
HAL Id: hal-00588606
https://hal.science/hal-00588606v1

Preprint submitted on 24 Apr 2011 (v1), last revised 7 Aug 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general moment bound for a product of Gaussian
vector’s functionals and a central limit theorem for

subordinated Gaussian triangular arrays
Jean-Marc Bardet, Donatas Surgailis

To cite this version:
Jean-Marc Bardet, Donatas Surgailis. A general moment bound for a product of Gaussian vector’s
functionals and a central limit theorem for subordinated Gaussian triangular arrays. 2011. �hal-
00588606v1�

https://hal.science/hal-00588606v1
https://hal.archives-ouvertes.fr


A general moment bound for a product of Gaussian

vector’s functionals and a central limit theorem for

subordinated Gaussian triangular arrays

Jean-Marc Bardet∗ and Donatas Surgailis∗∗

bardet@univ-paris1.fr, sdonatas@ktl.mii.lt
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Abstract

A general moment bound for a product of Gaussian vector’s functions extending the moment bound

in Taqqu (1977, Lemma 4.5) is established. A very general central limit theorem for triangular arrays of

nonlinear functionals of multidimensional Gaussian sequences generalizing the results of Arcones (1994)

is deduced. The stationarity of the Gaussian vector sequences is not required.
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1 Introduction and the main results

This paper is devoted to the statement of two new results concerning functions of Gaussian vectors. The

first one (see Lemma 1, Section 2) consists in a moment bound for products of such functions of Gaussian

vectors in a general frame. It is an extension of an important lemma by Taqqu (1977, Lemma 4.5). Its proof

uses the Hermitian decompositions of functions and the diagram formula. Note that in Soulier (2001) a sim-

ilar moment bound is also proved using an elegant technique which does not make use of diagram formula.

However its assumptions are more interesting when the components of the vectors are not independent than

when the family of vectors are not independent. Such result is very interesting for proving limit theorem,

such as strong law of large numbers (see for instance Bardet and Surgailis, 2011).

Another application of Lemma 1 is studied here with the statement of a central limit theorem (CLT) for

triangular arrays of Gaussian vector’s functions, call Theorem 1 in the sequel. Roughly speaking, this new

CLT is a generalization of the CLT of Arcones (1994, Theorem 2) to non-stationary triangular arrays of

subordinated Gaussian vectors. Such a result is motivated by the numerous statistical applications of tri-

angular arrays. For instance, let us note statistics for time series and essentially based on triangular arrays

like estimators of regression parameters, kernel density estimators or statistics applied to a discretization

of a continuous process (for example (Xδn , X2δn , · · · , Xnδn)). Two examples of applications (a central limit

theorem for the Increment Ratio statistic of a Gaussian process admitting a tangent process and a central

limit theorem for functions of locally stationary Gaussian process) are studied in Section 4.
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From the famous Lindeberg Theorem for independent random variables, there exists numerous paper de-

voted to CLT for triangular arrays. Proofs of such results are not only straightforward applications of CLTs

for sequences of random variables. Following the different assumptions on the dependence, we may cite as

reference the book of Jacod and Shiryaev (1987) for martingale differences and the paper of Rio (1995) for

strongly mixing sequences. From our knowledge, the more recent and important papers devoted to this

topic are those of Coulon-Prieur and Doukhan (2000) with a weak dependence condition and Dedecker and

Merlevede (2002) with a necessary and sufficient condition on stable convergence of the normalized partial

sums. The case of linear triangular arrays (i.e. sequence (ainξi)1≤i≤n, n∈N was treated in details in Peligrad

and Utev (1997) for several form of dependence conditions on (ξi)i. Note that all these results are obtained

under a stationarity condition.

Here, we will consider non linear functional of Gaussian vectors. Numerous articles were already devoted

to establish CLT or non-CLT in such a frame: we may cite the seminal papers of Taqqu (1975), Dobrushin

and Major (1979), Taqqu (1979), Breuer and major (1983) and Giraitis and Surgailis (1985). Extensions

were also obtained by Chambers and Slud (1989), Sanchez de Naranjo (1993) and recently in Nourdin et al.

(2010). However here even if the case of long memory sequences is studied, we will not consider the case of

non-CLT and therefore we can cite Arcones (1994) and Soulier (2001) as more recent and closest references

(the paper of Arcones is written for unidimensional sequences but can be easily extended to multidimensional

sequences).

Differences between our results and Arcones (1994) and Soulier (2001) articles are the following. Firstly and

contrarily to Arcones’ paper, we will not assume the stationarity property which is however a particular case.

In Soulier the nonstationarity is essential since under a stationarity assumption its Theorem 3.1. requires

that the sequence (Xk,n)k of random vectors are independent when n→ ∞. Secondly, instead of their proofs

based on the convergence of moments, we will prove the CLT (see Theorem 1 below) from the asymptotic

behavior of cumulants. Such a proof already used in Giraitis and Surgailis (1985) is quite shorter since it only

requires to show that the cumulants of order greater or equal to 3 converge to 0. Finally we will consider

triangular arrays of the form
(
fk,n(Yn(k))

)
1≤k≤n, n∈N

where (Yn(k))1≤k≤n,n∈N
be a triangular array of

standardized Gaussian vectors, which notably extends the results of Arcones (devoted to (f(Xj))j∈N) and

Soulier (devoted to
(
βn,kf(Yn(k))

)
1≤k≤n, n∈N

with
∑n

k=1 β
2
n,k = 1). Using the moment bound obtained in

Lemma 1, we will show that the assumptions of Theorem 1 will essentially concern the Hermite rank of the

functions (fk,n) and the asymptotic behavior of the covariances of the triangular array of Gaussian vectors

(as in Arcones, 1994).

The CLT for triangular arrays (Theorem 1) and its proof are provided in Section 3 and both the applications

are given in Section 4. The following section Section 2 is devoted to the essential moment bound inequality.

2 A moment bound

Let X = (X(1), . . . , X(ν)) ∈ R
ν be a standardized Gaussian vector, with zero mean EX(u) = 0 and co-

variances EX(u)X(v) = δuv (u, v = 1, . . . , ν). Let L
2(X) denote the class of all measurable functions

G = G(x),x = (x(1), . . . , x(ν)) ∈ R
ν such that ‖G‖2 := EG2(X) < ∞. For any multiindex k =

(k(1), . . . , k(ν)) ∈ Z
ν
+ := {(j(1), . . . , j(ν)) ∈ Z

ν , j(u) ≥ 0 (1 ≤ u ≤ ν)}, let Hk(x) = Hk(1)(x(1)) · · ·Hk(ν)(x(ν))

be the (product) Hermite polynomial; Hk(x) := (−1)kex
2/2(e−x2/2)(k), k = 0, 1, . . . are standard Hermite

polynomials. Write |k| := k(1) + . . . + k(ν), k! := k(1)! · · · k(ν)! (k = (k(1), . . . , k(ν)) ∈ Z
ν
+). A function

G ∈ L
2(X) is said to have a Hermite rank m ≥ 0 if JG(k) := EG(X)Hk(X) = 0 for any k ∈ Z

ν
+, |k| < m,

and JG(k) 6= 0 for some k, |k| = m. It is well-known that any G ∈ L
2(X) having a Hermite rank m ≥ 0
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admits the Hermite expansion

G(x) =
∑

|k|≥m

JG(k)

k!
Hk(x),

which converges in L
2(X). Let (X1, . . . ,XN ) be a collection of standardized Gaussian vectors Xt =

(X
(1)
t , . . . , X

(ν)
t ) ∈ R

ν having a joint Gaussian distribution in R
νN . Let ε ∈ [0, 1] be a fixed number.

Following Taqqu (1977), we call (X1, . . . ,XN ) ε−standard if |EX(u)
t X

(v)
s | ≤ ε for any t 6= s, 1 ≤ t, s ≤ N

and any 1 ≤ u, v ≤ ν.

Lemma 1 below is an extension of an important lemma by Taqqu (1977, Lemma 4.5), to the case of a

vector-valued Gaussian family (X1, . . . ,XN ), taking values in R
ν(ν ≥ 1). The lemma concerns a bound for∑′ E|G1,t1,N (Xt1) . . . Gp,tp,N (Xtp)|, where G1,t,N , . . . , Gp,t,N are square integrable functions among which

the first 0 ≤ α ≤ p functions G1,t,N , . . . , Gα,t,N for any 1 ≤ t ≤ N have a Hermite rank at least equal to

m ≥ 1 and where
∑′ is the sum over all different indices 1 ≤ ti ≤ N (1 ≤ i ≤ p), ti 6= tj(i 6= j). In the

case when Gj,t,N = Gj does not depend on t, N , the bound of Lemma 1 coincides with that of Taqqu (1977,

Lemma 4.5) provided mα is even, but is worse than Taqqu’s bound in the more delicate case when mα is

odd. An advantage of our proof is its relative simplicity (we do not use the graph-theoretical argument as

in Taqqu, 1977, but rather a simple Hölder inequality). A different approach towards moment inequalities

for functions in vector-valued Gaussian variables is discussed in Soulier (2001) but is especially interesting

when the component of vectors are not independent.

Lemma 1 Let (X1, . . . ,XN ) be ε−standard Gaussian vector, Xt = (X
(1)
t , . . . , X

(ν)
t ) ∈ R

ν (ν ≥ 1), and let

Gj,t,N ∈ L
2(X), 1 ≤ j ≤ p (p ≥ 2), 1 ≤ t ≤ N be some functions. For given integers m ≥ 1, 0 ≤ α ≤ p,N ≥

1, define

QN := max
1≤t≤N

∑

1≤s≤N,s6=t

max
1≤u,v≤ν

|EX(u)
t X(v)

s |m. (2.1)

Assume that the functions G1,t,N , . . . , Gα,t,N have a Hermite rank at least equal to m for any N ≥ 1, 1 ≤
t ≤ N , and that

ε <
1

νp− 1
. (2.2)

Then

∑′
E|G1,t1,N (Xt1) · · ·Gp,tp,N (Xtp)| ≤ C(ε, p,m, α, ν)KNp−α

2 Q
α
2

N ,

where the constant C(ε, p,m, α, ν) depends on ε, p,m, α, ν only, and

K =

p∏

j=1

max
1≤t≤N

‖Gj,t,N‖. (2.3)

Proof. Fix a collection (t1, . . . , tp) of disjoint indices ti 6= tj(i 6= j), and write Gj = Gj,tj ,N , 1 ≤ j ≤ p for

brevity. Let Jj(k) := JGj
(k) = EGj(X)Hk(X) be the coefficients of the Hermite expansion of Gj . Then,

|Jj(k)| ≤ ‖Gj‖
ν∏

i=1

E1/2H2
k(i) (X)

≤ ‖Gj‖
ν∏

i=1

(k(i)!)1/2 = ‖Gj‖(k!)1/2.
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Following Taqqu (1977, p. 213, bottom, p. 214, top), we obtain

|EG1(Xt1) · · ·Gp(Xtp)| =

∣∣∣∣∣∣

∞∑

q=0

∑

|k1|+...+|kp|=2q






p∏

j=1

Jj(kj)

kj !




EHk1
(Xt1) · · ·Hkp

(Xtp)

∣∣∣∣∣∣

≤ K1

∞∑

q=0

∑

|k1|+...+|kp|=2q

|EHk1
(Xt1) · · ·Hkp

(Xtp)|
(k1! · · ·kp!)1/2

≤ K1

∞∑

q=0

∑

|k1|+...+|kp|=2q

ε(|k1|+...+|kp|)/2E
∏

1≤u≤ν

∏
1≤j≤pHk

(u)
j

(X)

(k1! · · ·kp!)1/2

≤ K1

∞∑

q=0

∑

|k1|+...+|kp|=2q

(ε(νp− 1))(|k1|+...+|kp|)/2 <∞,

where X ∼ N (0, 1) and

K1 := ‖G1,t1,N‖ · · · ‖Gp,tp,N‖ ≤ K,

where K is defined in (2.3) and K is independent of t1, . . . , tp, and where we used the assumption (2.2) to

get the convergence of the last series. Therefore,

∑′
E|G1,t1,N (Xt1) · · ·Gp,tp,N(Xtp)| ≤ K

∞∑

q=0

∑

|k1| + . . . + |kp| = 2q

|k1| ≥ m, . . . , |kα| ≥ m

∑′ |EHk1
(Xt1) · · ·Hkp

(Xtp)|
(k1! · · ·kp!)1/2

.

Now, the following bound remains to be proved: for any integers m ≥ 1, 0 ≤ α ≤ p,N ≥ 1 and any

multiindices k1, . . .kp ∈ Z
ν
+ satisfying |k1|+ . . .+ |kp| = 2q, |k1| ≥ m, . . . , |kα| ≥ m,

∑′
|EHk1

(Xt1) · · ·Hkp
(Xtp)| ≤ C1(ε(νp− 1))(|k1|+...+|kp|)/2(k1! · · ·kp!)

1/2Np−α
2 Q

α
2

N , (2.4)

where C1 is some constant depending only on p, ν, α, ε, and independent of k1, . . . ,kp, N .

First, we write the expectation on the left hand side of (2.4) as a sum of contributions of diagrams. Let

T :=




(1, 1) (1, 2) . . . (1, k1)

(2, 1) (2, 2) . . . (1, k2)

. . .

(p, 1) (p, 2) . . . (p, kp)


 (2.5)

be a table having p rows τ1, . . . , τp of respective lengths |τu| = ku = |ku| = k
(1)
u + . . . + k

(ν)
u (we write

T =
⋃p

u=1 τu). A subtable of T is a table T ′ =
⋃

u∈U τu, U ⊂ {1, . . . , p} consisting of some rows of T written

from top to bottom in the same order as rows in T ; clearly any subtable T ′ of T can be identified with a

(nonempty) subset U ⊂ {1, . . . , p}. A diagram is a partition γ of the table T by pairs (called edges of the

diagram) such that no pair belongs to the same row. A diagram γ is called connected if the table T cannot

be written as a union T = T ′ ∪ T ′′ of two disjoint subtables T ′, T ′′ so that T ′ and T ′′ are partitioned by γ

separately. Write Γ(T ),Γc(T ) for the class of all diagrams and the class of all connected diagrams over the

table T , respectively. Let

ρ(t, s) := max
1≤u,v≤ν

|EX(u)
t X(v)

s | (t 6= s).

Note 0 ≤ ρ(t, s) ≤ ε and QN = max1≤t≤N

∑
1≤s≤N,s6=t ρ

m(t, s). By the diagram formula for moments of

Hermite (Wick) polynomials (see e.g. Surgailis, 2000),

|EHk1
(Xt1) · · ·Hkp

(Xtp)| ≤
∑

γ∈Γ(T )

∏

1≤u<v≤p

(ρ(tu, tv))
ℓuv (2.6)

=
∑

(U1,...,Uh)

h∏

r=1

∑

γ∈Γc(Ur)

∏

u,v∈Ur,u<v

(ρ(tu, tv))
ℓuv , (2.7)
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where ℓuv is the number of edges between rows τu and τv in the diagram γ over table T , and the sum∑
(U1,...,Uh)

is taken over all partitions (U1, . . . , Uh), h = 1, 2, . . . , [p/2] of {1, . . . , p} by nonempty subsets Ur

of cardinality |Ur| ≥ 2. (Thus, (2.7) follows from (2.6) by decomposing γ ∈ Γ(T ) into connected components

γr ∈ Γc(Ur), r = 1, . . . , h;h = 1, . . . , [p/2]; the restriction |Ur| ≥ 2 stems from the fact that any edge must

necessarily connect different rows.) From (2.7) we obtain

∑′
E|G1(Xt1) · · ·Gp(Xtp)| ≤

∑

(U1,...,Uh)

h∏

r=1

∑

γ∈Γc(Ur)

IN,Ur
(γ), (2.8)

where, for any subtable U ⊂ T having at least two rows and for any connected diagram γ ∈ Γc(U), the

quantity IN,U (γ) is defined by

IN,U (γ) :=
∑′ ∏

u,v∈U,u<v

(ρ(tu, tv))
ℓuv

where (recall) the product is taken over all ordered pairs of rows (τu, τv), u < v of the table U , and ℓuv is

the number of edges in γ between the uth and the vth rows. Below we prove the bound

IN,U (γ) ≤ K3ǫ
|kU |/2N |U|−α(U)

2 (NQN)
α(U)

2 , (2.9)

where |kU | :=
∑

u∈U ku is the number of points of table U and α(U) := |{1, . . . , α}⋂U | = #{u ∈ U : |ku| ≥
m} is the number of rows in U having at least m points. Clearly, it suffices to show (2.9) for U = T .

Next, let for 1 ≤ u, v ≤ p, u 6= v, denote

Ruv :=

(∑
1≤t≤N

(∑
1≤s≤N,s6=t

ρku(s, t)
)kv/ku

)ℓuv/kv

. (2.10)

Let A := {1, . . . , α}, A′ := {1, . . . , p}\A = {α + 1, . . . , p}. It follows immediately by definition of Ruv and

ρ(s, t) that

Ruv ≤
{
N

ℓuv
kv Q

ℓuv
ku

N ε(1−
m
ku

)ℓuv , if u ∈ A,

N
ℓuv
ku

+ ℓuv
kv εℓuv , if u ∈ Ac.

(2.11)

By the Hölder inequality (see Giraitis and Surgailis, 1985, p.202, for details),

IN,T (γ) ≤ min




∏

1≤u<v≤p

Ruv,
∏

1≤u<v≤p

Rvu


 . (2.12)

For any subset U ⊂ {1, . . . , p}, let

L(U) :=
∑

u∈U

∑

u<v≤p

ℓuv
ku

, L∗(U) :=
∑

u∈U

∑

1≤v<u

ℓuv
ku

, (2.13)

L := L(T ), L∗ := L∗(T ). Clearly,

L(U) + L∗(U) =
∑

u∈U

1

ku

∑

v=1,...,p,v 6=u

ℓuv = |U | (2.14)

is the number of points in U . From (2.11) - (2.12),

IN,T (γ) ≤ min
(
NL∗+L(Ac)Q

L(A)
N ε|T |/2−mL(A), NL+L∗(Ac)Q

L∗(A)
N ε|T |/2−mL∗(A)

)
,

where |T | = ∑p
u=1 ki. As 0 ≤ L(A), L∗(A) ≤ p, see (2.14), we obtain

IN,T (γ) ≤ ε|T |/2−mpmin
(
NL∗(A)+L∗(Ac)+L(Ac)Q

L(A)
N , NL(A)+L(Ac)+L∗(Ac)Q

L∗(A)
N

)

= ε|T |/2−mpNp−α min
(
NL∗(A)Q

L(A)
N , NL(A)Q

L∗(A)
N

)

= ε|T |/2−mpNp−α(NQN)
α
2 min

(
(N/QN)

α
2 −L(A)

, (N/QN)
L(A)−α

2

)

≤ ε|T |/2−mpNp−α(NQN)
α
2 ,
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proving (2.9).

With (2.9)-(2.8) in mind,

∑′
|EHk1

(Xt1) · · ·Hkp
(Xtp)| ≤ C3ε

|T |/2
∑

(U1,...,Uh)

h∏

r=1

∑

γ∈Γc(Ur)

N |Ur|−α(Ur)
2 Q

α(Ur)
2

N

= C3ε
|T |/2Np−α

2 Q
α
2

N

∑

(U1,...,Uh)

h∏

r=1

∑

γ∈Γc(Ur)

1

= C3ε
|T |/2Np−α

2 Q
α
2

N

∑

γ∈Γ(T )

1,

where the last sum (= the number of all diagrams over the table T ) does not exceed

|EH
k
(1)
1
(X) · · ·H

k
(ν)
1

(X) · · ·H
k
(1)
p
(X) · · ·H

k
(ν)
p

(X)| ≤ (pν − 1)(|k1|+...+|kp|)/2(k1! · · ·kp!)
1/2,

see Taqqu (1977, Lemma 3.1). This proves the bound (2.4) and the lemma, too. �

3 A central limit for triangular arrays of functions Gaussian’s vec-

tors and its proof

Let (Yn(k))1≤k≤n,n∈N
be a triangular array of standardized Gaussian vectors with values in R

ν , Yn(k) =

(Y
(1)
n (k), . . . , Y

(ν)
n (k)), EY

(p)
n (k) = 0, EY

(p)
n (k)Y

(q)
n (k) = δpq. Now define,

r(p,q)n (j, k) := EY (p)
n (j)Y (q)

n (k) (1 ≤ j, k ≤ n).

For a given integer m ≥ 1, introduce the following assumptions: for any 1 ≤ p, q ≤ ν,

sup
n≥1

max
1≤k≤n

∑

1≤j≤n

∣∣r(p,q)n (j, k)
∣∣m < ∞, (3.1)

sup
n≥1

1

n

∑

1 ≤ j, k ≤ n

|j − k| > K

∣∣∣r(p,q)n (j, k)
∣∣∣
m

−→
K→∞

0, (3.2)

∀(j, k) ∈ {1, . . . , n}2,
∣∣∣r(p,q)n (j, k)

∣∣∣ ≤ |ρ(j − k)| with
∑

j∈Z

|ρ(j)|m <∞. (3.3)

Note (3.3) ⇒ (3.1) and (3.3) ⇒ (3.2).

Theorem 1 Let (Yn(k))1≤k≤n,n∈N
be a triangular array of standardized Gaussian vectors.

(i) Assume (3.1). Let fk ∈ L
2
0(X) (1 ≤ k ≤ n) have Hermite rank at least m ∈ N

∗ with L
2
0(X) = {f ∈

L
2(X) : Ef(X) = 0}. Then there exists a constant C independent of n and fk, 1 ≤ k ≤ n such that

E
(
n−1/2

n∑

k=1

fk (Yn(k))
)2

≤ C max
1≤k≤n

‖fk‖2. (3.4)

(ii) Assume (3.1) and (3.2). Let fk,n ∈ L
2
0(X) (n ≥ 1, 1 ≤ k ≤ n) be a triangular array of functions all

having Hermite rank at least m ∈ N
∗. Assume that there exists a L

2
0(X)−valued continuous function

φτ , τ ∈ [0, 1], such that

sup
τ∈[0,1]

‖f[τn],n − φτ‖2 = sup
τ∈[0,1]

E(f[τn],n(X)− φτ (X))2 −→
n→∞

0. (3.5)

Moreover, let

σ2
n := E

(
n−1/2

n∑

k=1

fk,n (Yn(k))
)2

−→
n→∞

σ2, (3.6)
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where σ2 > 0. Then

n−1/2
n∑

k=1

fk,n (Yn(k))
D−→

n→∞
N (0, σ2). (3.7)

(iii) Assume (3.3). Moreover, assume that for any τ ∈ [0, 1] and any J ∈ N
∗,

(Yn([nτ ] + j))−J≤j≤J
D−→

n→∞
(Wτ (j))−J≤j≤J , (3.8)

where (Wτ (j))j∈Z
is a stationary Gaussian process taking values in R

ν and depending on parameter

τ ∈ (0, 1). Let fk,n ∈ L
2
0(X) (n ≥ 1, 1 ≤ k ≤ n) satisfy the same conditions as in part (ii), with

exception of (3.6). Then (3.6) and (3.7) hold, with

σ2 =

∫ 1

0

dτ
(∑

j∈Z

E
[
φτ (Wτ (0))φτ (Wτ (j))

])
. (3.9)

It can be observed that if part (i) and (ii) are natural extensions of Theorem 2 of Arcones (1994) the part

(iii) is new. It is particularly interesting when Yn(j) = Xj/n and (Xt)t is a vector valued continuous time

process.

Proof. (i) Using Arcones’ inequality (see Arcones, 1994, (2.44) or Soulier, 2001, (2.4)), one obtains

E
(
n−1/2

n∑

k=1

fk (Yn(k))
)2

=
1

n

n∑

k=1

‖fk‖2 +
1

n

∑′
Efk(Yn(k))fℓ(Yn(ℓ))

≤ max
1≤k≤n

‖fk‖2 + C
(
max

1≤k≤n
‖fk‖

)2
max

1≤k≤n

∑

1≤ℓ≤n,ℓ 6=k

max
1≤p,q≤ν

∣∣r(p,q)n (k, ℓ)
∣∣m,

where C is a positive real number not depending on n or fk. Now, using assumption (3.1), (i) is proved.

(ii) We use the following well-known fact. Let (Zn)n≥1 be a sequence of r.v.’s with zero mean and finite

variance. Then Zn
D−→

n→∞
N (0, σ2) if and only if for any ǫ > 0 one can find an integer n0(ǫ) ≥ 1 and a

sequence (Zn,ǫ)n≥1 satisfying Zn,ǫ
D−→

n→∞
N (0, σ2

ǫ ) and ∀n > n0(ǫ), E(Zn − Zn,ǫ)
2 < ǫ.

Let Zn := n−1/2
∑n

k=1 fk,n (Yn(k)). We shall construct an approximating sequence Zn,ǫ with the above

properties in two steps.

Firstly, by condition (3.5) and continuity of φτ , for a given ǫ > 0 one can find integers M,n0(ǫ) and a

partition 0 =: τ0 < τ1 < . . . < τM < τM+1 := 1 such that ∀ n > n0(ǫ),

max
0≤i≤M

max
k/n∈[τi,τi+1)

‖fk,n − φτi‖ = max
0≤i≤M

max
k/n∈[τi,τi+1)

(
E(fk,n(X)− φτi(X))2

)1/2
< ǫ. (3.10)

Put

Z̃n,ǫ := n−1/2
M∑

i=0

∑

k/n∈[τi,τi+1)

φτi (Yn(k)) .

Note for any τ ∈ [0, 1], the function ψτ has Hermite rank not less than m, being the limit of a sequence of

L
2
0(X)−valued functions of Hermite rank ≥ m. Therefore for the difference Zn − Z̃n,ǫ the inequality (3.4)

applies, yielding ∀ n > n0(ǫ)

E(Zn − Z̃n,ǫ)
2 ≤ C max

0≤i≤M
max

k/n∈[τi,τi+1)
‖fk,n − φτi‖2 ≤ Cǫ2 (3.11)

in view of (3.10), with a constant C independent of n, ǫ.

Secondly, we expand each φτi in Hermite polynomials:

φτi(x) =
∑

m≤|k|

Ji(k)

k!
Hk(x), (i = 0, 1, . . . ,M) (3.12)
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where

Ji(k) := Jφτi
(k) = Eφτi(X)Hk(X), |Ji(k)| ≤ ‖φτi‖(k!)1/2.

We can choose t(ǫ) ∈ N large enough so that

‖φτi − φτi,ǫ‖ ≤ ǫ, (i = 0, 1, . . . ,M), (3.13)

where φτi,ǫ is a finite sum of Hermite polynomials:

φτi,ǫ(x) :=
∑

m≤|k|≤t(ǫ)

Ji(k)

k!
Hk(x), (i = 0, 1, . . . ,M). (3.14)

Note t(ǫ) does not depend on i = 0, 1, . . . ,M , and ǫ > 0 is the same as in (3.10). Put

Zn,ǫ := n−1/2
M∑

i=0

∑

k/n∈[τi,τi+1)

φτi,ǫ (Yn(k)) . (3.15)

Applying (3.4) to the difference Z̃n,ǫ − Zn,ǫ and using (3.13) and (3.11), we obtain ∀ n > n0(ǫ),

E(Zn − Zn,ǫ)
2 ≤ Cǫ2 (3.16)

where the constant C is independent of n, ǫ. Let σ2
n,ǫ := EZ2

n,ǫ. From (3.16) and condition (3.6) it follows

that ∀n > n0(ǫ),

σ2 − Cǫ ≤ σ2
n,ǫ ≤ σ2 + Cǫ, (3.17)

with some C independent of n, ǫ. In particular, by choosing ǫ > 0 small enough, it follows that lim infn→∞ σ2
n,ǫ >

0. We shall prove below that for any fixed ǫ > 0,

Un :=
Zn,ǫ

σn,ǫ
=

1

σn,ǫn1/2

M∑

i=1

∑

k/n∈[τi,τi+1)

φτi,ǫ (Yn(k))
D−→

n→∞
N (0, 1). (3.18)

As noted in the beginning of the proof of the theorem, the CLT in (3.7) follows from (3.18), (3.16), (3.17).

Indeed, write

EeiaZn − e−a2σ2/2 =
(
EeiaZn − EeiaZn,ǫ

)
+
(
Eeiaσn,ǫUn − e−a2σ2

n,ǫ/2
)

+
(
e−a2σ2

n,ǫ/2 − e−a2σ2/2
)

:=

3∑

i=1

ℓi(n).

Here, for some constant C independent of n, a, ǫ,

|ℓ1(n)| ≤ E1/2
∣∣eia(Zn−Zn,ǫ) − 1

∣∣2 ≤ |a|E1/2|Zn − Zn,ǫ|2 ≤ C|a|ǫ,
|ℓ3(n)| ≤ Ca2

∣∣σ2
n,ǫ − σ2

∣∣ ≤ Ca2ǫ,

and therefore ℓi(n), i = 1, 3 can be made arbitrarily small by choosing ǫ > 0 small enough; see (3.16), (3.17).

On the other hand, the convergence in (3.18) implies uniform convergence of characteristic functions on

compact intervals and therefore sup|a|≤A |ℓ2(n)| ≤ sup|a|≤2A

∣∣∣EeiaUn − e−a2/2
∣∣∣ −→

n→∞
0 for any A > 0. This

proves (3.7).

It remains to prove (3.18). The proof of the corresponding CLTs for sums of Hermite polynomials in Ar-

cones (1994) and Breuer and Major (1983) refer to stationary processes and use Fourier methods. Therefore

we present an independent proof of (3.18) based on cumulants and the Hölder inequality in (2.12). Again,

our proof appears to be much simpler than computations in the above mentioned papers.
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Accordingly, it suffices to show that cumulants of order p ≥ 3 of Un asymptotically vanish. In view

of (3.17) and linearity of cumulants, this follows from the fact that for any p ≥ 3 and any multiindices

ku = (k
(1)
u , . . . , k

(ν)
u ) ∈ Z

ν
+, u = 1, . . . , p with ku = |ku| = k

(1)
u + . . .+ k

(ν)
u ≥ m (1 ≤ u ≤ p),

Σn :=

n∑

t1,...,tp=1

|cum(t1, . . . , tp)| = o(np/2), (3.19)

where cum(t1, . . . , tp) stands for joint cumulant:

cum(t1, . . . , tp) := cum
(
Hk1

(Yn(t1)), . . . , Hkp
(Yn(tp))

)
. (3.20)

Split Σn = Σ′
n(K) + Σ′′

n(K), where

Σ′
n(K) :=

n∑

t1,...,tp=1

|cum(t1, . . . , tp)| 1(|ti − tj | ≤ K ∀i 6= j)

and where K will be chosen large enough. Then for any fixed K, we have Σ′
n(K) = O(n) = o(np/2) as p ≥ 3.

The remaining sum Σ′′
n(K) does not exceed

∑
1≤i6=j≤p Σ

′′
n,i,j(K), where

Σ′′
n,i,j(K) :=

n∑

t1,...,tp=1

|cum(t1, . . . , tp)|1(|ti − tj | > K).

Therefore, relation (3.19) follows if we show that there exist δ(K) −→
K→∞

0 and ñ0 such that for any 1 ≤ i 6=
j ≤ p and any n > ñ0

lim sup
n→∞

Σ′′
n,i,j(K) < δ(K)np/2. (3.21)

The proof below is limited to (i, j) = (1, 2) as the general case is analogous. It is well-known that the joint

cumulant in (3.20), similarly to the joint moment in (2.4), can be expressed as a sum over all connected

diagrams γ ∈ Γc(T ) over the table T in (2.5). By introducing ρ̄(s, t) := max1≤p,q≤ν

∣∣∣r(p,q)n (s, t)
∣∣∣, we obtain

|cum(t1, . . . , tp)| ≤
∑

γ∈Γc(T )

∏

1≤u<v≤p

(ρ̄(tu, tv))
ℓuv , (3.22)

where we use the notation in (2.4). Therefore,

Σ′′
n,1,2(K) ≤

∑

γ∈Γc(T )

n∑

t1,...,tp=1

∏

1≤u<v≤p

(ρ̄(tu, tv))
ℓuv1(|t1 − t2| > K) :=

∑

γ∈Γc(T )

Īn,T (γ),

Next, by applying the Hölder inequality as in (2.12),

Īn,T (γ) ≤ min




∏

1≤u<v≤p

R̄uv,
∏

1≤u<v≤p

R̄vu


 . (3.23)

where (cf. (2.10))

R̄uv :=






(∑
1≤t≤n

(∑
1≤s≤n ρ̄

ku(s, t)
)kv/ku

)ℓuv/kv

, (u, v) 6= (1, 2), (2, 1),

(∑
1≤t≤n

(∑
1≤s≤n ρ̄

k1(s, t)1(|t− s| > K)
)k2/k1

)ℓ12/k2

, (u, v) = (1, 2),

(∑
1≤t≤n

(∑
1≤s≤n ρ̄

k2(t, s)1(|t− s| > K)
)k1/k2

)ℓ12/k1

, (u, v) = (2, 1).
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From assumptions (3.1), (3.2), there exists a constant C and δ(K) −→
K→∞

0 independent of n such that for

any k ≥ m and any n ≥ 1

sup
1≤t≤n

n∑

s=1

ρ̄k(s, t) ≤ Cn,

sup
1≤t≤n

n∑

s=1

ρ̄k(s, t)1(|t− s| > K) ≤ δ(K)n.

Therefore

R̄uv ≤





Cnℓuv/kv , (u, v) 6= (1, 2), (2, 1),

δ̃(K)nℓ12/k2 , (u, v) = (1, 2),

δ̃(K)nℓ12/k1 , (u, v) = (2, 1),

with some δ̃(K) −→
K→∞

0 independent of n. Consequently, the minimum on the right-hand side of (3.23)

does not exceed

Cδ̃(K)min
(
n
∑

1≤u<v≤p
ℓuv/kv , n

∑
1≤u<v≤p

ℓuv/ku

)
= Cδ̃(K)nmin(L(T ),L∗(T ))

where the quantities L(T ), L∗(T ) introduced in (2.13) satisfy L(T ) + L∗(T ) = p, see (2.14), and therefore

min(L(T ), L∗(T )) ≤ p/2. This proves (3.21) and the CLT in (3.18), thereby completing the proof of part

(ii).

(iii) Let us first prove (3.6) with σ2 given in (3.9) in the case when fk,n ≡ f do not depend on k, n (in such

case, one has φτ ≡ f , too). We have

σ2
n = n−1

n∑

k,k′=1

Ef (Yn(k)) f (Yn(k
′)) =

∫ 1

0

Fn(τ)dτ, (3.24)

where

Fn(τ) :=

n−[nτ ]∑

j=1−[nτ ]

Ef (Yn([nτ ])) f (Yn([nτ ] + j)) . (3.25)

Condition (3.8) implies that

Ef (Yn([nτ ])) f (Yn([nτ ] + j)) → Ef (Wτ (0)) f (Wτ (j))

for each j ∈ Z as n→ ∞. From (3.3) and with the inequality of previous part (i), it exists C > 0 such that

|Ef (Yn([nτ ])) f (Yn([nτ ] + j))
∣∣∣ ≤ C|ρ(j)|m, (3.26)

and
∑

j∈Z
|ρ(j)|m <∞. Hence, from Lebesgue Theorem,

Fn(τ) =
∑

j∈Z

1j∈{1−[nτ ],···,n−[nτ ]}Ef (Yn([nτ ])) f (Yn([nτ ] + j)) −→
n→∞

∑

j∈Z

Ef (Wτ (0)) f (Wτ (j)) .

The dominated convergence theorem allows also to pass the limit under the integral, thereby proving (3.6)

with σ2 given in (3.9) in the case fk,n ≡ f .

To end the proof, consider the general case of fk,n as in (iii). Let Zn,ǫ be defined as in (3.15). Note relation

(3.16) holds as its proof does not use (3.6). In part (ii), we used (3.6) to prove (3.17). Now we want to prove

(3.17) using (3.8) instead of (3.6). This will suffice for the proof of (iii), as the remaining argument is the

same as in part (ii).

Consider the variance σ2
n,ǫ = EZ2

n,ǫ of Zn,ǫ defined in (3.15):

σ2
n,ǫ = n−1




∑

0≤i≤M

ED2
i + 2

∑

0≤i<j≤M

EDiDj



 ,
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where

Di :=
∑

k/n∈[τi,τi+1)

φτi,ǫ (Yn(k)) .

Let us show that for ǫ,M fixed, and as n→ ∞,

EDiDj = o(n) (i 6= j), (3.27)

n−1ED2
i −→

n→∞

∫ τi+1

τi

∑

j∈Z

Eφτi,ǫ (Wτ (0))φτi,ǫ (Wτ (j)) dτ. (3.28)

Here, (3.28) follows from the argument in the beginning of the proof of (iii), as φτi,ǫ does not depend on

k, n. Relation (3.27) is implied by the following computations. Using the Hermitian rank of functions φτi,ǫ,

for i < j one obtains

∣∣Eφτi,ǫ (Yn([nτi] + k))φτj ,ǫ (Yn([nτj ] + ℓ))
∣∣ ≤ C‖φτi,ǫ‖ · ‖φτj ,ǫ‖ max

1≤p,q≤ν

∣∣∣r(p,q)n ([nτi] + k, [nτj] + ℓ)
∣∣∣
m

≤ C‖φτi,ǫ‖ · ‖φτj ,ǫ‖
∣∣ρ([nτj ]− [nτi] + ℓ− k)

∣∣m.

Therefore, for i < j, and ε small enough,

∣∣EDiDj

∣∣ ≤ C max
τ∈[0,1]

‖φτ‖2
[τi+1n]−[τin]∑

k=0

[τj+1n]−[τjn]∑

ℓ=0

∣∣ρ([nτj ]− [nτi] + ℓ− k)
∣∣m

≤ C max
τ∈[0,1]

‖φτ‖2
n∑

k=1

k
∣∣ρ(k)

∣∣m = o(n)

since
∑n

k=1 k
∣∣ρ(k)

∣∣m ≤ √
n
∑

1≤k≤√
n

∣∣ρ(k)
∣∣m + n

∑
k>

√
n

∣∣ρ(k)
∣∣m = o(n). Thus, (3.27) is proved. From

(3.27), (3.28) it follows that for any ǫ > 0

lim
n→∞

σ2
n,ǫ = σ̄2

ǫ :=
M∑

i=0

∫ τi+1

τi

∑

j∈Z

Eφτi,ǫ (Wτ (0))φτi,ǫ (Wτ (j)) dτ.

Consider the difference σ̄2
ǫ − σ2 =

∑M
i=0

∫ τi+1

τi

∑
j∈Z

ΘM,ǫ(τ, j)dτ, where

|ΘM,ǫ(τ, j)| = |Eφτi,ǫ(Wτ (0))φτi,ǫ(Wτ (j)) − Eφτ (Wτ (0))φτ (Wτ (j))|
≤ |E (φτi,ǫ(Wτ (0))− φτ (Wτ (0)))φτi,ǫ(Wτ (j))| + |E (φτi,ǫ (Wτ (j))− φτ (Wτ (j)))φτ (Wτ (0))|
≤ ‖φτi,ǫ − φτ‖ (‖φτi,ǫ‖+ ‖φτ‖) . (3.29)

Using uniform continuity of φτ , τ ∈ [0, 1] (in the sense of L2−norm continuity), we obtain that the right-hand

side of (3.29) can be made arbitrarily small by choosing M (= the number of partition intervals of [0, 1])

and t(ǫ) (= the truncation level of Hermite expansion) sufficiently large, uniformly in τ ∈ [0, 1] and j ∈ Z.

On the other hand, |ΘM,ǫ(τ, j)| ≤ C supτ∈[0,1] ‖φτ‖2|ρ(j)|m by Arcones’ inequality, c.f. (3.26). Therefore

|ΘM,ǫ(τ, j)| is dominated by a summable function uniformly in M, ǫ. Now, (3.17) follows by an application

of Lebesgue theorem. This proves part (iii) and Theorem 1 too. �

4 Applications of Theorem 1

4.1 Limit theorems for the IR statistic of Gaussian processes

This application was developed in Bardet and Surgailis (2011). Let (Xt)t∈R be a Gaussian process admitting

a tangent process (which is a self-similar process with parameter H(t)) and consider the Increment Ratio

(IR) statistic

R2,n(X) :=
1

n− 2

n−3∑

k=0

∣∣∆2,n
k X +∆2,n

k+1X
∣∣

|∆2,n
k X |+ |∆2,n

k+1X |
,
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with ∆2,n
k X = X(k+2)/n − 2X(k+1)/n +Xk/n and the convention 0

0 := 1. Then,

R2,n(X)− ER2,n(X) =
1

n− 2

n−3∑

k=0

η̃n(k),

where η̃n(k) := ηn(k)− Eηn(k) and ηn(k) := ψ(∆2,n
k X,∆2,n

k+1X), ψ(x, y) = |x + y|/(|x| + |y|) are nonlinear

functions of Gaussian vectors (∆2,n
k X,∆2,n

k+1X) ∈ R
2 having the Hermite rank 2. Write ηn(k) as a (bounded)

function in standardized Gaussian variables:

ηn(k) = fk,n (Yn(k)) ,

where Yn(k) = (Y
(1)
n (k), Y

(2)
n (k)) ∈ R

2,

Y (1)
n (k) :=

∆2,n
k X

σ2,n(k)
,

Y (2)
n (k) := −∆2,n

k X

σ2,n(k)

ρ2,n(k)√
1− ρ22,n(k)

+
∆2,n

k+1X

σ2,n(k + 1)

1√
1− ρ22,n(k)

,

and fk,n
(
x(1), x(2)

)
:= ψ

(
x(1),

σ2,n(k + 1)

σ2,n(k)

(
ρ2,n(k)x

(1) +
√
1− ρ22,n(k)x

(2)
))

,

where σ2
2,n(k), ρ2,n(k) are defined by

σ2
2,n(k) := E

[(
∆2,n

k X
)2 ]

, ρ2,n(k) :=
E
[
∆2,n

k X ∆2,n
k+1X

]

σ2,n(k)σ2,n(k + 1)
.

Thus, the asymptotic behavior of 1
n−2

∑n−3
k=0 fk,n (Yn(k)) provides the one of R2,n(X). Then, if X satisfies

additional conditions (especially on its convergence to its tangent process and the asymptotic behavior of the

covariances of ∆2,n
j X and ∆2,n

k X), fk,n −→
n→∞

f where these functions have Hermite rank 2 and Theorem

1 can be applied to establish that
√
n
(
R2,n(X) −

∫ 1

0
Λ(H(t)) dt

) D−→
n→∞

N (0, σ2) with explicit function Λ

and σ2. Moreover another application of Lemma 1 provides the almost sure consistency of R2,n(X), i.e.

R2,n(X)
a.s.−→

n→∞

∫ 1

0
Λ(H(t)) dt.

Such results can be applied to fractional Brownian motions but as well to multifractional Brownian motions

(without stationary properties). More details can be seen in Bardet and Surgailis (2011).

4.2 A central limit theorem for functions of locally stationary Gaussian pro-

cesses

Using an adaptation of Dahlhaus and Polonik (2006, 2009), we will say that (Xt,n)1≤t≤n, n∈N∗ is a locally

stationary Gaussian process if

Xt,n :=
∑

j∈Z

at,n(j) εt−j , for all 1 ≤ t ≤ n, n ∈ N
∗,

where (εk)k∈Z is a sequence of independent standardized Gaussian variables and for 1 ≤ t ≤ n, n ∈ N∗ the

sequences (at,n(j))j∈Z are such that there exist K ≥ 0 and κ > 0 satisfying for all n ∈ N
∗ and j ∈ Z,

max
1≤t≤n

|at,n(j)| ≤
K

uj
, with uj = max(1, |j|α−1) for j ∈ Z (4.1)

with α < 1/2 and such that there exist functions u ∈ (0, 1] 7→ a(u, j) ∈ R satisfying:

sup
u∈(0,1]

|a(u, j)| ≤ K

uj
(4.2)
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max
1≤t≤n

∣∣a(t/n, j)− at,n(j)
∣∣ ≤ K

n

1

uj
(4.3)

sup
(u,v)∈[0,1]2

∣∣∣
a(u, j)− a(v, j)

u− v

∣∣∣ ≤ K

uj
(4.4)

Remark 1 In Dahlhaus and Polonik (2006, 2009), only the short-memory case was considered and for

any 1 ≤ t ≤ n, the sequence (at,n(j))j∈Z ∈ ℓ1. Here Condition (4.1) allows the long-memory case and

(at,n(j))j∈Z ∈ ℓ2 is only required. It was also such the case in Roueff and Von Sachs (2010) where similar

conditions than (4.1) and (4.2) are provided in terms of spectral density. However the property of local

stationarity is more general in Dahlhaus and Polonik (2006, 2009) because the parameter curves are allowed

to have jumps and Conditions (4.3) and (4.4) are replaced by

sup
0 ≤ x0 < . . . < xm ≤ 1

m ∈ N
∗

m∑

k=1

|a(xk, j)− a(xk−1, j)| ≤
K

uj
and sup

j∈Z

n∑

t=1

|at,n(j)− a(
t

n
, j)| ≤ K.

Let ft,n ∈ L
2
0(Z) (n ≥ 1, 1 ≤ t ≤ n), with Z a standardized Gaussian vector R

d-valued, be a triangular

array of functions all having Hermite rank at least m ∈ N
∗. Assume that there exists a L

2
0(X)−valued

continuous function fτ , τ ∈ [0, 1], such that supτ∈[0,1] ‖f[τn],n− fτ‖2 −→
n→∞

0. Let 0 ≤ i1 < · · · < id ∈ N
d and

Xt,n :=
(
Xt+i1,n, · · · , Xt+id,n) for t = 1, · · · , n− id and n > id. If m > (1 − 2α)−1 then,

1√
n

n−id∑

t=1

ft,n(Xt,n)
D−→

n→∞
N
(
0 , σ2

)
(4.5)

with

σ2 =

∫ 1

0

dτ
(∑

j∈Z

E
[
fτ
(∑

k∈Z

a(τ, k)ε−k

)
fτ
(∑

k∈Z

a(τ, k)εj−k

)])
. (4.6)

Proof. Let Σt,n = Cov
(
Xt,n

)
=

(
E
[
Xt+ip,n ·Xt+iq,n

])
1≤p,q≤d

. Then for τ ∈ [0, 1],

(
E
[
X[nτ ]+ip,n ·X[nτ ]+iq,n

])
1≤p,q≤d

=
(∑

k∈Z

a[nτ ]+ip,n(iq − ip + k)a[nτ ]+iq,n(k)
)
1≤p,q≤d

−→
n→∞

(∑

k∈Z

a(τ, iq − ip + k)a(τ, k)
)
1≤p,q≤d

=: Στ , (4.7)

using Lebesgue Theorem and assumptions on sequences (at,n(j)). Now for x ∈ R
d, define ht,n(x) :=

ft,n
(
(Σt,n)

1/2
x
)
. From assumptions on (ft,n) and (4.7),

sup
τ∈[0,1]

‖h[τn],n − hτ‖2 −→
n→∞

0, with hτ (x) = fτ (Στ x).

Thus we are going to apply Theorem 1 part (iii) (using also its notation) to the array of functions (ht,n(x))

and Y n(k) = (Σt,n)
−1/2

Xt,n. Obvious computations show that withWτ (j) = Σ
−1/2
τ

(∑
k∈Z

a(τ, k)εj+ip−k

)
1≤p≤d

one obtains the required relation
(
Y n([nτ ] + j)

)
−J≤j≤J

D−→
n→∞

(Wτ (j))−J≤j≤J . Then the expression (4.6)

of the asymptotic variance can be deduced.

It still needs to check the condition (3.3) of Theorem 1. Using (4.7), for all 1 ≤ p, q ≤ d, n large enough and

1 ≤ j, k ≤ n− id,

r(p,q)n (j, k) = E
[
Xj+ip,n ·Xk+iq ,n

]

=
∑

ℓ∈Z

aj+ip,n(iq − ip + ℓ+ k − j)ak+iq ,n(ℓ)
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=⇒
∣∣r(p,q)n (j, k)

∣∣ ≤ 2
∑

ℓ∈Z

∣∣a(j + ip
n

, iq − ip + k − j + ℓ)a(
j + iq
n

, ℓ)
∣∣

≤ 2
∑

ℓ∈Z

sup
τ∈(0,1]

|a(τ, iq − ip + k − j + ℓ)| sup
τ∈(0,1]

|a(τ, ℓ)|

≤ ρ(k − j),

with ρ(k− j) = 2 max
−id≤s≤id

{∑

ℓ∈Z

sup
τ∈(0,1]

|a(τ, k− j+ ℓ)| sup
τ∈(0,1]

|a(τ, s+ ℓ)|
}
. But Condition (4.2) implies, with

k > 0 such that k − id > 0:

|ρ(k)| ≤ 2K2 max
−id≤s≤id

{∑

ℓ∈Z

1

uℓ uℓ+k−s

}
≤





K2C(α) k2α−1 if 0 < α < 1/2

4K2 log(k) k2α−1 if α = 0

K2C(α) kα−1 if α < 0

Therefore, from the condition m(1− 2α) > 1, one deduces
∑

k∈Z
|ρ(k)|m <∞ and the central limit theorem

(4.5) holds. �

Note that the condition m(1 − 2α) > 1 was already obtained in case of stationary Gaussian long memory

process in Taqqu (1975). The central limit theorem (4.5) can typically be applied to provide the asymptotic

behavior of variance, covariance,..., of locally stationary long memory processes.
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