At the system level, verification of the success of the behavioural approach to the partitioning of tasks among a 
spacecraft cluster has previously been reported (Tripp and Palmer, 2008) with further results to appear in forthcoming 
publications. 

9. Conclusions 

This article has looked at issues surrounding the autonomous decision-making process that an individual worker 
spacecraft is required to perform. When collectively working together these spacecraft form an emergent system based 
on local decisions. These local decisions, characterized as the behaviour of the spacecraft, provide a way to prioritize a 
subset of tasks to be performed locally. This behaviour was defined mathematically so as to maximize generality within a 
compact representation. Such a manageable search space is essential to allow intelligent search techniques the best 
possible chance of success, within the highly constraint and limited processing capabilities of miniature spacecraft. 

A genetic algorithm was selected as a suitable search technique. As the system requires continuous optimization 
of dynamic variables, the choices of operators and parameters must be adapted from the standard static optimization 
approach. Investigation of these issues was informed by the development of an analytic Markov model. This model was 
applied to a simplified representative problem, demonstrating that with such dynamic problems, maintaining population 
diversity is of fundamental importance.  

Distribution replacement was introduced and found to be more effective than other replacement operators for 
this problem. This was shown across a range of different problem variables that affected various characteristics of noise 
and available processing power. Distribution replacement is successful because it explicitly controls the population so 
that it has guaranteed diversity. This is in contrast to other operators whose behaviour is only guaranteed in the 
probabilistic sense. The second major factor in its improved performance is that it controls diversity in fitness space 
rather than genome space unlike the other diversity operators. This effectively means its diversity contains more 
information about the problem and hence is more useful for the search process. The third major benefit of distribution 
replacement is that for this problem with highly constrained processing limits an operator is needed that can find a good 
solution quickly each update. Moreover the dynamic nature of the problem means that the differences between the 
performance of an optimal and near optimal solutions is almost unnoticeable. Hence by way of analogy what is needed is 
a “hare” operator rather than a tortoise. Although the tortoise may win over the whole race, at the half-way point the 
hare is in the lead – and for this case performance at half-way (i.e. the limited cpu time) is what really matters. 

Performance has been investigated for a particular engineering application of the onboard autonomy of 
nanospacecraft. However, the results presented here are more general to continuous optimization tracking of dynamic 
problems. Suitable problems are ones where the instantaneous solution is relatively straightforward to find (and hence 
would result in rapid convergence), but in subsequent updates the particular optimum point shifts randomly or 
chaotically. This approach is also only suitable in situations where the processing power (or time) available between 
updates is limited and not where more "brute force" approaches would become viable. 
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Figure 1: Schematic of the information flow in the hierarchical stigmergy task allocation architecture. 

 

 

Figure 2: Information flow and main subcomponents of a Worker spacecraft 
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Figure 3: An overview of the tasks scheduling process on-board A Worker spacecraft. 

 

 

Figure 4: Left, the first six polynomials in the Chebyshev sequence. Right, the best match to a particular 
mathematical function using an appropriately weighted sequences of 3, 6, 9 and 12 polynomials (sequence 

starts at n0 with “n=” being index of the highest order polynomial) 
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Figure 5: An example Task distribution and Behaviour, multiplied together to get a true effective 
probability of performing a task at a particular resource value. 
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Figure 6: The performance (minimal resource use) achieved by a genetic algorithm for a given number 
of generations (left). This is extrapolated to performance vs time (right) 
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Figure 7: The fitness landscape for a two polynomial function (100% efficiency and uniform task map), 
with the restricted set of possible weightings shown as a continuous arc. Lighter areas indicate a higher 

fitness. 

 

 

Figure 8: The Replacement-Selection loop 

 

 

Figure 9: Population distributions used with distribution replacement in this article. 
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Figure 10: Performance of several distribution operators on the simplified 1D random walk problem. 
The vertical axis is the probability of being at the global maximum, after a certain number of generations (x-

axis) for a specific random walk jump distance standard deviation (y-axis). The top left graph is for β(10,1) 
distribution replacement (a model for Truncation). The distributions then become closer to uniform in a 
clockwise direction. Hence top right is β(2,1), bottom right β(1.3,1) and bottom left β(1,1) – the uniform 

distribution itself. 
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Figure 11: Percentage performance improvement over Truncation on a realistic scenario with five 
spacecraft. The number below each β function, is the mean of the distribution. 

 

 

Figure 12: A schematic of how the dynamic nature of the problem alters the fitness distribution of the 
population at each jump. 

 

 

Figure 13: Varying the number of tasks per update (a proxy for communication bandwidth). Uniform 
distribution, β(1,1), and the more converged β(10,1), replacement operators are shown with performance as the 

% improvement over standard Truncation. 
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Figure 14: Varying the number of generations per update (a proxy for cpu power) using the same 
performance metric as Figure 13 above.  
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Figure 15: Percentage performance improvement over Truncation on a realistic scenario with five 
spacecraft 
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Figure 16: Distribution of fitness in a "converged" population averaged over 1000 generations for three 
different replacement operators. 
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