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Abstract. In this paper, we are concerned with a model of electric current

effect in ferromagnetic materials, that is Landau-Lifschitz equation adding a

transport term. We prove classical existence theorem in the general three

dimensional case, and we justify a one dimensional approximation for wich we

have the explicit behavior of the magnetisation.

1. Introduction. Landau-Lifschitz equation describe spontaneous magnetisation
behavior in ferromagnetic materials and writes

∂tu = Heff ∧ u + u ∧ (Heff ∧ u) (1.1)

where the magnetic moment u takes its value in S2, and the effective field Heff is
derived from micromagnetic energy (see [2]), in particular in presence of an external
magnetic field. In case of electric current injection (see [3] and [11] for some physical
developmnents on electric current injection in ferromagnetic materials), Thiaville
and Miltat propose in [14] a first transport term addition, that is simply (v · ∇) u

considering Gilbert form of equation (1.1) :
∂tu = Heff ∧ u + u ∧ ∂tu− (v · ∇) u (1.2)

where v can be seen as the current (carriers) speed. But because of undesired
treshold effect in simulations, the same authors are led to introduce in [13] a global
transport term that competes with the two dervatives in time in the last equation,
that is

∂tu = Heff ∧ u + αu ∧ ∂tu− (v · ∇) u + βu ∧ (v · ∇) u (1.3)

where β is positive and α strictly positive (the same model has been proposed
independently in [9]).
In the following, we consider equation (1.3) posed in a regular open set Ω of R3,
with

Heff = ∆u +H(u)

where H is defined by {
rot (H(u)) = 0
div (H(u) + ū) = 0
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with ū equals u in Ω and zero outside.
We will use functions spaces notations like Lp for applications with vectorial value
or numerical value without difference in non ambigous cases, and hypothesis on v

or u will be given precisely in the following, depending on the kind of solution we
will consider.
The paper is organized as follow : in a first part, we give classical existence results
with an overview of the proofs, and a second part is dedicated to the study of a one
dimensional approximation in nanowires.

2. General Results. Let us now give a first existence result for the global problem,
that is with H defined as above.

Theorem 1. For all u0 in H1 (Ω) with |u0| ≡ 1, and for all v in C0
b

(
R+ × Ω× R3

)
there exist a unitary vector field u in H1 (R+ × Ω) satisfying equation (1.2) and the
following energy estimate for all positive t :∫ t

0

∫
Ω

|∂tu|2 + E(u(t)) 6 E(u0) (1 + I(t) exp (I(t)))

with

I(t) =
∫ t

0

‖v‖2L∞(Ω×R3)(s)ds

and

E(u(t)) =
∫

Ω

|∇u(t)|2 + 2
∫

Ω

Φ(u(t))−
∫

Ω

H(u(t)) · u(t)

Remark 1. By simplicity, theorem 1 is written for equation (1.2), but as the proof
shows it clearly, the same result is true for equation (1.3).
In the estimate of the theorem, we see that v ∈ L2 (R+) ensures a bouded energy,
and as a consequence u in H1 (R+ × Ω). But in general, the estimate gives a time
dependent bound, and this is the main difference with the corresponding result for
Landau-Lifschitz equation.

We now introduce two other formulations of equation (1.3), equivalent for suffi-
ciently regular unitary vector field. The first one can be seen as derived from
Landau-Lifschitz equation :

(1+α2)∂tu = Heff∧u+αu∧(Heff ∧ u)−(1+αβ) (v · ∇) u−(α−β)u∧(v · ∇)u (2.4)

The second one is then deduced from (2.4) in order to construct strong solutions
for equation (1.3), as made in [6] for Landau-Lifschitz equation.

(1 + α2)∂tu = α
(
∆u + |∇u|2u

)
+Heff ∧ u + αu ∧ (χ(u) ∧ u)

−(1 + αβ) (v · ∇) u− (α− β)u ∧ (v · ∇) u
(2.5)

To clarify the part of the physical constraint |u| ≡ 1 in the existence and uniquness
of ”strong solutions”, we define this term only from regularity point of view.

Definition 1. A solution of equations (1.3), (2.4) or (2.5) is said strong if

• u ∈ C0
(
0, t;H2 (Ω)

)
∩ L2

(
0, t;H3 (Ω)

)
for all 0 < t < T
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• u depends continiously on u0 for the topology of C0
(
0, t;H2 (Ω)

)
for all

0 < t < T

local in time if T < ∞ and global in time otherwise.

Theorem 2. For v in C1
b

(
R+ × Ω× R3

)
, and for all u0 in H2 (Ω) sutch that

∂νu0 ≡ 0 on ∂Ω there exist a unique strong solution u of equation (2.5). Moreover,
if u0 takes its value in S2, then |u| ≡ 1 and u is the unique strong solution of
formulations (2.4) and (1.3).

Proof of Theorem 1. Proof is based on a construction of Alouges and Soyeurs for
Landau-Lifschitz equation (see [1]). We first consider a relaxed problem

∂tuλ = Heff (uλ)− uλ ∧ ∂tuλ − T (uλ) ∧ (v · ∇) uλ

− 4
λ

(
|uλ|2 − 1

)
uλ

in R+ × Ω

∂νuλ = 0 on R+ × ∂Ω

uλ(t = 0) = u0 in Ω

(2.6)

where T is identity in the unitary ball, and projection on S2 otherwise. We prove
existence of weak solutions for equation (2.6) by a Galerkine approximation, using a
bound for equation (2.6) similar to the theorem’s one and independent of Galerkine
approximation’s degree. Aubin Lemma permits us to take the limit in non linear
terms of equation (2.6), and by the same arguments, we take the limit in lambda
to obtain by construction |u| ≡ 1. To prove that u satisfy equation (1.2), or its
integral form in fact, we choose a function test of the form uλ∧φ to refind equation
(1.3) by cross product properties.

Remark 2. As said in remark 1, v in L2 (R+) gives u in H1 (R+ × Ω) but obviously
similar result with u in H1 (]0, T [×Ω) for all positive T is true for v only bouded
and weakly continous in its third variable.
The truncate term permits us to obtain energy estimate of theorem 1 but makes
this bound be time dependent too, and more generaly, it’s not easy to integrate
transport term contribution in micromagnetic energy, as it’s the case for the terms
of the effective field.

Proof of theorem 2. Proof of existence and uniquness of strong solutions for equa-
tion (2.5) is given in [6], because non linear transport term estimations can be seen
as particular cases of the estimations made in the reference above for the term
|∇u|2u.
Let now u0 be with value in S2. Multiplying equation (2.5) by u(t) ∈ H2 (Ω) ⊂
L∞ (Ω), we obtain (with α = β = 1) :

∂t

(
|u|2

)
= ∆u · u + |∇u|2|u|2 − 1

2
(v · ∇)u · u

but

1
2
∆

(
|u|2

)
= |∇u|2+u ·∆u et (v · ∇) u ·u = ∇u.v ·u = v ·t(∇u).u =

1
2
v ·∇

(
|u|2

)
so with b := |u|2 − 1,
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
2 ∂tb = ∆b + 2|∇u|2b− 1

2
v · ∇b in [0, T [×Ω

∂νb = 0 on [0, T [×∂Ω
b(t = 0) = 0 in Ω

(2.7)

Now, because of the dissipative term, we can conclude directly that b is zero by
classical energy estimates using Young inequality and Gronwall Lemma.
We have then directly, by cross product properties, that u is strong solution of
equations (1.3) and (2.4). By equivalence of the three formulations for regular
solutions with value in S2, uniquness of strong solutions for equations (1.3) and
(2.4) is equivalent to pointwise norm conservation by these equations.
Adapting equation (2.7) to equation (1.3) (or equation (2.4) with different multi-
plicative constants) we obtain :

∂tb = −v · ∇b in [0, T [×Ω
∂νb = 0 on [0, T [×∂Ω
b(t = 0) = 0 in Ω

(2.8)

We are going to prove that b is in fact solution in classical sense, and by caracteristics
method we will obtain that b is zero. Remark first that :

• H2 (Ω) is an algebra, so b ∈ C0
(
0, t;H2 (Ω)

)
• 1

2∇b = t∇u.u ∈ C0
(
0, t;H1 (Ω)

)
⊗ C0

(
0, t;H2 (Ω)

)
↪→ C0

(
0, t;H1 (Ω)

)
• by (2.8), ∂tb ∈ C0

(
0, t;H1 (Ω)

)
so b ∈ C1

(
0, t;H1 (Ω)

)
• b ∈ L2

(
0, t;H3 (Ω)

)
⊗ L2

(
0, t;H3 (Ω)

)
↪→ L1

(
0, t;C1

(
Ω

))
so finally b ∈ C1

(
[0, T [×Ω

)
and equation (2.8) is quasilinear without second member

so b is constant along caracteristics. Let now (t,x) be in [0, T [×Ω, if b is nonzero
there exist a unique caracteristic γ passing by x at time t, and defined by :{

γ′(s) = v(s, γ(s), λ)
γ(t) = x

where λ = b(t, γ(t)). Let ]t0, t1[ be the existence intervale of γ, then if t0 = 0
and γ(0) ∈ Ω, b(t, x) = b(t, γ(t)) = b(0, γ(0)) = 0, otherwise γ(t0) ∈ ∂Ω and
b(t, x) = b(t0, γ(t0)). So we have to show that b is zero on the boundary.
As Ω is regular, we can decompose equation (2.8) in tangencial and normal directions
in some neyborwood V of ∂Ω :

∂tb = −vν∂νb− vτ · ∇τ b in [0, T [×(V ∩ Ω)
∂νb = 0 on [0, T [×∂Ω
b(t = 0) = 0 in V ∩ Ω

And taking the limit in x, we obtain (as vν is suposed bounded on ∂Ω) :{
∂tb = −vτ · ∇τ b on [0, T [×∂Ω
b(t = 0) = 0 on ∂Ω

Now, by regularity and hypothesis on v, we can conclude using classical methods
that b ≡ 0.
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3. One Dimensionnal Approximations. In this section, we follow a work of
Carbou and Labbé on Bloch Wall motion in nanowires submitted to an external
magnetic field. These authors use in [4] and [5] a one dimensional approximation of
Landau-Lifschitz equation, that is a one dimensional approximation of the demag-
netising field H defined at the end of section 1, given by Sanchez in [10] for perfectly
cylindrical wires. Following its method, we justify a model used by Thiaville and
Miltat in [12] for Bloch wall motion in nanowires to an external magnetic field mag-
netic field, and also used by the same authors in [13] and [14] for wall motion caused
by electric current injection.
We consider an infinite wire in direction e1, of section Ek defined by

Ek(x0) =
{

X = (x1, x2) ∈ {x = x0},
(x1

k

)2

+ x2
2 < 1

}
(3.9)

and we recall that in this case, magnetostatic equations writes
div (H(u)) = 0 dans Ωk ∪cΩk

rot (H(u) = 0) dans Ωk ∪cΩk

[H(u) · ν] = u · ν sur ∂Ωk

(3.10)

The following theorem include the result given by Sanchez in [10].

Theorem 3. The problem (3.10) as a unique solution in R2 for all k ∈ R+
? \ {1},

given by

H(u)(X) = − 1
k + 1

uk − 1D(0,1)(z1)
1

z1 − z2

(
1
z1

uk − z1u−k

)
−1D(0,1)z2

1
z2 − z1

(
1
z2

uk − z2u−k

) (3.11)

where D(0, 1) = {z ∈ C, |z| < 1}, and denoting also X the complex number associ-
ated to (x1, x2),

uk =
(

u1

ku2

)
and zj =

X + (−1)j

√
X

2 − (k2 − 1)
k − 1

, for j = 1, 2

Moreover, H(u) is constant in Ωk for all k ∈ R+ and we have

H(u)(X) = − 1
k + 1

uk

Proof of theorem 3. As rot (H(u)) = 0 in R2, there exists a potential φ such that
H(u) = −∇φ and {

∆φ = 0 in Ωk ∪cΩk

∂νφ = −u · ν on ∂Ωk

this gives

φ(X) =
∫

∂Ωk

1
2π

ln (|X − Y |) (−u · ν)(Y )dσ(Y )

and

H(u)(X) =
∫

∂Ωk

1
2π

(u · ν)(Y )
X − Y

|X − Y |2
dσ(Y )
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Using natural parametrisation of ∂Ωk = ∂Ek(x0) and complex numbers, we have

H(u)(X) =
∫
|z|=1

(
u1

(
z +

1
z

)
− iku2

(
z − 1

z

))
1

2X − k+1
z − (k − 1)z

dz

iz

= − 1
2iπ

(T1 + T2)

where

T1 =
∫
|z|=1

u1 + iku2

zP (z)
and T2 =

∫
|z|=1

(u1 − iku2)z
P (z)

with P (z) = (k − 1)z2 − 2X̄z + (k + 1).

We now use Residus Theorem to obtain

T1 = 2iπ(u1 + iku2)
(

1
k + 1

+ 1D(0,1)(z1)
1

z1(z1 − z2)
+ 1D(0,1)(z2)

1
z2(z2 − z1)

)
and

T2 = −2iπ(u1 − iku2)
(
1D(0,1)(z1)

z1

z1 − z2
+ 1D(0,1)(z2)

z2

z2 − z1

)
so

H(u)(X) = − 1
k + 1

uk − 1D(0,1)(z1)
1

z1 − z2

(
1
z1

uk − z1u−k

)
−1D(0,1)z2

1
z2 − z1

(
1
z2

uk − z2u−k

)
By classical optimisation methods, we show that

min
Ek(x0)

|zj |2 > 1, j = 1, 2

that gives the result.

We then obtain an one dimensional approximation forH : H(u) = ∂2
xu+u1e1−u2e2,

where u1 is the wire’s direction and u2 is transverse to the Bloch’s Wall. For this
approximation, we can extend results given in [4] and [5] for equation (1.1).We
obviously have stability of the following static profile

M0 =


th(x)

0
1

ch(x)


and with a magnetic field injection δe1, we use local inversion theorem to show
wall motion for all non zero applied magnetic field, and magnetic structure rotation
toward the wire.

In the case of an applied electric current, equation (1.2) has a static solution for
positive v, that is we have a treshold effect :

u(x) = RθM0(ex)
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with

θ = arcsin
(√

e− 1
)
, and e =

3−
√

9− 8 (1 + v2)
2 (1 + v2)

for |v| < 1
2
√

2
.

In the general case of equation (1.3), we also have an explicit solution given by

u(t, x) = RθM0(ex− ct)

with

c =
β

α
ve, and e =

3−

√
9− 8

(
1 +

(
1− β

α

)2

v2

)
2

(
1 +

(
1− β

α

)2

v2

)
for |v| < 1(

1− β
α

)
2
√

2
.

In the particular case α = β, we have u(t, x) = M0(x− vt), stable for all v ∈ R.
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