

Inhaled colistin for the treatment of tracheobronchitis and pneumonia in critically ill children without cystic fibrosis

Matthew E Falagas, Georgia Sideri, Ioanna P. Korbila, Evridiki Vouloumanou, John H. Papadatos, Dimitris A. Kafetzis

► To cite this version:

Matthew E Falagas, Georgia Sideri, Ioanna P. Korbila, Evridiki Vouloumanou, John H. Papadatos, et al.. Inhaled colistin for the treatment of tracheobronchitis and pneumonia in critically ill children without cystic fibrosis. Pediatric Pulmonology, 2010, 45 (11), pp.1135. 10.1002/ppul.21302 . hal-00588666

HAL Id: hal-00588666 https://hal.science/hal-00588666v1

Submitted on 26 Apr 2011 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pediatric Pulmonology

Pediatric Pulmonology

Inhaled colistin for the treatment of tracheobronchitis and pneumonia in critically ill children without cystic fibrosis

Journal:	Pediatric Pulmonology
Manuscript ID:	PPUL-10-0037.R1
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	19-Mar-2010
Complete List of Authors:	Falagas, Matthew; Alfa Institute of Biomedical Sciences (AIBS), Department of Medicine Sideri, Georgia; Pediatric Intensive Care Unit, P. & A. Kyriakou Children's Hospital, Athens, Greece Korbila, Ioanna; Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece Vouloumanou, Evridiki; Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece Papadatos, John; Pediatric Intensive Care Unit, P. & A. Kyriakou Children's Hospital, Athens, Greece Kafetzis, Dimitris; Second Department of Pediatrics, University of Athens, P. & A. Kyriakou Children's Hospital, Athens, Greece
Keywords:	Gram-negative infections, polymyxins, Pseudomonas, Acinetobacter, intensive care unit
	·

1 2		
3 4 5	1	Inhaled colistin for the treatment of tracheobronchitis and pneumonia
6	2	in critically ill children without cystic fibrosis
8	2	in entreany in entrefer without cystic fishosis
9 10	3 4	Matthew F. Falagas ^{1,2,3} MD, MSc, DSc, Georgia Sideri ⁴ MD, Ioanna P. Korbila ¹ MD
11 12	5	Evridiki K Vouloumanou ¹ MD John H Panadatos ⁴ MD PhD
13 14	6	Dimitris A Kafetzis ⁵ MD PhD
15 16	7	
17	8	1. Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece
19	9	2. Department of Medicine, Henry Dunant Hospital, Athens, Greece
20 21	10	3. Department of Medicine, Tufts University School of Medicine, Boston,
22 23	11	Massachusetts, USA
24 25	12	4. Pediatric Intensive Care Unit, P. & A. Kyriakou Children's Hospital, Athens, Greece
26 27	13	5. Second Department of Pediatrics, University of Athens, P. & A. Kyriakou Children's
28	14	Hospital, Athens, Greece
29 30	15	
31 32	16	Corresponding author: Matthew E. Falagas, MD, MSc, DSc
33 34	17	Alfa Institute of Biomedical Sciences (AIBS),
35 36	18	9 Neapoleos Street, 151 23 Marousi, Greece
37 38	19	Tel: +30 (694) 611-0000,
39 40	20	Fax: +30 (210) 683-9605
40 41	21	E-mail: m.falagas@aibs.gr
42 43	22	
44 45	23	Short title: Inhaled colistin in children without cystic fibrosis.
46 47	24	Conflict of interest: None
48	25	Funding: None
49 50	26	Word counts: abstract: 199, text: 1857
51 52	27	Number of tables: 1
53 54	28	Number of references: 26
55 56		
57 58		
59		

29 Abstract

Data regarding the role of inhaled colistin in critically ill pediatric patients without cystic fibrosis are scarce. Three children (1 female), admitted to the intensive care unit (ICU) of a tertiary-care pediatric hospital in Athens, Greece, during 2004-2009 received inhaled colistin as monotherapy for tracheobronchitis (2 children), and as adjunctive therapy for necrotizing pneumonia (1 child). Colistin susceptible Acinetobacter baumannii and Pseudomonas aeruginosa were isolated from the cases' bronchial secretions specimens. All 3 children received inhaled colistin in a dosage of 75mg diluted in 3ml of normal saline twice daily (1.875.000 IU of colistin daily), for a duration of 25, 32, and 15 days respectively. The infections improved in all 3 cases. Also, a gradual reduction, and finally total elimination of the microbial load in bronchial secretions was observed during inhaled colistin treatment in the reported cases. All 3 cases were discharged from the ICU. No bronchoconstriction or any other type of toxicity of colistin was observed. In conclusion, inhaled colistin was effective and safe for the treatment of 2 children with tracheobronchitis, and 1 child with necrotizing pneumonia. Further studies are needed to clarify further the role of inhaled colistin in pediatric critically ill patients without cystic fibrosis.

47 Keywords: Gram-negative infections, polymyxins, *Pseudomonas*, *Acinetobacter*,

48 intensive care unit

Pediatric Pulmonology

2	
3	
4	
5	
5	
07	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19 20	
2U	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
22	
33 04	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
41	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
60	
(1)	

49 Introduction 50 The use of inhaled antibiotics for the prevention and treatment of difficult-to-treat 51 infections of the respiratory tract has been investigated over the past years. Inhaled 52 tobramycin and colistin are recommended as an early eradication and maintenance therapy in patients with cystic fibrosis and chronic *Pseudomonas aeruginosa* infection.¹⁻ 53 ³ Inhaled pentamidine is suggested as an alternative prophylactic regimen against 54 *Pneumocystis jirovecii* pneumonia in immunocompromised patients.⁴ Inhaled ribavirin 55 56 is also used to treat severe infections of the lower respiratory tract in children caused by 57 respiratory syncytial virus (RSV).⁵ Inhaled zanamivir is proven effective for the treatment of influenza infection and the prevention of influenza outbreaks.^{6,7} 58 59 60 The strategy of antimicrobial drug delivery through inhalation has been tested in adult 61 and children population. Specifically, regarding colistin, several studies in adult and 62 pediatric patients with cystic fibrosis have investigated the role of inhaled colistin to 63 eradicate *Pseudomonas aeruginosa*, which chronically colonizes the respiratory tract, as well as its adverse events.⁸⁻¹¹ Patients on mechanical ventilation constitute a high-risk 64 group for difficult-to-treat respiratory infections, including both ventilator -associated 65 tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP).^{12,13} Recent data 66 67 provide preliminary evidence of inhaled colistin's value to cure difficult-to-treat

68 infections of the respiratory tract caused by multi-drug resistant Gram-negative

69 pathogens such as *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, and *Klebsiella*

70 *pneumoniae* in the intensive care unit (ICU) setting in patients without cystic fibrosis.¹⁴⁻

¹⁸ On the other hand, in the field of pediatric critical care medicine there is a lack of
 evidence regarding the role of inhaled colistin to treat such infections.^{19,20}

In this regard, in this small case series we present data regarding critically ill pediatric
patients hospitalized in the ICU of a tertiary care pediatric hospital in Athens, Greece,
who did not suffer from cystic fibrosis and received inhaled colistin for infections of the
lower respiratory tract.

79 Case description

73

78

Children who received inhaled colistin (colistimethate sodium) [1mg equals 12.500 international units (IU) of colistin base activity] in the ICU of the A. & P. Kyriakou tertiary-care pediatric hospital during 2004-2009, were identified by reviewing ICU records. Data presented in this study were extracted from medical charts. Specifically, data regarding the demographical characteristics, underlying disease, reason for ICU admission, length of stay in the ICU and duration of ventilation, type of infection, site of isolation, and susceptibility pattern of each isolated pathogen, whether intravenous colistin was administered prior to inhaled colistin, the device used to deliver inhaled colistin, the type of the ventilator used, and presence of humidification, as well as time of institution, dosage and duration of inhaled colistin treatment, any concomitantly administered antibiotics, quantitative measures of the microbial load, the outcome and any adverse event reported are presented in the Table. The collection and report of the data presented in our study was approved from the hospital's ethical committee. Specifically, this report on inhaled colistin constitutes a nested study within a larger one regarding the toxicity of rarely administered (either intravenously or through inhalation) antimicrobial agents in children.

97 Case 1

Case 1 was a 10-year-old male suffering from acute disseminated encephalomyelitis attributed to infection with influenza B virus. This child stayed in the ICU for 7 months and developed 5 episodes of septicemia and 2 episodes of septic shock for which he received various antibiotics. Polymyxin-only-susceptible Acinetobacter baumannii was isolated in one blood culture, and the infection was cured with the administration of intravenous colistin. The child had a clinical picture of tracheobronchitis, with a high microbial load of Acinetobacter baumannii and Pseudomonas aeruginosa in cultures of tracheobronchial secretions (the susceptibility pattern of these isolates is presented in the Table). In this regard, inhaled colistin was administered alone at a dosage of 75mg diluted in 3 ml of normal saline twice daily (this equals to a daily dosage of 1.875.000 IU of colistin, administered in 2 divided doses) for 25 days. At day 21 of inhaled colistin treatment, a culture of tracheobronchial secretions with normal flora was obtained. Bronchoconstriction, attributed to the tracheobronchitis, was present before the initiation of inhaled colistin and was unsuccessfully treated with bronchodilators

Pediatric Pulmonology

(specifically, salbutamol, ipratropium). Bronchoconstriction did not worsen during
treatment. The outcome of the infection was favorable. However, the child exhibited
serious neurological deficiencies that led to the need of permanent tracheostomy and
gastrostomy.

117 Case 2

Case 2 was a 7.5-month-old female with no underlying disease, nor immuno-deficiencies who was admitted at the ICU with septic shock due to necrotizing pneumonia caused by Pseudomonas aeruginosa, which was isolated in blood and bronchial secretions cultures obtained at the day of admission in the ICU. The susceptibility pattern of the *Pseudomonas aeruginosa* is presented at the Table. The child received various intravenous antibiotic agents. Inhaled colistin was initiated 3 days after the acquisition of the index cultures at a dosage of 75 mg diluted in 3 ml of normal saline twice daily (a daily dosage of 1.875.000 IU of colistin), administered in 2 divided doses) for 32 days. Concomitant to inhaled colistin administration of intravenous antibiotic regimens included piperacillin/tazobactam and gentamicin for the first 10 days of administration of colistin and meropenem plus vancomycin (due to the isolation of *Staphylococcus* coagulase-negative from blood culture) for the following 11 days. During the course of the infection the child developed bilateral pleural effusions. Culture of the pleural fluid led to *Pseudomonas aeruginosa* isolation, as well. At day 32 after the institution of inhaled colistin a culture consisting of normal flora was obtained. Bronchoconstriction was not observed at anytime during treatment. The infection was cured and the child was extubated and discharged from the ICU.

136 Case 3

Case 3 was a 4-year-old female with no underlying disease who was admitted in the ICU with acute respiratory distress syndrome due to thermal burn of the airway requiring tracheostomy. The child received a variety of intravenous antibiotics before the administration of inhaled colistin because of 3 episodes of septicemia due to *Pseudomonas aeruginosa, Escherichia coli* and *Staphylococcus* coagulase negative. *Pseudomonas aeruginosa* septicemia was treated successfully with intravenous colistin. *Pseudomonas aeruginosa* was also isolated from cultures of tracheobronchial

144	secretions. The susceptibility pattern of this isolate is presented in the Table. However,
145	due to the observed clinical picture of tracheobronchitis and the persistence of a high
146	microbial load of Pseudomonas aeruginosa in tracheobronchial secretions (>100.000
147	cfu/ml), inhaled colistin alone was administered at a dosage of 75 mg diluted in 3 ml of
148	normal saline twice daily for 15 days (a daily dosage of 1.875.000 IU of colistin,
149	administered in 2 divided doses). At day 11 of the administration of inhaled colistin a
150	culture of tracheobronchial secretions consisting of normal flora was obtained.
151	Bronchoconstriction, attributed to the tracheobronchitis, was present before the
152	initiation of inhaled colistin and was unsuccessfully treated with bronchodilators
153	(specifically, salbutamol, ipratropium). Bronchoconstriction did not worsen during
154	treatment. The child recovered from the infection but could not overcome the need for
155	permanent tracheostomy and tracheal dilatations.
156	
157	Discussion
158	We report a case series of pediatric critically ill population who received inhaled
159	colistin for the treatment of tracheobronchitis (2 children) and pneumonia (1 infant).
160	Case 1 and 3 of tracheobronchitis were caused by <i>Pseudomonas aeruginosa</i> , while case
161	1 was co-infected with a multi-drug resistant Acinetobacter baumannii isolate. The
162	infection, in both these two cases, was cured with the administration of inhaled colistin
163	alone. The case of pneumonia was caused by <i>Pseudomonas aeruginosa</i> . This infection
164	was treated concurrently with intravenous antibiotics depending on susceptibility results
165	for the 2/3 of the total duration of inhaled colistin treatment. The outcome was cure for
166	this case also. Bacteriological eradication of the responsible pathogen was confirmed by
167	quantitative cultures of tracheobronchial secretions in all 3 cases.
168	
169	The rationale justifying the choice of inhaled colistin or other appropriate inhaled
170	antibiotics as monotherapy for the treatment of patients with tracheobronchitis is that
171	tracheobronchitis represents a topical inflammatory process that could be controlled
172	with locally administered antibiotics. ¹² A placebo-controlled study in critically ill
173	patients with ventilator-associated tracheobronchitis (VAT) showed that inhaled
174	antibiotics decreased the signs of respiratory infection and the use of systemic

175 antibiotics.²¹ In our cases the only active antibiotic agent for inhalation was colistin

Pediatric Pulmonology

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
00 56	
57	
58	
59	

based on the in vitro susceptibility pattern of the isolates. In addition, based on
preliminary evidence, adjunctive inhaled colistin to intravenous antibiotic treatment
improved the outcome of pneumonia.^{17,22} On this ground, inhaled colistin was selected
as a therapeutic regimen for case 2.

181 The dosage administered to the 3 children presented in our study was 75mg of 182 colistimethate sodium diluted in 3 ml of normal saline, twice daily. This equals to a 183 daily dosage 1.875.000 IU of colistin, administered in two divided doses. According to 184 the national formulary, the recommended dosage of inhaled colistimethate sodium for 185 children older than 2 years and adults with cystic fibrosis is 1-2.000.000 IU, 2-3 times a 186 day. Regarding the 7.5-month-old infant in our report, the dosage of the 1.875.000 IU 187 per day was chosen due to her critical condition. All 3 children were closely monitored 188 for adverse events. No adverse event related to colistin treatment was noted in our cases. 189

190 In order to achieve the most of the benefits conferred by inhaled antibiotics in 191 mechanical ventilated patients several conditions should be met. The device used for 192 inhalation (nebulizer), the ventilator and the ventilator circuit, the inhaled agent and 193 patient characteristics are aspects of major significance. Nebulizers are placed at a 194 distance from the endotracheal tube in the inspiratory limb of the ventilator circuit and 195 their deliverance of small particles of the drug is achieved at the maximum with high 196 gas pressure and flow and low humidity as well as low gas density. In addition, nebulizers should be operated intermittently to avoid waste of the drug during 197 198 exhalation time. Recently, a new electronic nebulizer the Pulmonary Drug Delivery 199 System (PDDS) utilizes information from a pressure sensor to generate the aerosol 200 during a specific time of the respiratory circle and that leads to delivery of the 50-70% of the nominal dose of the drug.²³ Patient related factors such as severity of airway 201 202 obstruction if any, dynamic hyperinflation of the lung and synchronization with the 203 ventilator are important for drug delivery, as well. Specifically, evidence from published 204 studies suggests that colistin can be successfully nebulized with more than one of the commercially available nebulizers.²⁴ 205 206

2 3		
4 5	207	One fact of major importance in all three cases is that the adjunctive use of inhaled
6	208	colistin or inhaled colistin alone succeeded in the reduction and finally the total
8	209	elimination of the microbial load in respiratory secretions. When treating vulnerable
9 10	210	pediatric patients, issues of safety are of major concern. The administration of inhaled
11 12	211	colistin minimizes the risk of systemic adverse events. On the contrary, the main worry
13 14	212	of physicians regarding inhaled colistin is the provocation of serious
15 16	213	bronchoconstriction. ^{25,26} However, even though bronchoconstriction pre-existed in 2 of
17	214	our cases, it did not deteriorate with the initiation of inhaled colistin.
18 19	215	
20 21	216	In conclusion, inhaled colistin was effective for the treatment of two children with
22 23	217	tracheobronchitis and one infant with necrotizing pneumonia, while no adverse events
24 25	218	were observed. Accumulating data on inhaled colistin use in the adult critical care
25 26	219	population support its safety profile. This may provide the ground for further research
27 28	220	in the pediatric critical care setting regarding inhaled colistin and its use in pediatric
29 30	221	patients without cystic fibrosis.
31 32	222	Reference list
33 34	223	1. Hagerman JK, Knechtel SA, Klepser ME. Tobramycin solution for inhalation in
35 36	224	cystic fibrosis patients: a review of the literature. Expert Opin Pharmacother
37	225	2007;8:467-75.
39 49	226	2. Lenoir G, Antypkin YG, Miano A, et al. Efficacy, safety, and local pharmacokinetics
40 41	227	of highly concentrated nebulized tobramycin in patients with cystic fibrosis colonized
42 43	228	with Pseudomonas aeruginosa. Paediatr Drugs 2007;9 Suppl 1:11-20.
44 45	229	3. Ratjen F, Rietschel E, Kasel D, et al. Pharmacokinetics of inhaled colistin in patients
46 47	230	with cystic fibrosis. J Antimicrob Chemother 2006;57:306-11.
48	231	4. Kaplan JE, Benson C, Holmes KH, Brooks JT, Pau A, Masur H. Guidelines for
49 50	232	prevention and treatment of opportunistic infections in HIV-infected adults and
51 52	233	adolescents: recommendations from CDC, the National Institutes of Health, and the
53 54	234	HIV Medicine Association of the Infectious Diseases Society of America. MMWR
55 56	235	Recomm Rep 2009;58:1-207; quiz CE1-4.
57 58	236	5. Checchia P. Identification and management of severe respiratory syncytial virus. Am
эв 59 60	237	J Health Syst Pharm 2008;65:S7-12.

Pediatric Pulmonology

1 2 3		
4	238	6. Eiland LS, Eiland EH. Zanamivir for the prevention of influenza in adults and
6	239	children age 5 years and older. Ther Clin Risk Manag 2007;3:461-5.
8	240	7. LaForce C, Man CY, Henderson FW, et al. Efficacy and safety of inhaled zanamivir
9 10	241	in the prevention of influenza in community-dwelling, high-risk adult and adolescent
11 12	242	subjects: a 28-day, multicenter, randomized, double-blind, placebo-controlled trial. Clin
13 14	243	Ther 2007;29:1579-90; discussion 1577-8.
15 16	244	8. Brochet MS, McDuff AC, Bussieres JF, et al. Comparative efficacy of two doses of
17	245	nebulized colistimethate in the eradication of Pseudomonas aeruginosa in children with
18 19	246	cystic fibrosis. Can Respir J 2007;14:473-9.
20 21	247	9. Hodson ME, Gallagher CG, Govan JR. A randomised clinical trial of nebulised
22 23	248	tobramycin or colistin in cystic fibrosis. Eur Respir J 2002;20:658-64.
24	249	10. Marchetti F, Giglio L, Candusso M, Faraguna D, Assael BM. Early antibiotic
25 26	250	treatment of pseudomonas aeruginosa colonisation in cystic fibrosis: a critical review of
27 28	251	the literature. Eur J Clin Pharmacol 2004;60:67-74.
29 30	252	11. Reed MD, Stern RC, O'Riordan MA, Blumer JL. The pharmacokinetics of colistin
31 32	253	in patients with cystic fibrosis. J Clin Pharmacol 2001;41:645-54.
33	254	12. Agrafiotis M, Siempos I, Falagas ME. Frequency, prevention, outcome, and
34 35	255	treatment of ventilator-associated tracheobronchitis: systematic review and meta-
36 37	256	analysis. Respir Med 2010;104:325-36.
38 39	257	13. Cook DJ, Walter SD, Cook RJ, Griffith LE, Guyatt GH, Leasa D, et al. Incidence of
40	258	and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern
41	259	Med. 1998;129:433-40
43 44	260	14. Falagas ME, Kasiakou SK, Tsiodras S, Michalopoulos A. The use of intravenous
45 46	261	and aerosolized polymyxins for the treatment of infections in critically ill patients: a
47 48	262	review of the recent literature. Clin Med Res 2006;4:138-46.
49	263	15. Falagas ME, Siempos, II, Rafailidis PI, Korbila IP, Ioannidou E, Michalopoulos A.
50 51	264	Inhaled colistin as monotherapy for multidrug-resistant gram (-) nosocomial
52 53	265	pneumonia: a case series. Respir Med 2009;103:707-13.
54 55	266	16. Horianopoulou M, Lambropoulos S, Papafragas E, Falagas ME. Effect of
56 57	267	aerosolized colistin on multidrug-resistant Pseudomonas aeruginosa in bronchial
58 59 60	268	secretions of patients without cystic fibrosis. J Chemother 2005;17:536-8.

2 3		
4 5	269	17. Korbila IP, Michalopoulos A, Rafailidis PI, Nikita D, Samonis G, Falagas ME.
6 7	270	Inhaled colistin as adjunctive to intravenous colistin for the treatment of
8	271	microbiologically documented VAP: a comparative cohort study. Clin Microbiol Infect
9 10	272	2009.
11 12	273	18. Michalopoulos A, Kasiakou SK, Mastora Z, Rellos K, Kapaskelis AM, Falagas ME.
13 14	274	Aerosolized colistin for the treatment of nosocomial pneumonia due to multidrug-
15 16	275	resistant Gram-negative bacteria in patients without cystic fibrosis. Crit Care
17	276	2005;9:R53-9.
18 19	277	19. Falagas ME, Sideri G, Vouloumanou EK, Papadatos JH, Kafetzis DA. Intravenous
20 21	278	colistimethate (colistin) use in critically ill children without cystic fibrosis. Pediatr
22 23	279	Infect Dis J 2009;28:123-7.
24	280	20. Falagas ME, Vouloumanou EK, Rafailidis PI. Systemic colistin use in children
25 26	281	without cystic fibrosis: a systematic review of the literature. Int J Antimicrob Agents
27 28	282	2009;33:503 e1- e13.
29 30	283	21. Palmer LB, Smaldone GC, Chen JJ, et al. Aerosolized antibiotics and ventilator-
31 32	284	associated tracheobronchitis in the intensive care unit. Crit Care Med 2008;36:2008-13.
33	285	22. Berlana D, Llop JM, Fort E, Badia MB, Jodar R. Use of colistin in the treatment of
34 35	286	multiple-drug-resistant gram-negative infections. Am J Health Syst Pharm 2005;62:39-
36 37	287	47.
38 39	288	23. Dhand R, Guntur VP. How best to deliver aerosol medications to mechanically
40	289	ventilated patients. Clin Chest Med 2008;29:277-96, vi.
41 42	290	24. Katz SL, Ho SL, Coates AL. Nebulizer choice for inhaled colistin treatment in
43 44	291	cystic fibrosis. Chest 2001;119:250-5.
45 46	292	25. Alothman GA, Ho B, Alsaadi MM, et al. Bronchial constriction and inhaled colistin
47 48	293	in cystic fibrosis. Chest 2005;127:522-9.
40	294	26. Cunningham S, Prasad A, Collyer L, Carr S, Lynn IB, Wallis C.
50 51	295	Bronchoconstriction following nebulised colistin in cystic fibrosis. Arch Dis Child
52 53	296	2001;84:432-3.
54 55	297	
56 57		
51		

1 2				
3 - 4	Table. Characteris	tics and outcomes of critical	ly ill children without cystic	fibrosis who received
5	inhaled colistin (co	listimethate sodium) for the	treatment of tracheobronch	itis and pneumonia.
6 7		Patient 1	Patient 2	Patient 3
8	Age	10y	7.5mo	4y
9 10	Sex	М	F	F
11 12	Underlying disease	ADEM	None	None
13 14 15	Reason for ICU admission	Encephalomyelitis	Septic shock, necrotizing pneumonia	Respiratory burn, respiratory distress
16 17 18	Length of stay (LOS) in the ICU	<mark>≈7mo</mark>	≈1.5mo	<mark>≈3mo</mark>
19 20	Length of time on the ventilator	≈1.5mo (followed by tracheostomy)	<mark>≈1.5mo</mark>	11d (followed by tracheostomy)
21	Type of infection	Tracheobronchitis	Necrotizing pneumonia	Tracheobronchitis
23 24 25	Isolated pathogen(s)	Acinetobacter baumannii, Pseudomonas aeruginosa	Pseudomonas aeruginosa	Pseudomonas aeruginosa
26	Site of isolation	Bronchial culture	Bronchial culture	Bronchial culture
27 28	Susceptibility pattern of the	Acinetobacter baumannii	Pseudomonas aeruginosa	Pseudomonas aeruginosa
29 30 31 32 33 34 35 36 37 38	isolated pathogen(s)	Amoxicillin-clavulanic acid: S, minocycline: I, doxycycline: I, colistin: S <i>Pseudomonas aeruginosa</i> Piperacillin: S, ciprofloxacin: S, ticarcillin-clavulanate: S, aztreonam: S, piperacillin- tazobactam: S, imipenem: S, gentamicin: R, tobramycin: R, netilmicin: R, colistin: S	Piperacillin: S, piperacillin- tazobactam: S, cefotaxime: R, aztreonam: S, imipenem: S, ciprofloxacin: S, gentamicin: I, tobramycin: I, netilmicin: I, colistin: S	Piperacillin: S, piperacillin- tazobactam: S, ticarcillin- clavulanate: S, cefotaxime: R, aztreonam: S, ciprofloxacin: S, gentamicin: I, tobramycin: I, netilmicin: I, colistin: S
39 40 41 42	Prior administration of intravenous colistin	Yes*	No	Yes ^{**}
43 44 45 46 47	Concomitant antibiotic treatment to inhaled colistin	None	iv (piperacillin-tazobactam plus gentamicin for 10d, meropenem plus vancomycin for the following 11d)	None
48 49	Time of institution of inhaled colistin	Day 206 after ICU admission (while on tracheostomy)	Day 3 after ICU admission (while on intubation)	Day 27 after ICU admission (while on tracheostomy)
50 51 52	Dosage of inhaled colistin	75mg diluted in 3ml of normal saline twice daily	75mg diluted in 3ml of normal saline twice daily	75mg diluted in 3ml of normal saline twice daily
53 54 55 56 57 58 59	Duration of treatment with inhaled colistin	25d	32d	15d

2							
3	Delivery of inhaled	<mark>Via a neb</mark>	ulizer apparatus	Via a nebulizer aj	oparatus	Via a nebuli	izer apparatus
4	<mark>colistin</mark>	connected	l to the tracheostomy	connected to the v	ventilation	connected to	o the tracheostomy
6	Type of ventiletor	circuit		system		circuit (
7	Type of ventilator	Siemens	Servo-i Ventilator [#]	Siemens Servo-i	Ventilator ^{##}	Siemens Se	rvo-i Ventilator [#]
8	Humidification	Stefficits		Siemens Servo-1	v childitor	Stefficits Se	vo-i ventilator
9		<mark>On</mark>		<mark>On</mark>		<mark>On</mark>	
10	Quantitative change	Acinetob	acter baumannii	Pseudomonas ae	ruginosa	Pseudomon	as aeruginosa
11	of the microbial	D 1	× 100000	1.1	× 100000	D 1	\$ 100000
12	burden of the	Day 1	>100000	1 day prior to	>100000	Day I	>100000
14	(cfu/ml)/Days after			institution			
15	institution of	Dav 4	95000	Dav 3	100000	Dav 4	80000
16	inhaled colistin	Day 11	75000	Day 10	75000	Day 8	Rare microbes
17							found
18		D 15	D	D 1(70000	D 11	Nut and Class
19		Day 17	Rare microbes found	Day 16	/0000	Day 11	Natural flora
20		Day 21	Natural flora	Dav 28	5000		
21		,		Day 32	Natural flora		
23		Pseudom	onas aeruginosa	·			
24		Day 1	>100000				
25		Day 4	75000				
26		Day 11	45000				
27		Day 17 Day 21	6000 Natural flora				
28	Outcome	Day 21 Cured fro	matural fiora	Cured from the in	fection	Cured from	the infection
29	Outcome	Curcuino	in the infection	Curea nom the m	licetion	Curea nom	the infection
30		Discharge	ed from the ICU/still	Discharged from	the ICU	Discharged	from the ICU/still
31		with track	neostomy-no			with trached	ostomy-no
33		colonizati	ion			colonizatior	1
34	A duarsa avants						
35	Auverse events						
36	Nephrotoxicity	No		No		No	
37	+						
38	Urea/creatinine [*]	(23/0.7– 2	25/0.6)	(47/7–15/0.3)		(30/0.5–35/	0.5)
39	(before colistin						
40 11	colistin treatment)						
41	constin treatment)						
42 43	Other toxicity	<mark>No</mark>		No		<mark>No</mark>	

44
45Abbreviations: F: female, M: male, ADEM: Acute disseminated encephalomyelitis, y: year(s), mo: month(s), d: days, S: 46susceptibility, I: intermediate susceptibility, R: resistant, iv: intravenous.
47[‡]: mg/dl
48** A device the other second second

48 *: Administered for the treatment of Acinetobacter baumannii bacteremia
49 ^{•••} Administered for the treatment of <i>Activetobacter baumannit</i> bacterenna.
50
³⁰ **: Administered for the treatment of <i>Pseudomomas aeruginosa</i> bacteremia.
51
52 <mark>#: Prior to colistin treatment</mark> .
53
54 <mark>##: While on colistin treatment.</mark>
55
56
57
58
59
60