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We discuss aging and localization in a simple “Eshelby” mesoscopic model of amorphous plas-
ticity. Plastic deformation is assumed to occur through a series of local reorganizations. Using a
discretization of the mechanical fields on a discrete lattice, local reorganizations are modeled as
local slip events. Local yield stresses are randomly distributed in space and invariant in time. Each
plastic slip event induces a long-ranged elastic stress redistribution. Mimicking the effect of aging,
we focus on the behavior of the model when the initial state is characterized by a distribution of
high local yield stress values. A dramatic effect on the localization behavior is obtained: the system
first spontaneously self-traps to form a shear band which then only slowly widens. The higher the
“age” parameter the more localized the plastic strain field. Two-time correlation computed on the
stress field show a divergent correlation time with the age parameter. The amplitude of a local slip
event (the prefactor of the Eshelby singularity) as compared to the yield stress distribution width
acts here as an effective temperature-like parameter: the lower the slip increment, the higher the
localization and the decorrelation time.

Following pioneering works by Argon[1] describing plastic deformation of metallic glasses as resulting of local
inelastic transformations, Falk and Langer[2] proposed a Shear Transformation Zones (STZ) theory to model plasticity
of amorphous materials. In the view of these authors, plastic deformation is assumed to result from a series of local
reorganizations occurring within a population of “small” atomic/molecular clusters (zones) through micro-instabilities.
Plastic deformation directly results from the balance between flips in the positive and negative directions of these
Shear Transformation Zones.
Independently, starting from the trap model developed by Bouchaud[3] for the glass transition, Sollich, Cates and

Lequeux[4] developed a Soft Glassy Rheology (SGR) model to capture the rheology of complex fluids. In the trap
model a landscape of traps of depth E drawn from an exponential distribution exp(−E/E0) is assumed. A break-down
of ergodicity naturally emerges at T0 = E0/k. From this simplified view of the glass transition, Sollich et al introduce
the mechanical stress as a bias to the energy landscape. It is important to note that the temperature in their model is
not associated to a real thermal bath but is assumed to emerge from some mechanical noise a priori related to elastic
interactions induced by local reorganizations.
While these two models capture part of the rich phenomenology of amorphous visco-plasticity, their mean-field

character does not allow them to account for localization. The latter phenomenon may be captured once anisotropic
elastic effect of local plastic events (Eshelby inclusion[5]) are included in the modeling. Building on these grounds
several authors have developed “Eshelby” mesoscopic models to study plasticity of amorphous materials[6–14]. Except
in the case of Ref. [11] where a state variable is implemented or of Ref. [10] where the presence of walls traps plastic
deformation, in such models, localization appears to be only transient and complex spatio-temporal correlations very
similar to those observed in atomistic simulations emerge from the competition between diffusion and localization[14–
16]. Recently Fielding and collaborators[17, 18] investigated an age-dependent transient shear banding behavior in
different models where the shear banding was not triggered by an elastic or viscous softening constitutive law, but
rather through an aging/rejuvenation behavior where the diffusive character of an internal variable would dictate the
widening and progressive vanishing of an initial shear band. The introduction of such a mechanism in a variant of
the SGR model results in a very slow (“glassy”) spreading of such shear bands.
This age dependence of shear banding and its fast or glassy relaxation motivates us to reassess the question of the

connection to be made between the glass theory inspired SGR model and the STZ model built from the identification
of the microscopic mechanism of plasticity in amorphous materials. In particular, it has remained so far difficult to
give a microscopic justification to the effective temperature defined in the SGR model[19, 20].
In the following we present results about aging and localization obtained with the original mesoscopic model of

plasticity presented in details in Ref. [14]. We discuss in particular the effect of two parameters of the model which
will appear to mimic the age of the system before shearing and a mechanical effective temperature.
Definition of the model Let us briefly recall the definition of the model (see Ref. [14] for more details). The

mechanical fields are discretized on a square lattice with a mesh size significantly larger than the typical scale of
a plastic reorganization. Periodic boundary conditions are considered. The material is assumed to be elastically
homogeneous, so that stresses and elastic moduli are scaled so that the steady-state local yield stress is unity. A local



2

FIG. 1: Maps of plastic strain obtained from left to right at 〈εp〉 = 1/16, 1/4, 1, 4 and 16 and from top to bottom with a bias
value δ = 0, 0.5 and 0.7 with a slip increment d = 0.3.

criterion of plasticity is considered. The initial distribution of local yield stress is denoted Pi(σc). Every time a local
plastic criterion is satisfied at point x0, a local slip ∆εp occurs (we assume here that local plastic strains obey the
same symmetry as the external loading, pure shear in the present case, so that a simple scalar yield criterion can be
chosen) with a random amplitude d drawn from a statistical distribution Q(d), ∆εp(x) = dδ(x − x0) where δ is the
Dirac distribution. Note that d is the product of the mean plastic strain by the “volume” of the transformation zone.
This local slip d induces a long range redistribution of elastic stress with a quadrupolar symmetry (see Ref. [14, 21]
for analytical and numerical details about this elastic propagator) ∆σel(x) = dG(x−x0) with G(r, θ) ≈ Ad cos 4θ/r2

where A is the dimensionless elastic constant, r and θ the polar coordinates. After slip, the microstructure of the
flipping zone has changed and a new value of the local yield stress is drawn from a distribution PS(σc). The system is
driven with an extremal dynamics so that only one site at a time is experiencing slip. The originality of the present
depinning models relies in the anisotropic elastic interaction. Within this framework of dynamic phase transition, the
choice of extremal dynamics ensures to drive the system at the verge of criticality: the macroscopic yield stress is
given by the critical threshold.
The yield stress distributions Pi(σc) (initial state) and PS(σc) (under shear) are chosen as uniform in the ranges

[δ; 1 + δ] and [0; 1] respectively. The slip amplitude d, is drawn from a uniform distribution in the range [0; d0]. We
focus in the following discussion on the effect of these two parameters d0 and δ. In the view developed by Sollich
et al. [4], the parameter d0 which gives the amplitude of the mechanical noise induced by the elastic interactions
may be thought as analogous to the effective temperature x in the SGR model. However, it is to be emphasized that
this “noise” is strongly inhomogeneous in space and displays strong temporal and spatial correlations, absent from
the SGR model. The second parameter δ measures the shift between the initial yield stress distribution, uniform
in [δ; 1 + δ] and the distribution of new local yield stress under shear, uniform in the range [0; 1] may be related to
the initial state of the system prior to shearing. Indeed it is expected that the older the glassy system, the more
stable and the more difficult it is to shear. This effect is described here through a mere penalty in the initial yield
stress. High mean values of the plastic thresholds should thus be associated with aged configurations of the glass.
As discussed in [22], a logarithmic increase of the yield stress with the age of the system is often observed in glassy
materials: δ ≈ s0(T ) log(tw/t0) where t0 is a microscopic time scale. According to this perspective, the age of the
system would simply be related to the bias δ through an exponential dependence. We now test these simple ideas
against numerical simulations.
Maps of plastic activity In Fig. 1 and 2 the evolution of the spatial distribution of plastic strain under shear is

shown for different values of the age-like parameter δ (Fig. 1) and of the temperature-like parameter d0. We show
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FIG. 2: Maps of plastic strain obtained from left to right at 〈εp〉 = 1/16, 1/4, 1, 4 and 16 with a bias value δ = 0.5, and from
top to bottom with a slip increment d0 = 0.3, 0.1 and 0.03.

snapshots of the plastic strain field taken at 〈εp〉 = 1/16, 1/4, 1, 4, 16. The value of the local strain is represented
with a grey scale, (the darker, the larger plastic strain).
In Fig. 1, the values d0 = 0.3 of the slip increment has been used. The first row corresponds to the value δ = 0.

When using this un-aged initial configuration, we see that plastic strain first self-organizes along shear bands at ±π/4
i.e., according to the maximum shear directions. This localization is however not persistent and after a transient,
these shear bands diffuse throughout the system. The evolution obtained with a bias value δ = 0.5 (second row) is
markedly different. Again plastic deformation first tends to form shear bands according to directions at ±π/4, but
remains essentially trapped in a strongly localized state. The formed shear band only slowly widens with “time”
(mean plastic strain). The evolution obtained with a bias value δ = 0.7 (third row) is very similar : formation of a
persistent shear band before an apparent diffusive widening of the band. Localization appears to be more intense and
widening slower with this higher value of the age-like parameter δ.
In Fig. 2, the values δ = 0.5 of the age-like parameter has been used. From top to left, the evolution of the plastic

strain field is shown for values of the slip increment d0 = 0.03, 0.1, 0.3. A similar behavior as above is obtained.
We see that the higher value of the temperature like parameter d0, the less intense the localization and the faster
the subsequent widening process. Age- and temperature-like parameters d0 and δ thus seem to behave as could be
expected, at least phenomenologically.
Glassy relaxation of shear-banding The residual stress field, is the self-balanced stress field which results from

the local slip events taking place from the initial (stress free) state. The latter has a zero volume average. It allows
one (in conjunction with the local random yield threshold) to characterize the propensity of a site to undergo a plastic
slip. This motivates the recourse to standard tools used for aging behavior characterization. Two-point correlation
functions based on the residual stress field are proposed. Note that the model does not depend on time as such; the
global plastic strain plays the role of an evolution parameter:

Cσ(εw, εp) =
〈σres(εw, x)σres(εp, x)〉x

(〈σres(εw, x)σres(εw, x)〉x〈σres(εp, x)σres(εp, x)〉x)
1/2

(1)

where the symbol 〈...〉x designates a spatial average over x.
Such two-point correlation functions can be used to follow the formation and the subsequent relaxation of shear-

banding[23]. In the following we only discuss the relaxation stage after the initial transient and full formation of the
shear band. In Fig. 3 we present the dependence of the stress correlation for εw = 1; at this deformation level, which
corresponds to the typical amplitude of the local plastic threshold, localization (if any) is fully set.
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FIG. 3: Effect of the age-like parameter δ (Left) and of the mechanical noise amplitude d0 (Center) on the two-point stress
correlation function with εw = 1. (Right) Dependence on δ and d0 of the typical plastic deformation ε∗ needed to relax shear
banding. After rescaling data can be reasonably collapsed onto a single master curve; the dashed line indicates an exponential
behavior accounting for the glassiness of shear-banding at high δ – low d0.

The left panel of Fig. 3 shows the effect of the “age” parameter, with δ0 = 0.2, 0.4 , 0.6 , 0.8 and d0 = 0.2. In
the un-aged configuration (δ = 0), the system decorrelates after a typical plastic strain εp = d0.5

0
[23]. This reflects

the non persistence of localization in the standard un-aged case. In the case of an aged initial configuration we
obtain significantly different results. The systems appears to decorrelate only after a plastic deformation growing
exponentially with the parameter δ. Moreover when fitting data with a simple stretched exponential, the exponent
can be shown to transit from values slightly below unity in the un-aged case to values close or below 1/2 in the more
aged configurations. The shear banding persistence thus seems to directly depend on the age.
Pursuing the above discussed analogy we now show in the center panel of Fig. 3 the correlation functions for

obtained with a fixed age parameter δ = 0.6 for values of the slip increment parameter varying from d0 = 0.02 to
d0 = 1 (computations were performed on lattices of size 64× 64 with 20 to 200 realizations). As could be anticipated
from the above displayed maps of plastic deformation, the shear-banding persistence tends to increase inversely with
the slip increment parameter, the lower d0 the higher the decorrelation time. The slip increment parameter d0 thus
seems reasonably to act as the amplitude of a mechanical noise allowing the system to escape its trapped state. In
other words, d0 which stands here for the product of the volume of a flipping zone times its typical plastic strain
seems to be a good candidate for the elusive effective temperature discussed in the SGR model[4].
We try to rationalize in the right panel of Fig. 3 the age and mechanical noise dependence of the shear-banding

persistence. Exploring the two-dimensional space of parameters δ and d0, using a simple stretched exponential fitting
procedure, we extracted the typical plastic strain ε associated with stress decorrelation after shear-banding formation
(εw = 1 in the above notations). This allows us to propose a reasonable scaling dependence:

ε∗ = da
0
ϕ

(

δ

db
0

)

, ϕ(x → 0) ≈ A , ϕ(x → ∞) ≈ C.eBx (2)

where the choice a = 0.5 and b = 0.2 allowed us to obtain a reasonable collapse of the data collected for d0 ∈
[0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1] and δ ∈ [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. In Fig. 3 an indicative exponential
curve is shown to account for the high age and/or low mechanical noise shear banding glassy relaxation behavior.
To summarize, we showed that our simple Eshelby-like mesoscopic model of amorphous plasticity exhibits a striking

dependence on initial conditions. The introduction of a simple bias to shift the initial distribution of local yield stress
values from its counterpart used to renew the yield stress after local reorganization has a remarkable consequence: the
systems self-traps in a localized state to form a shear band and remains so for a longer and longer “time” when the bias
value increases. This bias can thus be interpreted as an estimator of the age of the system before shearing. Moreover
we show that the ratio of the typical slip increment (more rigorously in the formalism of the Eshelby inclusion, the
volume of a reorganizing zone times its typical plastic strain) on the typical plastic yield stress acts as an effective
temperature in the sense proposed in the SGR model of Sollich et al.[4]. This parameter indeed gives the amplitude
of the mechanical noise induced by successive reorganizations. The lower this amplitude, the longer the systems gets
trapped and the slower the widening of the shear bands.
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