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Abstract
A general moment bound for a product of Gaussian vector’s functions extending the moment bound
in Taqqu (1977, Lemma 4.5) is established. A very general central limit theorem for triangular arrays of
nonlinear functionals of multidimensional Gaussian sequences generalizing the results of Arcones (1994)

is deduced. The stationarity of the Gaussian vector sequences is not required.
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Hermitian decomposition; Diagram formula; Long memory processes.

1 Introduction and the main results

This paper is devoted to the statement of two new results concerning functions of Gaussian vectors. The
first one (see Lemma EI, Section E) consists in a moment bound for products of such functions of Gaussian
vectors in a general frame. It is an extension of an important lemma by Taqqu (1977, Lemma 4.5). Its proof
uses the Hermitian decompositions of functions and the diagram formula. Note that in Soulier (2001) a sim-
ilar moment bound is also proved using an elegant technique which does not make use of diagram formula.
However its assumptions are more interesting when the components of the vectors are not independent than
when the family of vectors are not independent. Such result is very interesting for proving limit theorem,

such as strong law of large numbers (see for instance Bardet and Surgailis, 2011).

Another application of Lemma [I| is studied here with the statement of a central limit theorem (CLT) for
triangular arrays of Gaussian vector’s functions, call Theorem [l| in the sequel. Roughly speaking, this new
CLT is a generalization of the CLT of Arcones (1994, Theorem 2) to non-stationary triangular arrays of
subordinated Gaussian vectors. Such a result is motivated by the numerous statistical applications of tri-
angular arrays. For instance, let us note statistics for time series and essentially based on triangular arrays
like estimators of regression parameters, kernel density estimators or statistics applied to a discretization
of a continuous process (for example (X5, , Xas,,- -+, Xns, )). Two examples of applications (a central limit
theorem for the Increment Ratio statistic of a Gaussian process admitting a tangent process and a central

limit theorem for functions of locally stationary Gaussian process) are studied in Section E



From the famous Lindeberg Theorem for independent random variables, there exists numerous paper de-
voted to CLT for triangular arrays. Proofs of such results are not only straightforward applications of CLT's
for sequences of random variables. Following the different assumptions on the dependence, we may cite as
reference the book of Jacod and Shiryaev (1987) for martingale differences and the paper of Rio (1995) for
strongly mixing sequences. From our knowledge, the more recent and important papers devoted to this
topic are those of Coulon-Prieur and Doukhan (2000) with a weak dependence condition and Dedecker and
Merlevede (2002) with a necessary and sufficient condition on stable convergence of the normalized partial
sums. The case of linear triangular arrays (i.e. sequence (a;n€;)1<i<n, neny Was treated in details in Peligrad
and Utev (1997) for several form of dependence conditions on (;);. Note that all these results are obtained

under a stationarity condition.

Here, we will consider non linear functional of Gaussian vectors. Numerous articles were already devoted
to establish CLT or non-CLT in such a frame: we may cite the seminal papers of Taqqu (1975), Dobrushin
and Major (1979), Taqqu (1979), Breuer and major (1983) and Giraitis and Surgailis (1985). Extensions
were also obtained by Chambers and Slud (1989), Sanchez de Naranjo (1993) and recently in Nourdin et al.
(2010). However here even if the case of long memory sequences is studied, we will not consider the case of
non-CLT and therefore we can cite Arcones (1994) and Soulier (2001) as more recent and closest references
(the paper of Arcones is written for unidimensional sequences but can be easily extended to multidimensional
sequences).

Differences between our results and Arcones (1994) and Soulier (2001) articles are the following. Firstly and
contrarily to Arcones’ paper, we will not assume the stationarity property which is however a particular case.
In Soulier the nonstationarity is essential since under a stationarity assumption its Theorem 3.1. requires
that the sequence (X ) of random vectors are independent when n — co. Secondly, instead of their proofs
based on the convergence of moments, we will prove the CLT (see Theorem El below) from the asymptotic
behavior of cumulants. Such a proof already used in Giraitis and Surgailis (1985) is quite shorter since it only
requires to show that the cumulants of order greater or equal to 3 converge to 0. Finally we will consider
triangular arrays of the form (fk,n(Yn(k)))lngm neN
standardized Gaussian vectors, which notably extends the results of Arcones (devoted to (f(X;));jen) and
Soulier (devoted to (Bn,kf(Yn(k)))lngW neny With D50 82 = 1). Using the moment bound obtained in
Lemma , we will show that the assumptions of Theorem [If will essentially concern the Hermite rank of the

where (Y5, (k))i<p<nneny Pe a triangular array of

functions (fx,,) and the asymptotic behavior of the covariances of the triangular array of Gaussian vectors
(as in Arcones, 1994).

The CLT for triangular arrays (Theorem EI) and its proof are provided in Section E and both the applications

are given in Section f|. The following section Section | is devoted to the essential moment bound inequality.

2 A moment bound

Let X = (XM ..., X®) € R” be a standardized Gaussian vector, with zero mean EX () = 0 and co-
variances EX(WX®) = §, (u,v = 1,...,v). Let L?(X) denote the class of all measurable functions
G = Gx),z = (zW,...,2) € R” such that |G||?> := EG*(X) < oco. For any multiindex k =
kW, kW) ez = {([W,..., i) ez, i >0 (1 <u<v)}, let Hy(x) = Hyo (2W) -+ Hyo) (20))
be the (product) Hermite polynomial; Hy(z) := (—1)ke” /2(e=*"/2)(®) | = 0,1,... are standard Hermite
polynomials. Write |k| := k1) + ...+ k), k!l := kW1 k01 (k = (W, ... k™) € Z). A function
G € L*(X) is said to have a Hermite rank m > 0 if Jg(k) := EG(X)H(X) = 0 for any k € ZY, |k| < m,
and Jg(k) # 0 for some k, |k| = m. It is well-known that any G € L?(X) having a Hermite rank m > 0



admits the Hermite expansion

@) = Y T @),
|k|>m

which converges in L?(X). Let (X1,...,Xx) be a collection of standardized Gaussian vectors X; =

(xM,...,x")) € R” having a joint Gaussian distribution in R*~. Let ¢ € [0,1] be a fixed number.
Following Taqqu (1977), we call (X1,...,Xn) e—standard if |EXt(u)XS(U)| <eforany t #s,1<ts<N
and any 1 < wu,v < v.

Lemma EI below is an extension of an important lemma by Taqqu (1977, Lemma 4.5), to the case of a

vector-valued Gaussian family (X1, ..., Xx), taking values in R”(v > 1). The lemma concerns a bound for
SYE|IG1L, N( X)) - Gp.i, N(X¢,)|, where G1¢ N, ...,Gp s N are square integrable functions among which
the first 0 < a < p functions G ¢ n,...,Gasn for any 1 <t < N have a Hermite rank at least equal to

m > 1 and where Y" is the sum over all different indices 1 < t; < N (1 < i < p),t; # t;(i # 7). In the
case when G, v = G; does not depend on ¢, N, the bound of Lemma [l| coincides with that of Taqqu (1977,
Lemma 4.5) provided ma is even, but is worse than Tagqu’s bound in the more delicate case when ma is
odd. An advantage of our proof is its relative simplicity (we do not use the graph-theoretical argument as
in Taqqu, 1977, but rather a simple Holder inequality). A different approach towards moment inequalities
for functions in vector-valued Gaussian variables is discussed in Soulier (2001) but is especially interesting

when the component of vectors are not independent.

Lemma 1 Let (X1,...,Xn) be e—standard Gaussian vector, X; = (Xt(l), e ,Xt(u)) eRY (v>1), and let
Gien €L3(X),1<j<p(p>2),1<t<N be some functions. For given integers m > 1,0 < a <p,N >
1, define

. (u) v (v) |m
Qn = max. >  dnax [EX X (0)|m, (2.1)
1<s<N,s#t
Assume that the functions Gi¢n,...,Garn have a Hermite rank at least equal to m for any N > 1,1 <
t < N, and that
1
. 2.2
e < 1 (2.2)

Then

/ a <3
Z E|G17t11N(Xt1)'"GpatpaN(ti” < C(E,p,m,a,u)KNp_fQﬁ[,

where the constant C(g,p, m, o, v) depends on g,p,m, «, v only, and

p
=TT ma, 160} 23)

Proof. Fix a collection (t1,...,t,) of disjoint indices t; # t;(i # j), and write G; = G, v, 1 < j < p for
brevity. Let J;(k) := Jg, (k) = EG;(X)Hp(X) be the coefficients of the Hermite expansion of G;. Then,

|75 (K]

IN

1G5l HEWH%

IN

1G] H(k(i)!)l/2 =[Gl (kD)2

=1



Following Taqqu (1977, p. 213, bottom, p. 214, top), we obtain

o P
Ji(k;
[BGL(X0) - Gp(Xe, )] = Z Z H ]k(;-lj) EHk;l(th)"'Hkp(ti)
9=0 Ky |+..+ |k, =2 L7=1 7
o) |EHk1(Xt1)Hk; (ti)|
: Klz Z (kyl- k)72
0=0 Ky |+..+ K, =2¢ P
< x i Z s(|k1\+...+|kp|)/2EngugyHlSjSka§u)(X)
B ' 1/2
q:0|k1|+...+|kp‘:2q (kll kp') /
< Klz Z (e(vp — 1)) WRsltHELD/2 < o

=01k, |+..+k,|=2¢

where X ~ N(0,1) and
Ky =G nl - [|Gp,

where K is defined in (2.J) and K is independent of ¢1,...,t,, and where we used the assumption (£.2) to

get the convergence of the last series. Therefore,

tp,

, > [EHp (X4,) - Hy (X4,
SETIPRERRICNE ST SR S o
q:

[k1|+ ...+ |kpl = 2q
kil =2 m,..., lka| = m

Now, the following bound remains to be proved: for any integers m > 1,0 < a < p, N > 1 and any
multiindices ki, ...k, € Z4 satisfying |ki| + ... + [kp| = 2q, |k1| > m, ..., |ka| > m,

/ o« o
S EH, (X0) - Hy (X0,)] < Cilelop — 1)t Bab 2o )V2NP-5Q5, (2.4)

where (' is some constant depending only on p, v, o, €, and independent of k1, ..., k,, N.

First, we write the expectation on the left hand side of (E) as a sum of contributions of diagrams. Let

(1,1) (1,2) ... (1,k1)
T (2,1) (2,2) ... (1,ke2) 2.5)

(1) (p2) o (pky)
be a table having p rows 7i,...,7, of respective lengths |7,| = k, = |ky| = Y 4+ kY (we write
T =U_, 7u). A subtable of T is a table T" = {J oy Tu, U C {1, ..., p} consisting of some rows of T' written

from top to bottom in the same order as rows in T'; clearly any subtable T’ of T' can be identified with a
(nonempty) subset U C {1,...,p}. A diagram is a partition v of the table T' by pairs (called edges of the
diagram) such that no pair belongs to the same row. A diagram + is called connected if the table T' cannot
be written as a union T'= T U T" of two disjoint subtables T”,T" so that T” and T" are partitioned by
separately. Write I'(T"),T'.(T') for the class of all diagrams and the class of all connected diagrams over the
table T', respectively. Let

— (u) 3 (v)
p(t,s): 1£i§V|EXt X7 (t # s).

Note 0 < p(t,s) < € and QN = maxi<i<n E1§55N,s;ﬁt p™(t,s). By the diagram formula for moments of

Hermite (Wick) polynomials (see e.g. Surgailis, 2000),

[EHy (X0)-Hg (X))l < Y I (oltut)) (2.6)

yeI(T) 1<u<v<p

h
= > II X II wt)=, (2.7)

(Uy,...,Up) r=1~v€l(U,) u,v€Ur,u<v



where ¢, is the number of edges between rows 7, and 7, in the diagram ~ over table T, and the sum
Z(Ul vvvvv v, is taken over all partitions (Uy,...,Up),h=1,2,...,[p/2] of {1,...,p} by nonempty subsets U,
of cardinality |U,| > 2. (Thus, (.7) follows from (R.6) by decomposing v € I'(T) into connected components
v € Te(Up),r =1,...,h;h = 1,...,[p/2]; the restriction |U,| > 2 stems from the fact that any edge must

necessarily connect different rows.) From (R.7) we obtain

h
SEGX) - GE < Y T S Ive ), (2.8)

(Ur.-...Un) =1 €T (U,)

where, for any subtable U C T having at least two rows and for any connected diagram v € T'.(U), the

Ivo() =" TI (ot to))

u,vel,u<v

quantity Iy, () is defined by

where (recall) the product is taken over all ordered pairs of rows (7,,7,),u < v of the table U, and ¢, is
the number of edges in v between the uth and the vth rows. Below we prove the bound

a(U)

Inu(y) < 7 (NQN) ™, (2.9)

where |ky| := >, .y ku is the number of points of table U and a(U) := [{1,...,a} U| = #{u c U : |k,| >
m} is the number of rows in U having at least m points. Clearly, it suffices to show (@) forU="T.
Next, let for 1 < u,v < p,u # v, denote

. ko ko \ Cuo/Fo
Ruy = (Z1gt§N (Z1gsgN,s¢tpu(S’t)) ) ' (2.10)

Let A:={1,...,a}, A :={1,....p\A = {a+1,...,p}. It follows immediately by definition of R,, and
p(s,t) that

by | tun m
R < N & leu E(l_E)€”U7 ifue A, (2 11)
uv - [uU uUv .
N gluv, if u € A

By the Holder inequality (see Giraitis and Surgailis, 1985, p.202, for details),

Ine(y) < min| J[ Ru, [ Reul- (2.12)

1<u<v<p 1<u<v<p
For any subset U C {1,...,p}, let

=2 > i— U => > %—: (2.13)

uelU u<v<p uwelU 1<v<u

L:=L(T),L* := L*(T). Clearly,

. 1
wetU ¥ v=1,...,p,v£u

is the number of points in U. From (R.11) - (.12),

Inz(y) < min (NL*+L(AC)Qi(A)€|T|/27mL(A)’NLJrL*(AC)QZ‘(A)€|T|/2me*(A)) ’

where [T] =3P k;. As 0 < L(A),L*(A) < p, see (.14), we obtain

u=1

Ing(y) < s‘T‘/Q*’”Pmin(NL*<A>+L*<A“‘>+L<A“‘>Qg@“>, NL<A>+L<AC>+L*<AC>Q§<A>)
E\T\/Qfmprfamin (NL QL(A) NL )Qi*(A))

- (lTl/2=mp prp— a(NQN)% ((N/Q )——L(A) (N/QN)L(A)_%)
el TI/2=mp Np=a(NQN) %

M\D

IN



proving (R.9).
With (.9)-(E-9) in mind,

> IBH, (X0) -+ Hyy (X0, < Caﬂﬂ E: H T -

..... Up) r=1~el. (U)
- cermvigl I Y
(U1,..., Up) r=1~el.(U,)
= CuelTI2NPT=3QR N 1,

~€EL(T)

CV(UT)

where the last sum (= the number of all diagrams over the table T') does not exceed
|EHk§1>(X) - Hyw (X)-- 'Hk;”(X) - Hyo (X)| < (pv — 1)(\k1|+...+\kp\)/2(kly k)2,

see Taqqu (1977, Lemma 3.1). This proves the bound (2.4) and the lemma, too. O

3 A central limit for triangular arrays of functions Gaussian’s vec-

tors and its proof

Let (Yn(k))1<p<nnen Pe a triangular array of standardized Gaussian vectors with values in R”, Y, (k) =
WP k), k), BY, P (k) =0, BV, (k)Y (k) = 6,,. Now define,

rP9 (4, k) == BY, P (j)Y,D(k) (1 <jk<n).

For a given integer m > 1, introduce the following assumptions: for any 1 < p,q < v,

(P9 (5 )|
sup max D [rPO (k)| < oo, (3.1)
1<j<n
1 m
il (P9 (5 Lk ‘ 92
1<jk<n
13— k| > K
V0K € (L Gw)| < lpG=B) with 3 lp()" < oc. (33)
JEL

Note B3) = (B.1) and B3 = B3

Theorem 1 Let (Yn(k))1§k§n,neN be a triangular array of standardized Gaussian vectors.

(i) Assume @) Let fr € L3(X) (1 < k < n) have Hermite rank at least m € N* with L3(X) = {f €
L2(X) : Ef(X) = 0}. Then there exists a constant C independent of n and fr,1 < k <n such that

1<k<n

B3 () ) < € e 11 54

(i) Assume (B1) and (B-A). Let frn € L3(X) (n > 1,1 < k < n) be a triangular array of functions all
having Hermite rank at least m € N*. Assume that there exists a IL3(X )—valued continuous function
or, 7 € [0,1], such that

sup || frrng,n — é.-]|> = sup E(firn)n(X) — #-(X))?> — 0. (3.5)
T€[0,1] T€[0,1] n—00
Moreover, let
n 2
—E(n—l/Qka,n (Yn(k:))) — o2 (3.6)



where 62 > 0. Then .
nTV23 o (Ya(k)) — N(0,07). (3.7)
k=1

n—oo

(111) Assume (@) Moreover, assume that for any T € [0,1] and any J € N*,

Yl +3) yejes — (We()_yejey (3.8)

n—o0

where (W (j))jGZ is a stationary Gaussian process taking values in RY and depending on parameter
7€ (0,1). Let frn € L3(X) (n > 1,1 < k < n) satisfy the same conditions as in part (ii), with

exception of ([5.4). Then (5-4) and (B-1) hold, with
7 = [ ar( Bl W0 o (W) (39)

JEZ

It can be observed that if part (i) and (ii) are natural extensions of Theorem 2 of Arcones (1994) the part

(iii) is new. It is particularly interesting when Y, (j) = X/, and (X); is a vector valued continuous time

i/n
process.

Proof. (i) Using Arcones’ inequality (see Arcones, 1994, (2.44) or Soulier, 2001, (2.4)), one obtains

E(nl/Qéfk(Yn(kz)))Q - %;|fk||2+%Z/Efk(Yn(k))fe(Yn(€))

< 2 2 Z (p,a) m
< I+ O Cmae 1) e, a9 (k. 0)]",
1<0<n, b#k

where C' is a positive real number not depending on n or f;. Now, using assumption ()7 (i) is proved.

(ii) We use the following well-known fact. Let (Z,),>1 be a sequence of r.v.’s with zero mean and finite

variance. Then Z, —2» N(0,0?%) if and only if for any € > 0 one can find an integer ng(e) > 1 and a
n—oo

sequence (Zp ¢)n>1 satisfying Z,, 2, N(0,02%) and Vn > ng(e), E(Z, — Zn.)* < e.

n— oo

Let Z, :==n"Y230_| fin (Yn(k)). We shall construct an approximating sequence Z, . with the above
properties in two steps.

Firstly, by condition (B.5) and continuity of ¢,, for a given € > 0 one can find integers M,ng(e) and a
partition 0 =: 79 < 71 < ... < Tar < Tpr41 := 1 such that V n > ng(e),

. o . 2 1/2
oI, e | frn — b7 = Dex Dax (E(fen(X) — ¢r,(X))?) " < e (3.10)

Put
M
Zne=n"2Y" N g (Ya(k)).
1=0 k/n€lri,mi41)
Note for any 7 € [0, 1], the function ¢, has Hermite rank not less than m, being the limit of a sequence of
L3(X)—valued functions of Hermite rank > m. Therefore for the difference Z, — Zni the inequality (B.4)
applies, yielding V n > ng(e)

E(Z, — Z, )% < C n—br||2 < Ce? 3.11
( o) < Og%k/ngﬁ;mllm ¢ |I* < Ce (3.11)

in view of (B.10)), with a constant C' independent of n, €.

Secondly, we expand each ¢, in Hermite polynomials:

br(@) = Y Ji(k)Hk(a:), (i=0,1,...,M) (3.12)

m<|k|




where
Ji(k) := Jy, (k) = Eor,(X)Hg(X),  |Ji(K)| < [l¢, ]| (R)'/2.

We can choose t(¢) € N large enough so that

o7 — &riell <o (i=0,1,..., M), (3.13)
where ¢, . is a finite sum of Hermite polynomials:
Ji(k) ;
Groc(@) = Y o Hg@),  (i=0.1,....M). (3.14)
m<|k|<t(e)

Note t(¢) does not depend on i = 0,1,..., M, and € > 0 is the same as in (8.1(). Put

Zne =m0 N g (Ya(R)). (3.15)

1=0 k/nE[Ti,Ti+1)

Applying (B.4) to the difference Zn.c — Zn.c and using (B.13) and (B.11)), we obtain V n > ng(e),
E(Z, — Zn)? < O (3.16)

where the constant C' is independent of n,e. Let o2, := EZ2 . From (B.14) and condition (B.6) it follows
that ¥n > ng(e),
0 —Ce < ol < 0°+Ce, (3.17)

with some C' independent of n, €. In particular, by choosing € > 0 small enough, it follows that lim inf,,_, 0,2176 >
0. We shall prove below that for any fixed € > 0,

M

Zn,e o 1 D

U, = o = T § - e§[ )qsﬂ.,e (Ya(k)) = N(O,1). (3.18)
= nE(Ti,Tit+1

As noted in the beginning of the proof of the theorem, the CLT in (B.7) follows from (B.18), (B.16), (B.17).
Indeed, write

Eei“Z" - efa202/2 _ (Eei“Z" . EeiaZ"’E) + (Eeiag"’eU" o e*GZ‘Ti,s/2)
3
—a%c2 /2 —a%0?/2
+ (e77ne/%—e = Zfi(n).
=1

Here, for some constant C' independent of n, a, ¢,

EV2|el =2 _1|* < |a|EY?|Z, — Zy < Clale,

Ca? ’072” —02’ < Cad’e,
:

[f1(n)]
[3(n)]

IN

IN

and therefore ¢;(n),i = 1,3 can be made arbitrarily small by choosing € > 0 small enough; see (B.14), (B.17).

On the other hand, the convergence in (B.1§) implies uniform convergence of characteristic functions on

compact intervals and therefore sup, <4 [¢2(n)| < sup|q<2a Eel“U» —e=0%/2|  _ 0 for any A > 0. This

n—oo
proves (B.7).

It remains to prove (B.1§). The proof of the corresponding CLTs for sums of Hermite polynomials in Ar-
cones (1994) and Breuer and Major (1983) refer to stationary processes and use Fourier methods. Therefore
we present an independent proof of () based on cumulants and the Holder inequality in () Again,

our proof appears to be much simpler than computations in the above mentioned papers.



Accordingly, it suffices to show that cumulants of order p > 3 of U, asymptotically vanish. In view
of (B.17) and linearity of cumulants, this follows from the fact that for any p > 3 and any multiindices
ko= kO, K ez, u=1,.. . pwith ky = [ky| = K + .+ kY >m (1 <u<p),

Snoi= Y feum(ty,. .. )| = o(n?/?), (3.19)

t1yetp=1

where cum(?q, . .., tp) stands for joint cumulant:
cum(ty,...,t,) = cum (Hk (Yo(tr)), ..., Hy, (Yn(tp))) . (3.20)

Split ¥, = X/ (K) + X//(K), where

SL(K) == > Jeum(ty, ... 1) 1(jt: — ;] < K Vi # )

t1,etp=1

and where K will be chosen large enough. Then for any fixed K, we have ¥/ (K) = O(n) = o(n?/?) as p > 3.

The remaining sum X7/ (K) does not exceed >, ., <, ¥y ; ;(K), where

n

S K) = Y Jeum(ty, ... )| 1(|ti — 1] > K).

n ’L,_]

Therefore, relation (B.19) follows if we show that there exist §(K) — 0 and fig such that for any 1 < i #

K—oo
7 < pandany n > ng

limsup X7 . (K) < 0(K)nP/2. (3.21)

n—o0

n,i,j

The proof below is limited to (¢,7) = (1,2) as the general case is analogous. It is well-known that the joint

cumulant in (B.20), similarly to the joint moment in (R-4), can be expressed as a sum over all connected

diagrams v € T'.(T) over the table T in (R.3). By introducing (s, t) := maxj<p 4<. P )(s t)‘ we obtain

lcum(ty, ... tp) < > [ (ltusts) (3.22)
~ET(T) 1<u<v<p
where we use the notation in (@) Therefore,
SnaaK) <Y Z I (twt) 1ty —to| > K) == > Tnr(v),
YED(T) t1,.-stp=11<u<v<p ~yeT(T)
Next, by applying the Holder inequality as in (R.12),

Lyr(y) < min H Ruo, H R | . (3.23)

1<u<v<p 1<u<v<p

(Sizren (Srzece ™ 5:0)™") o () # (1.2). (2.1),
l12/k2

)kZ/kl ) (u,v) = (172)ﬂ

R = 3 (Sicze (Sicaza 5010 =51 > )
(Siren (Srzecn >1<|t—s|>K>)’“””)é”/k1, (10) = (2,1)




From assumptions (B.T]), (B.9), there exists a constant C' and §(K) — 0 independent of n such that for

K—oo
any k > m and any n > 1
n
swp 3750 < On,
1<t<n s—1
n
sup Zﬁk(s,t)lﬂt —s|>K) < §K)n.

1<t<n 5

Therefore
Cnbwr/ko (u,v) # (1,2),(2,1),
Ruv < S(K)nelz/kZa (U,’U) = (15 2)
S(K)nlm/kl’ (u,v) = (2,1)
with some S(K ) — 0 independent of n. Consequently, the minimum on the right-hand side of )

K—o0

)
)
)

does not exceed

C6(K) min (nZISu@SP bun/be pdacucosy é“”/k“) = OO(K )pmin(L(D),L(T)
where the quantities L(T"), L*(T) introduced in (R.13) satisfy L(T) + L*(T) = p, see (@.14), and therefore
min(L(T), L*(T)) < p/2. This proves (B.21) and the CLT in (B.1§), thereby completing the proof of part
(ii).
(iii) Let us first prove (B.6) with o2 given in (B.d) in the case when fi , = f do not depend on k,n (in such
case, one has ¢, = f, too). We have

o= Y EFYB) S (Yat) = [ Rurlan (3.24)
kk'=1 0
where o
Fu(r) == > Ef(Yallnr))) £ (Yallnr] + ). (3.25)
j=1—[nr]

Condition (B.§) implies that

Ef (Yu([n7])) f (Ya(ln7] +4)) = Ef (W-(0)) f (W=(j))

for each j € Z as n — co. From @) and with the inequality of previous part (i), it exists C' > 0 such that

[Ef (Yu(ln7])) £ (Yu(nT] +5)) ‘ < Clp()I™, (3.26)

and 37 |[p(j)[™ < oo. Hence, from Lebesgue Theorem,

Fu(r) =3 Licqi—fnr)em—np B (Yu(Inm)) £ (Ya(lnr] +4)) — DY Ef (W-(0) f (W)
JET T en
The dominated convergence theorem allows also to pass the limit under the integral, thereby proving @)
with o given in (B.9) in the case fi,, = f.
To end the proof, consider the general case of fy, as in (iii). Let Z, . be defined as in (B.15). Note relation

(B-16) holds as its proof does not use (B.6). In part (ii), we used (B.6) to prove (B:17). Now we want to prove
(B-17) using (B.§) instead of (B.§). This will suffice for the proof of (iii), as the remaining argument is the
same as in part (ii).

Consider the variance o7 . = EZ2 _ of Z, . defined in (B.15):

op. = n'| Y ED!+2 Y EDD;]|,
0<i<M 0<i<j<M

10



where
D; = > e (Ya(k).
k/nG['ri,n+1)

Let us show that for ¢, M fixed, and as n — oo,

EDD, = o) (i # ), (3.27)
e — [ > b e (Wr0)) 6rc (Wi () dr (3.28)

Here, (B-29) follows from the argument in the beginning of the proof of (iii), as ¢, does not depend on
k,n. Relation () is implied by the following computations. Using the Hermitian rank of functions ¢, ,
for i < j one obtains

[Brec (Yallnm] + ) br,.c (Valnr] 4 0)] < Cllbrell- Iorcll, masx |9 (um + . fors] +0)|
S CH(bﬂ,e ‘ : ”d’fj,e”‘p([nTj] - [TLTz] +£7 k)|m

Therefore, for i < j, and € small enough,

[rir1n]—[rin] [Tj41n]—[1jn]

C max |lo-|> Y Y elnm] = [om] + €= k)™

|ED; D
TE[0,1] =0 =0

IN

IN

C max [, Zk\paf)\’" = ofn)

7€[0,1]

since 3y, k|p(k)|™ < ﬁ21§k§ﬁ|p(k)‘m + nzb\/ﬁ‘p(k”m = o(n). Thus, (B-27) is proved. From
(B-27), (B-29) it follows that for any € > 0

Tim o, z / S B (W (0)) 6rc (Wi (3))

Te JEZ

Consider the difference 62 — 02 = Zij\io S > jez Ome(T,j)dr, where

Oue(T,0)] = [Edr, e (Wr(0))¢r,.«(Wr(5)) — E¢r(W-(0)) o (W=(5))]

|E (67, (W(0)) = 6 (Wr(0))) b7, e (W2 ()] + [E(dri,c (W(4)) = &r (W2(1))) & (W7(0))]
16r.c = Orll (lriell + lld D) - (3.29)
Using uniform continuity of ¢,, 7 € [0,1] (in the sense of L2—norm continuity), we obtain that the right-hand
side of (B.29) can be made arbitrarily small by choosing M (= the number of partition intervals of [0, 1])
and t(€) (= the truncation level of Hermite expansion) sufficiently large, uniformly in 7 € [0,1] and j € Z.

On the other hand, [©y,(7, )| < Csup,¢(o 1 [[¢-7|p(5)]™ by Arcones’ inequality, c.f. (B.2d). Therefore
|©1r.c(7,7)| is dominated by a summable function uniformly in M,e. Now, (B.17) follows by an application

IN

IN

of Lebesgue theorem. This proves part (iii) and Theorem [lf too. O

4 Applications of Theorem [

4.1 Limit theorems for the IR statistic of Gaussian processes

This application was developed in Bardet and Surgailis (2011). Let (X;):er be a Gaussian process admitting
a tangent process (which is a self-similar process with parameter H(t)) and consider the Increment Ratio
(IR) statistic

AZTX 4+ AY
RQ,’H( . Z ‘ 2n + k;’,i ‘
AL X+ A X
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with Ai’"X = X(h+2)/n — 2 X(k+1)/n T Xi/n and the convention % := 1. Then,
RQ,H( ) ER2 n — Z nn

where 7, (k) 1= 1, (k) — En, (k) and 1, (k) == (A" X Aifl ), Y(z,y) = |z +y|/(|z] + |y|) are nonlinear

functions of Gaussian vectors (A2" X, Aifl ) € R? having the Hermite rank 2. Write 7, (k) as a (bounded)

function in standardized Gaussian variables:

(k) = fen (Yn(k)),

where Y, (k) = (Y, (k), VP (k)) € R2,

AP X
vy () = k :
w (k) -
YO (r) = CAYX paa(k) N AT X 1
n 0'2,n(k) 1 _p%n(k) 0'27n(k+1) 1—p§n(k),
nlk+1
and  fin (e, 2%) = (“L@}) (o)™ + /1 —p§n<k>w<”)),
02.n s
where Jgﬁn(k), p2.n (k) are defined by
2 E[A?"X AT X]
2 (k):=E|(A?"X (k) = [ k+1
0'2,n( ) |:( k ) :|a P2, ( ) J21n(k)o_27n(k+1)

Thus, the asymptotic behavior of —- Z;g fr.n (Yo (k)) provides the one of R*™(X). Then, if X satisfies
additional conditions (especially on its convergence to its tangent process and the asymptotic behavior of the

covariances of Ag’nX and Ai’nX )s frn —) f where these functions have Hermite rank 2 and Theorem
n—

] can be applied to establish that /n (R>"( fo ) dt) 2N (0,02) with explicit function A
n—oo

and o2 Moreover another application of Lemma [l provides the almost sure consistency of R>"™(X), i.e.
R2 n f
0

Such results can be applied to fractional Brownian motions but as well to multifractional Brownian motions

(without stationary properties). More details can be seen in Bardet and Surgailis (2011).

4.2 A central limit theorem for functions of locally stationary Gaussian pro-
cesses

Using an adaptation of Dahlhaus and Polonik (2006, 2009), we will say that (X ,)i1<t<n,nen+ is a locally

stationary Gaussian process if
Xin FZatn €—j, foralll<t<mn,neN
JEZ

where (g1 )rez 18 a sequence of independent standardized Gaussian variables and for 1 <t < n, n € N* the
sequences (a¢n(j))jez are such that there exist K > 0 and x > 0 satisfying for all n € N* and j € Z,

K
< . - a—1 . )
max lagn(5)] < 5 with u; = max(1, |j|*~!) for j € Z (4.1)

with a < 1/2 and such that there exist functions u € (0,1] — a(u, ;) € R satisfying:
K

sup a(u,j)| < (4.2)
u€e(0,1] Uy

12



K 1
) — N o< 4.
1I£g§><n!a(t/n,3) arn(j)] < " (4.3)
. . X
Sup a(u).j) a(?),_j)‘ S = (44)
(u,v)€[0,1]2 u—-v Uj

Remark 1 In Dahlhaus and Polonik (2006, 2009), only the short-memory case was considered and for
any 1 < t < n, the sequence (an(j))jez € ¢'. Here Condition (@) allows the long-memory case and
(at,n(4))jez € €7 is only required. It was also such the case in Roueff and Von Sachs (2010) where similar
conditions than (@) and @) are provided in terms of spectral density. However the property of local
stationarity is more general in Dahlhaus and Polonik (2006, 2009) because the parameter curves are allowed
to have jumps and Conditions @) and @) are replaced by

sup Z|a 2, J) — alxg—1,7)| < — and supz laen(j) — a( HI<K.
0<zp<...<Zm <1 k=1 JEL v
mEN*

Let fin € LE(Z) (n > 1,1 < t < n), with Z a standardized Gaussian vector R%-valued, be a triangular

array of functions all having Hermite rank at least m € N*. Assume that there exists a LZ(X)—valued

continuous function f-, 7 € [0, 1], such that sup,co 1) | firn)n — fA? — 0. Let0<iy <---<ig€Nand
n—oo

Xin = (Xtﬂ-hn, oo, Xpyigm) for t=1,--+ n—igand n > ig. Iif m > (1 —2a)"! then,

’n—ld

fen(Xen) = N(0,0?) (4.5)

=1 n—oo

ik

with

02:/ dT(ZE £ (3 alr k)e_r) ff(za(T,k)sj,k)]). (4.6)

0 =/ ke ke

PT’OOf. Let Et,n = COV(Xtyn) = (E [Xt+ip,n . Xt+iq,n})1<p q<d’ Then for 7 € [0, 1],

(BlXtwrtiyn - Xinrliy.n]) 1<p,q<d - (Z Ufnr)+ipn(ig = ip + K)apnr)1i,n (k) 1<p,q<d
keZ
n:; (Z a(t,ig —ip + k)a(r, k))lgp,qu =3, (4.7)
keZ

using Lebesgue Theorem and assumptions on sequences (a;,(j)). Now for z € R?, define hyn(x) :=
fen((Zen)? x). From assumptions on (f;,,) and (f7),

sup ||hprp)n — he |2 — 0, with  he(z) = f+(3, @).
7€[0,1] n—00

Thus we are going to apply Theorem [J] part (ii7) (using also its notation) to the array of functions (hy,,(x))

and Y, (k) = (S.n)"Y/2X ... Obvious computations show that with W, (j) = £7 /2 (Y pezalr, k)sj+ip,k)1<p<d

one obtains the required relation (Y, ([n7] + j))_J<j<J 2, (W-(4))_j<j<s- Then the expression %)
- = n—oo -

of the asymptotic variance can be deduced.
It still needs to check the condition (E) of Theorem ﬂ Using (@), for all 1 < p,q < d, n large enough and
1 < j7 k <n-— idv

rP9 (k) = E[Xjti,n - Xitign)
= Za]-i-zp, _1P+£+k_.7)ak+zq,n(£)
LeZ
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= P0Gk < 23 [T iy — iy 4 k- G+ Oa(l T )
LEL n
< 22 sup |a(7,iq —ip+k—j+L)| sup l|a(r,0)]
ecz 7€(0.1] r€(0,1]

with p(k—j) =2 max { sup |a(r,k—j+¥)| sup |a(r,s +€)|}. But Condition ([£9) implies, with
—1a<s<iq vz, T€(0,1] 7€(0,1]

k > 0 such that k —i4 > O:

) K2C(a) k2ot fo<a<1/2
] < 2K max { 3 o P S AR log() R ifa =0
T ez ° K2C(a) kot if o <0

Therefore, from the condition m (1 —2a) > 1, one deduces ), ., |p(k)|™ < oo and the central limit theorem

(f.5) holds. O

Note that the condition m(1 — 2a) > 1 was already obtained in case of stationary Gaussian long memory
process in Taqqu (1975). The central limit theorem (@) can typically be applied to provide the asymptotic
behavior of variance, covariance,..., of locally stationary long memory processes.
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