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Introduction 

Before Young’s experiments in the 19th century, when he made interfere two light wave fronts, many 

experiments had already been done with the purpose of determining various properties of matter and 

light itself. 

Given that many experiments demonstrated the wave-like nature of light, and therefore the belief that 

light propagated through a physical medium, during the 19
th

 and 20
th

 century many different 

experiments were made to find this medium, so called “luminiferous aether”. 

The postulation of Maxwell Equations of Electromagnetism (1865) encouraged further the search of the 

‘ether’, because it was needed to find the medium over which light propagated with speed ‘c’, predicted 

in the derived electromagnetic wave equation. 

As it is today generally accepted, such ‘ether’ has never been found. All experiments have been reported 

null or results obtained have been much less than expected (as for example the very famous Michelson 

and Morley Experiment in 1887). Among many, experiments claim to have reduced the existence of the 

‘ether’ with wonderful precision [1]. 

Before the Special Theory of Relativity (STR) was postulated by Einstein in 1905, the scientific 

community had theories that explained the null results obtained in the experiments in search for the 
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‘ether’. Michelson & Morley’s (M&M) results were explained by Lorentz, introducing his well known 

transformations, predicting a contraction of bodies in the direction of their motion (or, equivalently, 

perpendicular expansion). This is known as Lorentz-Fitzgerald contraction. 

In 1905, Einstein postulated the Special Theory of Relativity (STR), which had great success among the 

community of physicists, and that also explained the results of the M&M experiment, as well as all 

previous null experiments. Although analogous formulations of the Lorentz-Fitzgerald contraction can 

be obtained as a result of Einstein’s postulates, the interpretation of the results differs greatly. 

In Einstein’s perspective, the ‘ether’ doesn’t exist, there is no relative motion between light and 

observer. The observer always measures the speed of light as the universal constant ‘c’. In classical 

physicist’s perspective, the ‘ether’ does exist as the medium over which light propagates. Hence, for an 

observer moving relative to the ‘ether’, the speed of light relative to the observer is different from ‘c’. 

On the next formulations, the Contraction of Bodies in the direction of motion is considered as ad-hoc 

principle. It is shown that changes in the interference pattern can be obtained when an interferometer 

as the one proposed is rotated. 

Theory 

It will be shown that changes in the interference pattern can be measured when a one-way 

interferometer is rotated. Classical pre-relativistic concepts such as the Lorentz-Fitzgerald contraction of 

bodies in the direction of movement are used. Velocities are considered relative to a preferred inertial 

referential frame where the speed of light is the same in all directions and has a constant value of ‘c’. 
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Figure 1 Interferometer by which calculations are made. Thin dotted lines represent the path light travels when the 

interferometer at rest (v=0), thick solid lines represent the path light travels when the interferometer moves with v>0, the 

dashed line help visualize a right triangle of sides vt and L2 and hypotenuse ct. 

Consider an interferometer as the one shown schematically on Figure 1. When analyzed at rest, light 

emitted by the source located at �  reaches beam splitter located at & . One beam travels the optical 

path between points &'() , while the other travels &) . Both beams recombine at )  , and the 

interference pattern can be seen on the screen * .   

When the interferometer travels at a speed �  with respect to the preferred frame, while the beam of 

light travels from & to ' , the mirror at '  moves to position �' . In this fashion, one beam travels the 

distances between points � � �&' ( )  . For both beams to recombine at �)  at the same time and 

interference can be seen, the second beam must be travel the path � �& ) . 

Without loss of generality, for all purposes it can be considered the screen S as located at �) . 

In order to obtain the time taken by each beam to reach �) , we have to consider Lorentz-Fitzgerald 

contraction of bodies in the direction of their motion. We express this factor with the parameter

�

�
� �

�

	
α = − < , where 	  is the speed of light, and �  is the speed of the interferometer, both relative 

to the preferred frame. 

As we will analyze the interferometer in two different orientations, for all subsequent formulations, the 

superscript ���
 =  denotes the first and second orientation, respectively; the subscript ���+ =  

denotes the paths � � �&' ( )  and � �& ) , respectively. 
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We can find the value of the time � �' (�  that takes light to travel the distance between points �'  y �(   

using Pythagoras’s theorem with the relation  

 ( ) ( ) ( )� � �

� � � � �' ( ' (�� � 	�+ =  (1) 

We obtain, 

 � �
� �

� �
' (

� �
�

		 � α
= =

−
 (2) 

We also have that 

 � � � �
� � � � �

� �
&' ( )

� � 	� �
� �

	 � 	 � 	 � 	

α α α
α

+ = + = =
− + −

 (3) 

From equations (1), (2), (3), and using the fact that � � � �' ( & )� �=
 
, we have that the time taken by light to 

travel paths � � �&' ( )   and � �& )   is given by: 

 
� � �
�

�� �
�

	 	α α
= +  (4) 

 
� �
�

�
�

	α
=  (5) 

 � � �� � �� = −  (6) 
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Figure 2 Second orientation of the same interferometer, after a 90º rotation. 

Using Figure 2, when the interferometer is rotated 90º (second orientation), we have for the travel 

times: 

 

 
� � �
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	 	 �

α
α

= +
−

 (7) 

 
� �
�

�
�

	 �

α
=

−
 (8) 
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� � �� � �� = −  (9) 

 

From equations (6) and (9), we find that 
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 � �� � �� � �� = � −� =  (10) 

The result obtained in equation (10) is the expected one, and is a direct consequence of considering 

Lorentz-Fitzgerald contraction α . This result means that at �)  , there is no phase change as a 

consequence of rotating the interferometer. 

However, it is important to notice that, although ��� = , 

 
� �

� �� �>  (11) 

And that 

 
� �

� �� �>  (12) 

That is, the time taken by light to travel the distance between points � � �&' ( )  (or � �& ) ), in the first 

orientation, is smaller than the time taken to travel the same paths in the second orientation of the 

interferometer. 

Given that the radius �  of a sphere of light can be calculated as � 	�= , we have from equations (11) 

and (12) that the distance traveled by light in the first orientation is smaller than the distance traveled in 

the second orientation of the interferometer. 

It is important to emphasize that the results obtained in equations (11) and (12) are not obtained when 

using a M&M type interferometer, because light travels each arm of the interferometer in a two-way 

fashion, thus obtaining 
� �

� �� �=  and 
� �

� �� �= . 

The result of equations  (11) and  (12) explains why the interferometer is sensible to anisotropies in the 

speed of light when the interferometer is rotated: equation (10) says that there is no phase change in 

the interference pattern, however equations  (11) and  (12) say that the distance between the source 

and the observer is different in each orientation of the interferometer. The change *� in this distance 

is, 
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 ( ) ( )� � � �

� � � � �

�
* 	 � � 	 � � 	�

	 � 	

α
α

 � = − = − = − − 
 (13) 

In the proposed interferometer, it can be verified that *�  is identically equal to zero just in the case 

�� = . In a M&M interferometer, �*� =  for all � , because 
� �

� �� �=  and 
� �

� �� �= . 

As it was already said, for both beams to arrive simultaneously at �) , we have to consider that one 

beams traverses & , and the other is reflected at �&  when the beam splitter located at &  has moved to 

�& . 

We can see that ���
�

&& �
	α

=  has the same value in both orientations. This expression means that the 

interferometer has moved with velocity �  during the time ���

	α
. 

For an observer at �) , the interference pattern is produced by the interference of two beams: one 

beam that has initially is transmitted at &  and another that is reflected at �& , both arriving 

simultaneously at �) . The difference between the radii of the spheres of light is �
� �

�
 
 �
� �

α
− = . 
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Figure 3 In each orientation, the interference pattern is formed by two beams: one that is transmitted at A, and another that 

reflects at A’, arriving both beams simultaneously at D’. La difference between the radii of the spheres  is greater than zero 

and of constant value in both orientations. In the second orientation, both beams have to travel an additional distance ����S to 

arrive to D’. 

In reference to Figure 3, 
�,  and 

�,  represent a fixed distance from the origin � .  They are the position 

of the observer with respect to the source of light for each orientation. The distances 

 


+ +� 	�=  

correspond to the perpendicular distances from the source to the beam splitter, for each orientation. 

The 



+�
���

 represent the distance traveled by light from the source to the observer in each orientation. 

It is a known fact the phase 

Φ  in a point 


,  on �
)  can be calculated as 

 ( )� �


 
 
� � �Φ = −
����

���

 (14) 

Where 
�

�
π
λ

=  is the wave number, and λ  is the wavelength of the light used. 

Because in the second orientation the beams have to travel an additional distance *�  to reach the 

observer, it should be clear that 
� �

+ +� �> .  We have then, that, in general, 
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� �

��Φ = Φ −Φ ≠  (15) 

Equation (15) states the fact that there is a phase change from the point of view of the observer. This 

doesn’t contradict the result obtained in equation (10), which states  the fact that the interference 

pattern is the same in both orientations. 

�

Figure 4 Schematic behavior of the interference pattern formed by the two beams. The points P1 y P2 represent the position 

of the observer in each orientation. In this figure, we consider also a misalignment, represented by the lateral distance 

vectorial a=a1+a2 between the beams. 

Figure 1, Figure 2 and Figure 3 represent a perfectly aligned interferometer.  In practice, in order to 

observe interference fringes, the interferometer must be slightly unaligned. That is, the angles of the 

mirrors and beam splitter don’t have exact 45º inclinations. Figure 4 show an interferometer slightly 

unaligned. This misalignment is represented in the figure with the lateral distance between beams 

� �� � �= +
� �� ���

. The distances +�
����

 correspond to the projection of 




�
���

over �
�

. 

The points 

,  correspond to the fixed position of the observer with respect to the origin � . 
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The distances 



+�
���

 of the optical paths � � �&' ( )  and � �& )  are equal to 
� �


 


+ + +� � �= +
��

���

, where 


 


+ +� 	�=
��

. 

The phase change that an observer measures when the interferometer is rotated (and thus passing from 

�,  to 
�, ) is given by 

 ( ) ( )� � � �

� � � �� � � � ��Φ = − − −
��� ��� ��� ���

 (16) 

Where λ  is the wavelength of light. This is equivalent to a number of fringes 
�

-
π
�Φ

= . 

From equation (16) it can be seen that the more unaligned the interferometer, the greater fringe shift 

must be measured. 

The effect described in this paper can be visualized in the next figure: 

�

Figure 5 Unaligned interferometric setup. This figure represents a snapshot of the spheres of light propagating away from the 

source. The two beams that form the interference pattern are one transmitted at A and the other reflected at A’. When the 

interferometer is rotated the observer measures the pattern at points P
1
 and P

2
, thus measuring an apparent fringe shift. In 

this figure, the observer measures N≅≅≅≅1,5. 
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In the case of an M&M type interferometer, in Figure 5 the distance between 
�,  and 

�, is equal to 

zero. 

Additional Results 

Because the main objective of this paper is to show theoretically the results that should be obtained 

when a one-way interferometer is rotated if a preferred frame of reference exists, it escapes the scope 

of this paper to describe in detail the experimental procedure and results already done by the authors. 

However, it is important to say that the expected results were experimentally verified by the authors. To 

illustrate the reader, and to encourage further and more precise verifications of our results, it is 

convenient  to show some data plots of the data (raw) obtained with an interferometer as the one 

preciously described.  

Instead of rotating the interferometer, this was left at rest in the laboratory, while the Earths rotates 

and orbits around the sun. Experiments have been going on for approximately four months, in different 

configurations, and the results are consistent among themselves and the theory. 

�

Figure 6 Raw data plot of the experimental results done by the authors as verification to the presented formulation. The 

horizontal axis is time, the vertical axis is the vertical position on the screen of the interference pattern’s maxima. Although 

the sinusoid are not perfect, it can be seen an apparent correlation between the sinusoid and the position of HIP24255 in the 

local “East” and “West”. 

In Figure 6 the horizontal axis represents time (30s precision), while the vertical axis represents the 

vertical position (measured in pixels) of the interference pattern’s maxima. The visible undulations 
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correspond to the movement from one side to the other on the viewing screen while the earth rotates. 

The vertical lines tagged with “East” and “West” denote the timestamps when the stellar object 

HIP54255 appears in the horizon on the earth’s sky, as seen from the laboratory (located N 10º32’, W 

66º55’). Qualitatively, it can be seen an apparent correlation between fringe displacement and the 

position in the sky of HIP54255. The apparent position of the object in earth’s sky of this constellation is 

approximately equal to the direction of the velocity of the local group of galaxies with respect to CMB’s 

rest frame [2]. 

Given that the temperature was monitored (0,1K precision) so as the input voltage of the laser (0,1V 

precision) and no correlation was found with the observed fringe movement, the authors believe that 

the deviations from the ideal sinusoid are caused by natural laser (He-Ne, 632nm) instabilities, and 

because of the tridimensional nature of earths velocity, which also affect the optical paths, and are not 

studied in the above equations.  

Conclusions 

It has been described and analyzed an interferometer sensitive to anisotropies of the speed of light. The 

most important difference of this interferometer with a M&M type interferometer is that light travels 

the distances between � �& )  and � �' ( in a one way fashion. When the interferometer is rotated 

(Figure 1 to Figure 2), the radii of spheres of light between source and observer increases, which 

explains the changes observed in the interference pattern. In a M&M type interferometer, each arm is 

traveled in a two way fashion: the radii of the spheres of light between source and observer are of the 

same magnitude on all orientations, thus no change in the interference pattern is seen. 

It is important to notice that Lorentz’s Contraction was introduced, from the classical perspective, to 

account for the null result reported by M&M in their famous experiment. However, taking into account 

this effect (and thus maintaining the null result reported by M&M), and from the classical perspective 

(the existing of the ‘ether’ as the medium over which light propagates), it has been shown that using the 

proposed interferometer it is possible to detect changes in the interference pattern upon rotation, when 

�� > . 

We can also notice that because there is no relative motion between parts of the interferometer, 

according to the Special Theory of Relativity (STR) no changes in the interference pattern are to be 

expected when the interferometer is rotated. Using classical (pre-relativistic) notions it is shown that 



13 

 

although there is no relative motion between parts of the interferometer, motion with respect to the 

‘ether’ can be detected as fringe shifts, upon rotation of the interferometer. 

It is interesting to mention that the Mach-Zehnder (MZ) interferometers, because of their one-way 

nature, are also sensitive to the detection of anisotropies in the speed of light. In fact, the 

interferometer described in this paper could be understood as a variation of the MZ type. Yet more 

interesting is to think a MM as a MZ ‘folded back upon itself’ [3], with the difference that the same 

beam splitter is used to divide and to recombine the beams of light. This is equivalent to bring together 

the beam splitters of a MZ (realigning the mirrors correspondingly). While the beam splitters are brang 

together, the MZ interferometer transforms gradually into a MM interferometer, also gradually 

transforming its one-way nature into a two-way. Just before the beam splitters are in the exact same 

positions, the deformed MZ interferometer looks like a slightly unaligned MM interferometer, with 

vestiges of sensibility to anisotropies. As has already been told in this paper, the misalignment is 

proportional to the number of fringes that shift when the interferometer is rotated. It is the opinion of 

the authors that this is the main reason why experiments using MM type interferometers have not 

measured identically null results, but always report velocities with magnitudes much smaller than 

expected (unless, of course, the interferometer is perfectly aligned). 
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