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ABSTRACT. In this paper, we are concerned with a model of electric current
effect in ferromagnetic materials, that is Landau-Lifschitz equation adding a
transport term. We prove classical existence theorem in the general three
dimensional case, and we justify a one dimensional approximation for wich we
have the explicit behavior of the magnetisation.

1. Introduction. Landau-Lifschitz equation describe spontaneous magnetisation
behavior in ferromagnetic materials and writes

8tu:Heff/\u+u/\(Heff/\u) (1.1)
where the magnetic moment u takes its value in S?, and the effective field He sy is
derived from micromagnetic energy (see [2]), in particular in presence of an external
magnetic field. In case of electric current injection (see [3] and [11] for some physical
developmnents on electric current injection in ferromagnetic materials), Thiaville
and Miltat propose in [I4] a first transport term addition, that is simply (v-V)u
considering Gilbert form of equation :

Oru=Hegr ANu+uAhOu—(v-V)u (1.2)

where v can be seen as the current (carriers) speed. But because of undesired
treshold effect in simulations, the same authors are led to introduce in [13] a global
transport term that competes with the two dervatives in time in the last equation,
that is

Oru=Hepr ANu+auNdu— (v-V)u+pul(v-V)u (1.3)
where (3 is positive and « strictly positive (the same model has been proposed
independently in [9]).

In the following, we consider equation posed in a regular open set  of R3,
with

Heff = Au-+ H(u)
where H is defined by

{ rot (H(u)) =0
div (H(u) +u) =0
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LANDAU-LIFSCHITZ-GILBERT EQUATION 139

with @ equals u in ) and zero outside.

We will use functions spaces notations like LP for applications with vectorial value
or numerical value without difference in non ambigous cases, and hypothesis on v
or u will be given precisely in the following, depending on the kind of solution we
will consider.

The paper is organized as follow : in a first part, we give classical existence results
with an overview of the proofs, and a second part is dedicated to the study of a one
dimensional approximation in nanowires.

2. General Results. Let us now give a first existence result for the global problem,
that is with H defined as above.

Theorem 1. For all ug in H* (Q) with |ug| = 1, and for all v in CY (RT x Q x R?)
there exist a unitary vector field u in H* (Rt x Q) satisfying equation and the
following energy estimate for all positive t :

/0 /Q Byl + E(u(t)) < Euo) (1 + I(t) exp (1(£))

with

t
1(t) = / 10112 < (e ()i

and

E(ult)) = /Q Tu()? +2 /Q B(u(t)) - /Q H(u(t)) - u(t)

Remark 1. By simplicity, theorem [1|is written for equation 7 but as the proof
shows it clearly, the same result is true for equation .

In the estimate of the theorem, we see that v € L? (RT) ensures a bouded energy,
and as a consequence u in H! (R x Q). But in general, the estimate gives a time
dependent bound, and this is the main difference with the corresponding result for
Landau-Lifschitz equation.

We now introduce two other formulations of equation (1.3), equivalent for suffi-
ciently regular unitary vector field. The first one can be seen as derived from
Landau-Lifschitz equation :

(1+a2)0yu = HeypAutoaun(Hepp Au)—(1+aB) (v V) u—(a—B)un(v- V)u (2.4)
The second one is then deduced from (2.4) in order to construct strong solutions
for equation (1.3)), as made in [6] for Landau-Lifschitz equation.

(1+a?)0u = « (Au + |Vu|2u) +Heps ANu+ou A (x(u) Aw)
—(14+af)(v-Vu—(a—PBlun(v-V)u

To clarify the part of the physical constraint |u| = 1 in the existence and uniquness

(2.5)

of "strong solutions”, we define this term only from regularity point of view.

Definition 1. A solution of equations ([1.3)), (2.4]) or (2.5) is said strong if
e ucCO(0,t; H? () N L (0,t; H3(Q)) forall 0 <t < T
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e u depends continiously on wug for the topology of C°(0,t; H? (2)) for all
0<t<T

local in time if T' < oo and global in time otherwise.

Theorem 2. For v in Cf (RT x QxR?), and for all uy in H*(Q) sutch that
Oyug = 0 on IS there exist a unique strong solution u of equation . Moreowver,
if ug takes its value in S?, then |u| = 1 and u is the unique strong solution of

formulations and .

Proof of Theorem[1 Proof is based on a construction of Alouges and Soyeurs for
Landau-Lifschitz equation (see [I]). We first consider a relaxed problem

Oruy = Hepp(ur) —ux Adyuy — T (ur) A(v-V)uy in Rt xQ
4 2
DY (‘U)\‘ —1) u)
Oyuy =0 on RT x 09
ux(t =0) =g in

(2.6)

where 7 is identity in the unitary ball, and projection on S? otherwise. We prove
existence of weak solutions for equation by a Galerkine approximation, using a
bound for equation similar to the theorem’s one and independent of Galerkine
approximation’s degree. Aubin Lemma permits us to take the limit in non linear
terms of equation , and by the same arguments, we take the limit in lambda
to obtain by construction |u| = 1. To prove that u satisfy equation , or its
integral form in fact, we choose a function test of the form uy A ¢ to refind equation

(1.3) by cross product properties.
O

Remark 2. Assaid in remark vin L? (RT) gives u in H! (Rt x Q) but obviously
similar result with u in H' (]0, T[x) for all positive T is true for v only bouded
and weakly continous in its third variable.

The truncate term permits us to obtain energy estimate of theorem [1| but makes
this bound be time dependent too, and more generaly, it’s not easy to integrate
transport term contribution in micromagnetic energy, as it’s the case for the terms
of the effective field.

Proof of theorem[Z Proof of existence and uniquness of strong solutions for equa-
tion is given in [6], because non linear transport term estimations can be seen
as particular cases of the estimations made in the reference above for the term
Vul*u.

Let now ug be with value in S2. Multiplying equation by u(t) € H?(Q) C
L> (), we obtain (with a = =1) :

1
O <|u\2) = Au-u+ |Vul*|u]* - 5 (v-Vu-u
but
1 2\ 2 _ _ _1 2
iA (\u| ) = |Vul*+u-Au et (v-V)u-u=Vuv-u=v{(Vu)u= 5V \Y (|u| )

so with b := [ul® — 1,
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1

200 = Ab+2[Vul*b— Sv- Vb in [0,T[xQ

8,b=0 on [0, T[xd (2.7)

b(t=0)=0 in
Now, because of the dissipative term, we can conclude directly that b is zero by
classical energy estimates using Young inequality and Gronwall Lemma.
We have then directly, by cross product properties, that w is strong solution of
equations (1.3) and (2.4). By equivalence of the three formulations for regular
solutions with value in S2, uniquness of strong solutions for equations (1.3) and
(2.4) is equivalent to pointwise norm conservation by these equations.

Adapting equation (2.7)) to equation (1.3|) (or equation (2.4]) with different multi-
plicative constants) we obtain :

Ob=—v-Vb in [0,T[xQ
O,b=0 on [0, T[x 0 (2.8)
bt=0)=0 in{
We are going to prove that b is in fact solution in classical sense, and by caracteristics
method we will obtain that b is zero. Remark first that :
e H? () is an algebra, so b € C° (0,t; H? (2))
e $Vb= "Vuue C(0,t;H' () ® C°(0,t; H*(Q)) — C° (0,t; H* (Q))
e by 1) b e CP (0,t;H1 (Q)) sobe Cl (O,t;H1 (Q))
e be L?(0,t; H* (Q)) @ L? (0,t; H® (2)) — L (0,¢;C* (Q))

so finally b € C! ([0, T[xQ) and equation (2.8) is quasilinear without second member
so b is constant along caracteristics. Let now (t,x) be in [0,T[x€, if b is nonzero
there exist a unique caracteristic y passing by = at time ¢, and defined by :

{ V' (s) = v(s,7(s), A)
V() ==

where A\ = b(¢,7v(t)). Let ]to,t1[ be the existence intervale of «, then if ¢, = 0
and v(0) € Q, b(t,z) = b(t,v(t)) = b(0,7(0)) = 0, otherwise v(ty) € 9N and
b(t,z) = b(to,v(to)). So we have to show that b is zero on the boundary.

As Q is regular, we can decompose equation in tangencial and normal directions
in some neyborwood V of 0L :

Otb = —v,0,b— v, - Vb in [0, T[x(V NQ)
0,b=0 on [0, T[x0
b(t=0)=0 invVnQ
And taking the limit in x, we obtain (as v, is suposed bounded on 9f) :
Ob = —v, - Vb on [0, T[x0
bt=0)=0 on 02
Now, by regularity and hypothesis on v, we can conclude using classical methods

that b = 0.
O
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3. One Dimensionnal Approximations. In this section, we follow a work of
Carbou and Labbé on Bloch Wall motion in nanowires submitted to an external
magnetic field. These authors use in [4] and [5] a one dimensional approximation of
Landau-Lifschitz equation, that is a one dimensional approximation of the demag-
netising field H defined at the end of section 1, given by Sanchez in [10] for perfectly
cylindrical wires. Following its method, we justify a model used by Thiaville and
Miltat in [12] for Bloch wall motion in nanowires to an external magnetic field mag-
netic field, and also used by the same authors in [13] and [14] for wall motion caused
by electric current injection.
We consider an infinite wire in direction e, of section & defined by
X 2 2
Ex(wo) = {X = (@1.m) € {o = a0}, () +a3 < 1} (3.9)
and we recall that in this case, magnetostatic equations writes
div (H(u)) =0  dans Qi Uy
rot (H(u)=0) dans Qp U°Qy (3.10)
[H(u) -v] =u-v sur 08y

The following theorem include the result given by Sanchez in [10].

Theorem 3. The problem as a unique solution in R? for all k € R} \ {1},
given by

1 1 1
H(u)(X) = TR 1D(0,1)(21)Z1 ~ (zluk - Zlu—k)

(3.11)

1 1
—1p(o,1)22 (uk — Z2u_k>
Z9 — 21 )

where D(0,1) = {z € C, |z| < 1}, and denoting also X the complex number associ-
ated to (x1,x2),

X+ (1) X — (k2 -1)
. Uy o .
uk(kw) and 24 — , forj=1,2
Moreover, H(u) is constant in Qy, for all k € RY and we have
1
H(w)(X) = —

Proof of theorem[3, As rot (H(u)) = 0 in R?, there exists a potential ¢ such that
H(u) = —V¢ and

Ap=0 in Qp UQy
Oy¢p=—u-v on 0
this gives
1
P(X) = —In(|X —Y][)(—u-v)(Y)do(Y)
0y, 27
and
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Using natural parametrisation of 9, = 0&;(xo) and complex numbers, we have

Jor (o (o 2) e (2)) e e
=1\ z ? z))2X — B (k- 1)z iz

1
= ——(Th + T
22'77( 1+ 1)

H(u)(X)

where

zP(z) P(z)
with P(2) = (k — 1)22 —2Xz + (k + 1).

T — / uy + tkusg and T, - / (uy — tkug)z
|z|=1 |z|=1

‘We now use Residus Theorem to obtain

. . 1 1 1
71 = 2im(uy + ikus) ( +1pe1)(z1)——— + 1D(0)1)(z2))

k+1 z1(21 — 22) 29(29 — 21)
and
Ty = —2im(uy — ikuz) ( Lpo.n (21) —— + Lpgo.1y (22) —2
2= 1 2) \ Lo (1) —— oo, (z2) Z——
SO
H(w)(X) o — Lo (1) —— (=
U = — U — z — UL — 21U—
W o () e = Zeg
1 1
—1po,1)22 — U — Z2U—k
Z9 — 21 z9

By classical optimisation methods, we show that
. 2 .
min |z;|° > 1, j=1,2
P (IO)| il J

that gives the result.
O

We then obtain an one dimensional approximation for H : H(u) = 0%u+uje; —usqes,
where u; is the wire’s direction and us is transverse to the Bloch’s Wall. For this
approximation, we can extend results given in [4] and [5] for equation (L.I]).We
obviously have stability of the following static profile

th(zx)

_ 0
My = 1

ch(z)
and with a magnetic field injection de;, we use local inversion theorem to show
wall motion for all non zero applied magnetic field, and magnetic structure rotation
toward the wire.
In the case of an applied electric current, equation has a static solution for
positive v, that is we have a treshold effect :

u(z) = RoMy(ex)
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with
3—+v/9-8(1 2
E):arcsin( e—l),ande: (1+%)
2(1+?)
1
for |v] < ——.
|v] o

In the general case of equation (1.3), we also have an explicit solution given by
u(t,x) = RgMp(ex — ct)

with

for

3 9—8(1+(1—§)2v2>
2<1+ (1—2)21;2)

c= —ve, and e =
@

1
(- 2)at

In the particular case a = 3, we have u(t,x) = My(z — vt), stable for all v € R.

lv] <
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