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Abstract

A class of finite difference schemes for solving a fractionalanti-diffusive equation, recently pro-
posed by Andrew C. Fowler to describe the dynamics of dunes, is considered. Their linear stability
is analyzed using the standard Von Neumann analysis: stability criteria are found and checked nu-
merically. Moreover, we investigate the consistency and convergence of these schemes.
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1 Introduction

Partial Differential Equations with nonlocal or fractional operators are widely used to model scientific
problems in mechanics, physics, signal processing, see forexample [3] and references therein. We
consider in this chapter a nonlocal conservation law which appears in the formation and dynamics of
sand structures such as dunes and ripples [7, 11]. Since it isgenerally impossible to obtain analyti-
cal solutions of these nonlocal models, one must rely on numerical solutions. In the last few decades,
significant advances in numerical analysis and computational implementation of numerical methods for
nonlocal/fractional PDEs have been made. For instance, [6]propose a finite volume method to approxi-
mate the solutions of a fractal scalar conservation law, that is to say a conservation law regularized by a
diffusivefractional power of the Laplacian operator and [13, 15] use finite difference methods to approx-
imate fractional diffusive equations.
In this chapter, we develop the basic numerical analysis of the following evolution equation proposed by
A.C. Fowler (see [7], [8] and [9] for more details) to study the nonlinear dune formation:

∂tu(t, x) + ∂x

(

u2

2

)

(t, x) + η I[u(t, ·)](x)− ǫ ∂2xxu(t, x) = 0, (1)
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whereu = u(t, x) represents the dune height andI is a nonlocal operator defined as follows: for any
Schwartz functionϕ ∈ S(R) and anyx ∈ R,

I[ϕ](x) :=
∫ +∞

0
|ξ|− 1

3ϕ′′(x− ξ) dξ. (2)

The second and fourth terms of equation (1) correspond to thenonlinear and dissipative terms respec-
tively, while the third term is the nonlocal term, which is anti-dissipative as we will show later on. The
positive parametersǫ (resp.η) quantify the amount of local diffusion (resp. nonlocal anti-diffusion).

Remark 1. For causal functions (i.e.ϕ(x) = 0 for x < 0), this operator is, up to a multiplicative
constant, the Riemann-Liouville integral which is defined as follows:

1

Γ(23)

∫ +∞

0

ϕ
′′
(x− ξ)

|ξ|1/3 dξ =
d−2/3

dx−2/3
ϕ′′(x) =

d4/3

dx4/3
ϕ(x), (3)

with Γ the Euler function.

Many numerical methods for the evaluation of fractional order integrals and the solution of fractional
order equations are proposed in the literature. Usually, time and spatial fractional derivatives are consid-
ered: we refer for instance to [5, 12, 15].
In our case, the integral operatorI can be seen as a fractional power of order2/3 of the Laplacian with
the bad sign. Indeed, it has been proved thatI has the following Fourier transform [1]:

F(I[ϕ])(ξ) = ψI(ξ)Fϕ(ξ), (4)

whereψI(ξ) = −aI |ξ|
4

3 + ibIξ|ξ|
1

3 with aI = 2π2 Γ(23), bI = 2π2
√
3Γ(23 ) andF denotes the Fourier

transform defined forf ∈ L1(R) by: for all ξ ∈ R

Ff(ξ) =
∫

R

e−2iπxξf(x) dx.

Formula (4) stems from the following integral formula [1]:

I[ϕ](x) = 4

9

∫ 0

−∞

ϕ(x+ z)− ϕ(x)− ϕ′(x)z

|z|7/3 dz. (5)

Finally, equation (1) involves two antagonistic terms: theanti-diffusive operatorI which creates insta-
bilities and the diffusion operator−∂2xx which controls these perturbations.
Recently, some theoretical results regarding the Fowler model (1) have been obtained, namely, existence
of travelling-waves, the global well-posedness, the failure of the maximum principle and the instability
of constant solutions [1, 2, 4]. The last two results are a consequence of the non-positivity of the kernel
K of I − ∂2xx defined fort > 0 andx ∈ R by

K(t, ·)(x) := F−1(e−t(4π
2|·|2+ψI(·)))(x). (6)

These two “bad properties” show that the discrete problem must be handled with care. Indeed, for mono-
tone models, a classical way to get numerical stability criteria for explicit scheme is to ensure that the
approximated problem satisfies the discrete maximum principle, which cannot be true for Equation (1).
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In [1], some numerical results regarding this equation havebeen obtained using an explicit finite differ-
ence scheme but the detailed numerical study was not performed. Hence, in this chapter, we would like
to go one step further investigating the numerical stability, consistency and convergence of a class of
explicit finite difference schemes approximating the Fowler equation.
The numerical stability is specially interesting here because the growth of the solution depends on fre-
quencies and time. Hence, the notion ofA-stability, also called strong stability, is not suitable nor
desirable. In the literature, some authors use another definition of stability, less restrictive than theA-
stability: theC-stability. This is an abbreviation for convergence stability and is linked with stability in
the Lax-Richtmyer sense. In this definition, a numerical scheme is stable for the norm|| · || if for all
T > 0, there exists a constantK(T ) > 0 independent of the time and space stepsδx, δt such that for all
initial datau0

||un|| ≤ K(T )||u0||, ∀ 0 ≤ n ≤ T

δt
,

whereun represents the approximated solution at the timetn = nδt. This definition allows the solution
to grow with time, which is the case for example for the equationut − uxx = cu. For theL2-stability, a
simple way to prove the numerical stability and specially toget stability criteria is Fourier analysis, see
Section 3. Hence, considering theC-stability, the Von Neumann condition is written as

∃C > 0,∃δt∗ > 0, such that∀δt ∈]0, δt∗];∀k ∈ Z

|g(k)| ≤ 1 + Cδt, (7)

whereg is the discrete amplification factor,k the wave number andC is a positive constant independent
of δx andδt. If C = 0, the Von Neumann condition coincides with theA-stability.
As we will see later in Section 2, the amplification of solutions of the Fowler equation also depends on
frequencies: low frequencies are slowly amplified whereas the high frequencies are dampened. Hence,
the notion ofC-stability is not adapted for this model because it considers only the amplification due to
time. To take into account this phenomenon, the “constant”C introduced in the Von Neumann condition
(7) should also depend on the space step in order to be able to control the amplification w.r.t. different
frequencies and this is not possible for a constant, by definition. Since high frequencies are usually
responsible of numerical instabilities, we are going to focus our attention on them. Thereafter, the idea
is to exhibit numerical stability conditions to ensure the validity of simulations. We then seek numerical
stability criteria such that the amplification factor satisfies:

∀|k| ≥ k0, |g(k)| ≤ 1, (8)

wherek0 is some threshold frequency. To ensure this inequality, we will exhibit two sufficient condi-
tions. The first one is rather unusual: it imposes to the spacestepδx to be smaller than a given positive
constant which depends on the ratioǫ/η of local diffusion to non-local anti-diffusion. We will in fact
check numerically that this condition is not necessary. Thesecond one looks more familiar. It is a classi-
cal CFL-type condition modified by aη δt/δx4/3 term, which stems from the nonlocal operator. We will
see in the numerical simulations that this condition is bothnecessary and sufficient to ensure numerical
stability.
For a comprehensive study, we also carry out an error analysis: we compute the truncation and phase
errors of several finite difference schemes. We finally investigate the convergence of these schemes.

The remaining of this chapter is organized as follows: in thenext section, we present finite difference
schemes with some discrete version for the fractional derivative and we study the continuous amplifica-
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tion factor of the linearized Fowler model. Sections 3 and 4 are, respectively, devoted to the stability and
error analysis. The paper ends with some remarks in section 5.

2 Preliminaries

2.1 Finite difference approximations

The spatial discretization is given by a set of pointsxj ; j = 0, ..., N and the discretization in time is
represented by a sequence of timest0 = 0 < ... < tn < ... < T . For the sake of simplicity we will
assume constant step sizesδx andδt in space and time respectively. The discrete solution at a point will
be represented byunj ≈ u(tn, xj). The schemes consist in computing approximate valuesunj of solution
to (1) on[nδt, (n + 1)δt[×[jδx, (j + 1)δx[ for n ∈ N andj ∈ N thanks to the following relation:

un+1
j − unj
δt

+ F (unj−1, u
n
j , u

n
j+1)− ǫ

unj+1 − 2unj + unj−1

δx2
+ η Iδx[un]j = 0, (9)

whereIδx andF are, respectively, the discretizations of the nonlocal andnonlinear terms. Note that the
Laplacian term is discretized using centred finite difference approximation. We begin by considering two
discretizationsI1

δx,I2
δx for the operatorI corresponding to formulae (2) and (5), respectively. In both

cases, we use a basic quadrature rule on the mesh([jδx, (j + 1)δx[)j∈N to approximate each integral
and we use a finite difference approximation of the derivative:

I1
δx[ϕ]j = δx−4/3

+∞
∑

l=1

l−1/3 (ϕj−l+1 − 2ϕj−l + ϕj−l−1) , (10)

I2
δx[ϕ]j =

4

9
δx−4/3

+∞
∑

l=1

l−7/3

(

ϕj−l − ϕj + l

(

ϕj+1 − ϕj−1

2

))

. (11)

Let us remark that we begin the sums atl = 1 in order to avoid the singularity of1/|z|1/3 and1/|z|7/3
at z = 0. We will comment later on the truncation of the series, see Section 4. Let us simply note that
if ϕj = 0 for all j < 0 then the series (10) is in fact a finite sum. Since the spatial mesh is given by
([jδx, (j + 1)δx[)j∈N, we will indeed assume thatϕj = 0 for all j < 0.

Remark 2. Using fractional calculus, we could also consider, for any causal functionϕ, the standard
Grünwald-Letnikov formula for the fractional derivativeI. Indeed, using the expression(3), I can be
approximated by the following two formulae

I3
δx[ϕ]j =

Γ(2/3)

δx4/3

∑

l≥0

(−1)l
(

4/3
l

)

ϕj−l =
Γ(2/3)

δx4/3

∑

l≥0

Γ(l − 4/3)

Γ(l + 1)Γ(−4/3)
ϕj−l, (12)

and

I3
δx[ϕ]j =

Γ(2/3)

δx4/3

∑

l≥0

[

−2/3
l

]

(ϕj−l+1 − 2ϕj−l + ϕj−l−1), (13)

where, for allα > 0 andk ∈ N we denote by

(

α

k

)

the binomial coefficient defined by

(

α

k

)

:=
α(α − 1) . . . (α− k + 1)

k!
= (−1)k

Γ(k − α)

Γ(−α)Γ(k + 1)
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and

[

p
k

]

denotes the negative binomial given by

[

p
k

]

=
p(p+ 1) · · · (p+ k − 1)

k!
= (−1)k

(−p
k

)

.

For more details about Gr̈unwald-Letnikov derivatives, we refer the reader to the book [14].

To analyze the stability of the discrete problem (9) using Fourier analysis, we investigate the follow-
ing linearized explicit scheme

un+1
j − unj
δt

+ v
unj − unj−1

δx
− ǫ

unj+1 − 2unj + unj−1

δx2
+ η Iδx[un]j = 0, (14)

wherev is a positive constant.

Remark 3. In the case where we consider thatv is a non-positive constant,∂xu is discretized using a
downstream finite difference approximation and soF is given by

F (unj−1, u
n
j , u

n
j+1) = v

unj+1 − unj
δx

.

Therefore, taking into account the discretization (10), the numerical scheme is written as follows:

un+1
j =

ǫ δt

δx2
unj+1 +

(

1− vδt

δx
− 2

ǫ δt

δx2

)

unj +

(

v δt

δx
+
ǫ δt

δx2

)

unj−1

− η δt

δx4/3

+∞
∑

l=1

l−1/3
(

unj−l+1 − 2unj−l + unj−l−1

)

, (15)

and since

+∞
∑

l=1

l−1/3
(

unj−l+1 − 2unj−l + unj−l−1

)

=

+∞
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

unj−l

− unj − (2− 2−1/3)unj−1,

the numerical scheme (15) reads

un+1
j =

ǫ δt

δx2
unj+1 +

(

1− v δt

δx
− 2

ǫ δt

δx2
− η δt

δx4/3

)

unj +

(

v δt

δx
+
ǫ δt

δx2
+ (2− 2−1/3)

η δt

δx4/3

)

unj−1

− η δt

δx4/3

+∞
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

unj−l. (16)

Considering now the discretization (11), the numerical scheme (14) can be written as follows:

un+1
j =

ǫ δt

δx2
unj+1 + (1− v δt

δx
− 2

ǫ δt

δx2
)unj + (

v δt

δx
+
ǫ δt

δx2
)unj−1

− 4

9

η δt

δx4/3

+∞
∑

l=1

l−7/3

(

unj−l − unj + l

(

unj+1 − unj−1

2

))

.
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Recall that the Riemann zeta function, for Re(s) > 1

ζ(s) =
∞
∑

n=1

n−s.

Since
+∞
∑

l=1

l−7/3

(

unj−l − unj + l

(

unj+1 − unj−1

2

))

=
1

2
ζ(

4

3
)unj+1 − ζ(

7

3
)unj

−
(

1

2
ζ(

4

3
)− 1

)

unj−1 +

+∞
∑

l=2

l−7/3 unj−l,

with ζ(43) ≈ 3.601, ζ(73 ) ≈ 1.415, the numerical scheme reads

un+1
j =

(

ǫ δt

δx2
− 4

9

η δt

δx4/3
1

2
ζ(

4

3
)

)

unj+1 +

(

1− v δt

δx
− 2

ǫ δt

δx2
+

4

9

η δt

δx4/3
ζ(

7

3
)

)

unj

+

(

v δt

δx
+
ǫ δt

δx2
+

4

9

η δt

δx4/3
(
1

2
ζ(

4

3
)− 1)

)

unj−1 −
4

9

η δt

δx4/3

+∞
∑

l=2

l−7/3 unj−l. (17)

Remark 4. If the Fowler equation(1) satisfied the maximum principle, a classical way to get sufficient
conditions for theL∞-stability of the scheme would be to ensure thatun+1

j is a convex combination of

(unj )j∈N. Though one can easily check that all coefficients sum up to 1,we remark that(l + 1)−1/3 −
2l−1/3+(l−1)−1/3 > 0 because the functionx→ x−1/3 is convex and−4

9
η δt
δx4/3

l−7/3 < 0 for all l > 1.

Thus,un+1
j is not a convex combination of(unj )j∈N. To get conditions of numerical stability we have to

rely on the Von Neumann method.

2.2 The continuous amplification factor

In this section, we are going to study the amplification factor of the following equation

∂tu(t, x) + v ∂xu(t, x) − ǫ ∂2xxu(t, x) + η I[u(t, ·)](x) = 0. (18)

Then,u(t, x) = eikx+σt is a solution to (18) if and only if the following dispersion relation is satisfied

σ + ivk + ǫk2 − η|k|4/3 1
2
Γ(

2

3
)
(

1− i
√
3 sign(k)

)

= 0,

wherek ∈ R andσ ∈ C. Indeed, we haveut(t, x) = σu(t, x), ux(t, x) = iku(t, x), uxx(t, x) =
−k2u(t, x) and

I[u(t, ·)](x) =

∫ +∞

0
|ξ|−1/3(−k2)eik(x−ξ)+σt dξ,

= −k2u(t, x)
∫ +∞

0
|ξ|−1/3e−ikξ dξ,

= −k2u(t, x)
[∫ +∞

0
|ξ|−1/3 cos(kξ) dξ + i

∫ +∞

0
|ξ|−1/3 sin(kξ) dξ

]

,

=

[

−|k|4/3 1
2
Γ(

2

3
) + k|k|1/3

√
3

2
Γ(

2

3
)

]

u(t, x),
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where we have used Fresnel integrals.
Hence the multiplicative factor which enables to get the solution at the timetn+1 from the solution at the
time tn is

Gcont(k) = e−δt φ(k), (19)

whereφ(k) = ǫ k2 − η 1
2Γ(

2
3 ) |k|4/3 + i

(

η
√
3
2 Γ(23 ) k|k|1/3 + vk

)

. Therefore

|Gcont(k)| = e−δt(ǫ k
2−η 1

2
Γ( 2

3
) |k|4/3).

Figure 1: Behaviour of Re(φ) for η, ǫ fixed. k0 =
(

1
2Γ

(

2
3

) η
ǫ

)3/2
is the threshold frequency.

Figure 1 shows that the modulus of the continuous amplification factor during one time step is con-
trolled byeα∗δt, with α∗ := −minRe(φ) = − Reφ(k∗) = 4

27

(

1
2Γ

(

2
3

))3 η3

ǫ2
, where

k∗ =

(

1

3
Γ

(

2

3

)

η

ǫ

)3/2

.

Thereby, the exact continuous amplification is maximum for frequencyk∗, and its modulus is bigger
than 1 only for frequencies in the range(0, k0]. The magnitude of this amplification during one time
step will also be proportional toδt. Obviously, this phenomenon affects only the low frequencies in
the range(0, k0] and strongly depends on the choice of parametersη and ǫ. This is why the standard
definitions of stability are not adapted for this model because they do not take into account the possibility
of amplification of certain frequencies.
And since high frequencies are usually responsible of numerical instabilities, we are going to focus our
attention on the high frequencies which are quickly dampened in Fowler’s continuous model in order to
exhibit numerical stability conditions.

3 Stability analysis

The purpose of this section is to study the numerical stability of schemes introduced in the previous
section and to exhibit stability criteria. We recall that the numerical stability enables to ensure that the
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difference between the approximated solution and the exactsolution remains bounded for allT > 0 with
δx, δt given. To get numerical stability criteria, we consider theVon Neumann or Fourier method. In
this approach, we assume that the discrete solution is written in as a single Fourier mode

unj = ûnke
ikxj , (20)

wherek ∈ Z is the wave number. Injecting (20) in the numerical scheme (14), we get

ûn+1
k = g(δx, δt, k)ûnk , (21)

whereg is the discrete amplification factor. In what follows, for simplicity, we denote indifferently
g(δx, δt, k) = g(δx, δt, θ), whereθ = kδx.

Remark 5. Note that due to the aliasing phenomenon it is enough to studythe discrete amplification
factor for θ ∈ [0, π].

Following the previous discussion concerning the notion ofnumerical stability (see Section 2), we
introduce the following definition:

Definition 1. We say that a numerical scheme which approximates the linearized Fowler equation prob-
lem is stable if the high frequencies are strongly stable that is to say:

∃ 0 < θ0 < π such that∀θ ∈ (θ0, π], |g(δx, δt, θ)| < 1,

whereg is the discrete amplification factor.

Lemma 1. Leta, b ∈ R andd ∈ R
+. Then we have

∀θ ∈ [0, 2π], |a + be−iθ| ≤ d if and only if a+ |b| ≤ d anda− |b| ≥ −d.

Proof. We can easily check this property, see Figure 2.
�

Proposition 1. The finite difference scheme(14) is stable in the sense of Definition 1 ifδx andδt satisfy
the following conditions:

• For I1
δx:

v δt

δx
+ 2

ǫ δt

δx2
+ (2− 2−1/3)

η δt

δx4/3
≤ 1, (22)

• For I2
δx:

v δt

δx
+ 2

ǫ δt

δx2
+

4

9

(

ζ(
4

3
)− 1

)

η δt

δx4/3
≤ 1, (23)

and if moreover, the space-stepδx is small enough in order that

8



Figure 2: Dashed circle (resp. continuous circle) is centred ata (resp. 0) and of radius|b| (resp.d).

• For I1
δx:

(1− 2−1/3)
η δt

δx4/3
≤ 2

ǫ δt

δx2
sin2(

θ0
2
), (24)

• For I2
δx:

4

9

(

ζ(
7

3
)− 1 + ζ(

4

3
)

)

η δt

δx4/3
≤ 2

ǫ δt

δx2
sin2(

θ0
2
), (25)

whereθ0 designates the stability threshold frequency.

Proof. For I1
δx.

For the numerical scheme (16), the amplification factor is given by:

g1(δx, δt, θ) = 1− v δt

δx
− 2

ǫ δt

δx2
(1− cos θ)− η δt

δx4/3
+

(

v δt

δx
+ (2− 2−1/3)

η δt

δx4/3

)

e−iθ

− η δt

δx4/3

∞
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

e−ilθ, (26)

whereθ = kδx. Since, for allN ∈ N

N
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

= (N + 1)−1/3 −N−1/3 − 2−1/3 + 1,

then
+∞
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

= 1− 2−1/3 > 0. (27)

9



Thus, from (26), to have|g1(δx, δt, θ)| ≤ 1 it is sufficient to have
∣

∣

∣

∣

1− v δt

δx
− 4 sin2(

θ

2
)
ǫ δt

δx2
− η δt

δx4/3
+

(

v δt

δx
+ (2− 2−1/3)

η δt

δx4/3

)

e−iθ
∣

∣

∣

∣

≤

1− η δt

δx4/3
(1 − 2−1/3), (28)

where we assume that
η δt

δx4/3
(1− 2−1/3) < 1. (29)

Next from Lemma 1, (28) is satisfied if and only if we have














1− 4
ǫ δt

δx2
sin2(

θ

2
) +

η δt

δx4/3
(1− 2−1/3) ≤ 1− (1− 2−1/3)

η δt

δx4/3
,

1− 2
v δt

δx
− 4

ǫ δt

δx2
sin2(

θ

2
)− (3− 2−1/3)

η δt

δx4/3
≥ −

(

1− (1 − 2−1/3)
η δt

δx4/3

)

.

A sufficient condition is then

(1− 2−1/3)
η δt

δx4/3
≤ 2

ǫ δt

δx2
sin2(

θ

2
), (30)

v δt

δx
+ 2

ǫ δt

δx2
+ (2− 2−1/3)

η δt

δx4/3
≤ 1.

Let 0 < θ0 < π. Then, for allθ ∈ (θ0, π], condition (30) can be rewritten as

(1− 2−1/3)
η δt

δx4/3
≤ 2

ǫ δt

δx2
sin2(

θ0
2
).

Therefore, the numerical scheme (14) with the discretization I1
δx is stable in the sense of Definition 1 if

the space and time stepsδt, δx satisfy the following conditions

δx2/3 ≤ 2

(1− 2−1/3)
sin2(

θ0
2
)
ǫ

η
, (31)

v δt

δx
+ 2

ǫ δt

δx2
+ (2− 2−1/3)

η δt

δx4/3
≤ 1. (32)

Note that from condition (32), we can see that hypothesis (29) is satisfied.
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For I2
δx. Injecting (20) in (17), the amplification factorg2 associated to this scheme is given by:

g2(δx, δt, θ) := eiθ
(

ǫ δt

δx2
− 1

2
ζ(

4

3
)
4

9

η δt

δx4/3

)

+ 1− v δt

δx
− 2

ǫ δt

δx2
+

4

9
ζ(

7

3
)
η δt

δx4/3

+ e−iθ
(

v δt

δx
+
ǫ δt

δx2
+

4

9
(
1

2
ζ(

4

3
)− 1)

η δt

δx4/3

)

− 4

9

η δt

δx4/3

∑

l≥2

l−7/3e−iθl,

= 1− v δt

δx
− 4

ǫ δt

δx2
sin2(

θ

2
) +

4

9
ζ(

7

3
)
η δt

δx4/3
− i

4

9
ζ(

4

3
)
η δt

δx4/3
sin θ

+

(

v δt

δx
− 4

9

η δt

δx4/3

)

e−iθ − 4

9

η δt

δx4/3

+∞
∑

l=2

l−7/3e−iθl,

= 1− v δt

δx
− 4

ǫ δt

δx2
sin2(

θ

2
) +

4

9

(

ζ(
7

3
)− ζ(

4

3
) cos θ

)

η δt

δx4/3

+

(

v δt

δx
+

4

9

(

ζ(
4

3
)− 1

)

η δt

δx4/3

)

e−iθ − 4

9

η δt

δx4/3

+∞
∑

l=2

l−7/3e−iθl. (33)

Since
+∞
∑

l=2

l−7/3 = ζ(
7

3
)− 1 ≈ 0.415,

from (33),|g2(δx, δt, θ)| ≤ 1 if
∣

∣

∣

∣

1− v δt

δx
− 4

ǫ δt

δx2
sin2(

θ

2
) +

4

9

(

ζ(
7

3
)− ζ(

4

3
) cos θ

)

η δt

δx4/3
+

(

v δt

δx
+

4

9

(

ζ(
4

3
)− 1

)

η δt

δx4/3

)

e−iθ
∣

∣

∣

∣

≤

1− 4

9

(

ζ(
7

3
)− 1

)

η δt

δx4/3
, (34)

where we assume that
4

9

(

ζ(
7

3
)− 1

)

η δt

δx4/3
< 1. (35)

From Lemma 1, we have that (34) is satisfied if and only if














1− 4
ǫ δt

δx2
sin2(

θ

2
) +

4

9

(

ζ(
7

3
)− 1 + ζ(

4

3
)(1− cos θ)

)

η δt

δx4/3
≤ 1− 4

9

(

ζ(
7

3
)− 1

)

η δt

δx4/3
,

1− 2
v δt

δx
− 4

ǫ δt

δx2
sin2(

θ

2
) +

4

9

(

ζ(
7

3
) + 1− ζ(

4

3
)(1 + cos θ)

)

η δt

δx4/3
≥ −1 +

4

9

(

ζ(
7

3
)− 1

)

η δt

δx4/3
.

A sufficient condition is then

4

9

(

ζ(
7

3
)− 1 + ζ(

4

3
)

)

η δt

δx4/3
≤ 2

ǫ δt

δx2
sin2(

θ

2
), (36)

v δt

δx
+ 2

ǫ δt

δx2
+

4

9

(

ζ(
4

3
)− 1

)

η δt

δx4/3
≤ 1. (37)

Let 0 < θ0 < π. Then, for allθ ∈ (θ0, π], condition (36) is rewritten as

4

9

(

ζ(
7

3
)− 1 + ζ(

4

3
)

)

η δt

δx4/3
≤ 2

ǫ δt

δx2
sin2(

θ0
2
), (38)
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whereζ(73)− 1 + ζ(43) ≈ 4.02.
Note again that from condition (37), we can see that hypothesis (35) is satisfied.

�

Notations. We will denote byCFL1
mod andCFL2

mod the following modified Courant-Friedrichs-Lewy
conditions

CFL1
mod =

v δt

δx
+ 2

ǫ δt

δx2
+ (2− 2−1/3)

η δt

δx4/3
≤ 1,

CFL2
mod =

v δt

δx
+ 2

ǫ δt

δx2
+

4

9

(

ζ(
4

3
)− 1

)

η δt

δx4/3
≤ 1.

Some remarks.

1. Condition (22) (resp. (23)) can be seen as an extension of theclassical CFL condition with in addition
the anti-diffusive term η δt

δx4/3
. This criterion is not more restrictive than the usual condition of stability

without the nonlocal operator which corresponds to the linearized Burgers equation with viscous term.
This condition is very restrictive on the space and time steps in particular because of the termǫ δtδx2 which
stems from the explicit discretization of the Laplacian. Inorder to have less restrictive conditions, we
can implicit some terms. For instance, if we decide to implicit the nonlocal and the Laplacian terms,
condition (22) (resp. (23) ) is reduced to

v δt

δx
< 1.

We find again the well-known CFL condition.

Figure 3 shows the behaviour of amplification factors forI1
δx andI2

δx. We can see, forI1
δx, that the

maximal value ofδt which ensures the numerical stability isδtmax ≈ 0.042 and that for this value we
haveCFL1

mod ≈ 0.99. Figure 4 displays the behaviour of the modulus of the amplification factor with

Figure 3: Amplification factors forI1
δx (blue line) andI2

δx (dashed line).

discretizationI1
δx as a function ofθ. We can notice that the high frequencies are strongly amplified. This

phenomenon illustrates the numerical instability becausehigh frequencies should be quickly dampened.
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Figure 4: Amplification factor forI1
δx with CFL1

mod ≈ 1.22.

Figure 5 shows that the low frequencies are slowly amplified.This phenomenon is not due to the
instability of numerical schemes but stems from the model. In Tables 1, 2 and 3 (see Section 4), we have
studied the quotient |gi|

|Gcont| , i = 1, 2. We can see that globally the discrete schemes dampen more than
the continuous problem when the stability conditions (22) and (23) are satisfied.

Figure 5: Amplification factorI1
δx with η = 8, v = 1, ǫ = 0.5 andδx = 0.05, δt = 0.001. For these

coefficients,CFL1
mod ≈ 0.94.

2. Conditions (24) and (25) are unusual and deserve some explanations. The term proportional toη δt
δx4/3

represents the amount of nonlocal anti-diffusion while theterm proportional toǫ δtδx2 corresponds to the
amount of classical diffusion. Both conditions simply meanthat, for frequencies above the thresholdθ0,
diffusion should control nonlocal anti-diffusion.
We can see that conditions (24) and (25) cannot be satisfied for low frequencies. Indeed, forθ0 close to
0, these criteria impose to the space step to vanish, which isnot possible. Let us note that this is coher-
ent because the low frequencies are not “strongly stable”, they are slowly amplified by the continuous

13



problem. We can see in Figure 6 that condition (24) is not necessary. Indeed, if we choose the threshold
θ0 = π/2 “large enough”, condition (24) reads

δx ≤ 0.25, (39)

and we have plotted|g1| in function ofθ for δx = 0.5 which does not satisfy the condition (39) but we
can still notice that the numerical scheme is stable. All numerical simulations that we performed confirm
this statement. This leads us to think that condition (24) (resp. (25)) is too pessimistic. In fact to estimate
the magnitude of sums

∞
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

e−ilθ,

(resp.
∑+∞

l=2 l
−7/3e−ilθ), we just controlled the sum of the modulus

∞
∑

l=2

[

(l + 1)−1/3 − 2l−1/3 + (l − 1)−1/3
]

,

(resp.
∑+∞

l=2 l
−7/3). In this manner, we probably miss some cancellation effectof the e−ilθ. But we

could not find any other way to estimate these polylogarithm series.

Figure 6: Amplification factorg1 for η = v = 1, ǫ = 0.1 andδx = 0.5, δt = 0.01. For these coefficients,
we haveCFL1

mod ≈ 0.0584.

3. Finally, in practice, the single condition (22) (resp. (23)) can be used to ensure the numerical stability
of the scheme (14) withI1

δx (resp.I2
δx). We saw in Figures 5 and 6 that the scheme with the discretization

I1
δx is stable if condition (22) is satisfied. Figure 7 shows that the high frequencies are amplified, when

condition (23) is violated. This phenomenon is only due to numerical instability because the continuous
problem quickly dampens the high frequencies.
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Figure 7: Gain function forI2
δx for η = v = ǫ = 1, δx = 0.1, δt = 0.05. For these coefficients, we have

CFL2
mod ≈ 1.3.

4 Error analysis

4.1 Truncation error

In this section, we analyze the truncation error. Finite difference scheme (14) is consistent with the
linearized partial differential equation if for any smoothfunctionφ(t, x) the local errorEδt,δx satisfies

Eδt,δx = Pφ− P iδt,δxφ→ 0, (40)

asδt, δx → 0 with










Pφ = φt + v φx − ǫ φxx + η I[φ],

P iδt,δxφ =
φn+1
j − φnj
δt

+ v
φnj − φnj−1

δx
− ǫ

φnj+1 − 2φnj + φnj−1

δx2
+ η I iδx[φ],

for i = 1, 2.

Remark 6. The practical implementation of the schemes requires to make some truncations. First,
we consider a bounded domain[0, T ] × [0,D] and to simplify, we also assume thatδt = T/Nδt and
δx = D/Nδx for some integersNδx andNδt. Another truncation concerns the integral operator for
the nonlocal termI. We replace

∫ +∞
0 with

∫ A
0 and in the finite difference approximations(10) and

(11) series
∑∞

l=1 are replaced with partial sums
∑Aδx

l=1 , whereA = Aδx δx. However, the truncation
parameterA has to be chosen judiciously. A “short memory” principle hasbeen investigated to choose
this parameter. This principle is based on the fact that terms l−7/3 and l−1/3 in discretizations(10) and
(11) decrease withl therefore, we have to take into account the behaviour ofϕ(x) only in the recent
past, i.e. in the interval[x − L, x], whereL > 0 is called the “memory length”. Finally, the use of the
short-memory principle leads to the simple replacement of

∑+∞
l=1 by

∑Aδx
l=1 , whereAδx = [ Lδx ] [14].

Note that the truncation parameterA also strongly depends on the discretization of the nonlocalterm
I becausel−7/3 decreases more quickly thanl−1/3. For the sake of simplicity, we will denote byA the
truncation parameter for the discretizations(10) and (11).
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Proposition 2 (Local error). The local error of the numerical scheme(14) satisfies:

• For I1
δx:

|E1
δt,δx,A| ≤ O(δt) +O(δx2/3) +O(A−1/3) +O

(

A−1/3 δx
)

+O
(

A2/3 δx2
)

. (41)

• For I2
δx:

|E2
δt,δx,A| ≤ O(δt)+O(δx2/3)+O(A−1/3)+O

(

A−4/3 δx
)

+O
(

A2 δx3
)

+O
(

Aδx2
)

. (42)

Proof. From Taylor series, we have

φt (tn, xi)−
φn+1
i − φni
δt

= O(δt), (43)

φx (tn, xi)−
φni − φni−1

δx
= O(δx), (44)

φxx (tn, xi)−
φni+1 − 2φni + φni−1

δx2
= O(δx2). (45)

Let us now study the truncation error for the nonlocal termI.
For I1

δx: We rewrite (2) as follows

I[φ(tn, ·)](xi) =
Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
ξ−1/3φxx(t

n, xi − ξ) dξ +

∫ δx
2

0
ξ−1/3φxx(t

n, xi − ξ) dξ

+

∫ A

A+ δx
2

ξ−1/3φxx(t
n, xi − ξ) dξ +

∫ +∞

A
ξ−1/3φxx(t

n, xi − ξ) dξ, (46)

and the discretization (10) becomes

I1
δx[φ(t

n, ·)]i :=
Aδx
∑

j=1

δx ξ
−1/3
δx Φnδx =

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
ξ
−1/3
δx Φnδxdξ,

with ξδx := jδx andΦnδx =
φni−j+1

−2φni−j+φ
n
i−j−1

δx2
. Using (46), we then get the following relation:

I1
δx[φ(t

n, ·)]i − I[φ(tn, ·)](xi) =

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx

(

ξ
−1/3
δx Φnδx − ξ−1/3φxx(t

n, xi − ξ)
)

dξ

−
∫ δx

2

0
ξ−1/3φxx(t

n, xi − ξ) dξ +

∫ A+ δx
2

A
ξ−1/3φxx(t

n, xi − ξ) dξ

−
∫ +∞

A
ξ−1/3φxx(t

n, xi − ξ) dξ,

= T1 − T2 + T3 − T4.

Let us study the termT1. Since

ξ
−1/3
δx Φnδx − ξ−1/3φxx(t

n, xi − ξ) =
(

ξ
−1/3
δx − ξ−1/3

)

φxx(t
n, xi − ξ)

+ ξ
−1/3
δx (Φnδx − φxx(t

n, xi − ξ)) ,
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then

T1 =

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx

(

ξ
−1/3
δx − ξ−1/3

)

φxx(t
n, xi − ξ) dξ

+

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
ξ
−1/3
δx (Φnδx − φxx(t

n, xi − ξ)) dξ,

= T1,1 + T1,2.

By the mean value theorem applied toz → |z|−1/3, we have for allξ ∈ [(j − 1
2)δx; (j +

1
2 )δx]

|ξ−1/3
δx − ξ−1/3| ≤ sup

z∈[(j− 1

2
)δx;(j+ 1

2
)δx]

|1
3
z−4/3| |ξδx − ξ|,

≤ 1

3
|(j − 1

2
)δx|−4/3|ξδx − ξ|,

≤ 1

6
|(j − 1

2
)δx|−4/3δx.

Thus, integrating over[(j − 1
2 )δx; (j +

1
2 )δx] we get

|T1,1| ≤ C δx2/3
Aδx
∑

j=1

1

(j − 1/2)4/3
≤ C δx2/3, (47)

because
∑

j≥1
1

(j−1/2)4/3
< +∞ andC is a positive constant which depends on||φxx||L∞((0,T )×R).

Moreover, by classical midpoint quadrature rule

∫ (j+1/2)δx

(j−1/2)δx
φxx(t

n, xi − ξ) dξ = δx φxx(t
n, xi − ξδx) +

δx3

24
φ4x(t

n, xi − ηj), (48)

with ηj ∈ [(j − 1/2)δx; (j + 1/2)δx] then

T1,2 =

Aδx
∑

j=1

(jδx)−1/3

[

δxΦnδx −
∫ (j+1/2)δx

(j−1/2)δx
φxx(t

n, xi − ξ) dξ

]

,

=

Aδx
∑

j=1

(jδx)−1/3

[

δxΦnδx − δx φxx(t
n, xi − ξδx)−

δx3

24
φ4x(t

n, xi − ηj)

]

.

From Taylor series, we have

φxx(t
n, xi − ξδx) = Φnδx −

δx2

12
φ4x(t

n, xi − ξδx) +O(δx4), (49)

thus we obtain

T1,2 =

Aδx
∑

j=1

(jδx)−1/3

{

δx3

12
φ4x(t

n, xi − ξδx)−
δx3

24
φ4x(t

n, xi − ηj) +O(δx5)

}

.
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We finally get

|T1,2| ≤ O(δx8/3)

Aδx
∑

j=1

1

j1/3
= O(δx8/3)



1 +

Aδx
∑

j=2

1

j1/3



 ,

= O(δx8/3)

(

1 +

∫ Aδx

0
y−1/3 dy

)

,

which implies that
|T1,2| ≤ O(δx8/3) +O(A2/3 δx2), (50)

becauseAδx = A
δx .

We next control the termT2 by

|T2| ≤ ||φxx||L∞((0,T )×R)

∫ δx
2

0
|ξ|−1/3 dξ = Cδx2/3. (51)

We estimateT3 as follows:

|T3| ≤ ||φxx||L∞((0,T )×R)

∫ A+δx

A
|ξ|−1/3 dξ,

≤ ||φxx||L∞((0,T )×R) A
−1/3 δx. (52)

Finally, using an integration by parts, the termT4 is written as

T4 =

∫ +∞

A
ξ−1/3φxx(t

n, xi − ξ) dξ,

= −A−1/3φx(t
n, xi −A) +

1

3

∫ +∞

A
ξ−4/3φx(t

n, xi − ξ) dξ,

hence, we obtain
|T4| ≤ CA−1/3, (53)

whereC is a positive constant which depends on||φx||L∞((0,T )×R).
Hence, using relations (43), (44), (45), (47), (50), (51), (52) and (53), we obtain

|E1
δx,δt,A| = |Pφ(tn, xi)− P 1

δt,δxφ| ≤ O(δx2/3) +O(δt) +O(A−1/3)

+O(A2/3 δx2) +O
(

A−1/3 δx
)

,

which completes the proof forI1
δx.

For I2
δx: As previously, we rewrite (5) as

I[φ(tn, ·)](xi) =

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
Φ(tn, ξ) |ξ|−7/3 dξ +

∫ δx
2

0
Φ(tn, ξ) |ξ|−7/3 dξ

+

∫ A

A+ δx
2

Φ(tn, ξ) |ξ|−7/3 dξ +

∫ +∞

A
Φ(tn, ξ) |ξ|−7/3 dξ,
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with Φ(tn, ξ) = 4
9 (φ(t

n, xi − ξ)− φ(tn, xi) + φx(t
n, xi) ξ) and the approximated integral (11) be-

comes

I2
δx[φ(t

n, ·)]i :=

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
ξ
−7/3
δx Φnδxdξ,

with Φnδx = 4
9

(

φni−j − φni +
φni+1

−φni−1

2 j
)

andξδx = jδx.

Let us now estimate the error on the nonlocal term.

I2
δx[φ(t

n, ·)]i − I[φ(tn, ·)](xi) =

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx

(

Φnδxξ
−7/3
δx − Φ(tn, ξ)|ξ|−7/3

)

dξ

−
∫ δx

2

0
Φ(tn, ξ) |ξ|−7/3 dξ +

∫ A+ δx
2

A
Φ(tn, ξ) |ξ|−7/3 dξ

−
∫ +∞

A
Φ(tn, ξ) |ξ|−7/3 dξ,

= T1 − T2 + T3 − T4.

Let us study the termT1. As previously forI1
δx, we rewriteT1 as

T1 =

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
(ξ

−7/3
δx − |ξ|−7/3)Φ(tn, ξ) + ξ

−7/3
δx (Φnδx − Φ(tn, ξ)) dξ,

= T1,1 + T1,2.

By the mean value theorem applied toz → |z|−7/3, we have for allξ ∈ [(j − 1/2)δx; (j + 1/2)δx]

|ξ−7/3
δx − ξ−7/3| ≤ sup

z∈[(j−1/2)δx;(j+1/2)δx]
|7
3
z−10/3| |ξδx − ξ|,

≤ 7

6
δx

1

|(j − 1/2)δx|10/3 ,

=
7

6
δx−7/3 1

(j − 1/2)10/3
.

Next, by Taylor-Lagrange formula, we have

|T1,1| =
4

9

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
|ξ−7/3
δx − |ξ|−7/3| |φ(tn, xi − ξ)− φ(tn, xi) + φx(t

n, xi) ξ| ,

≤ C

Aδx
∑

j=1

∫ (j+1/2)δx

(j−1/2)δx
δx−7/3 1

(j − 1/2)10/3
||φxx||L∞((0,T )×R)

ξ2

2
dξ,

≤ Cδx−7/3
Aδx
∑

j=1

1

(j − 1/2)10/3

∫ (j+1/2)δx

(j−1/2)δx
ξ2 dξ,

≤ Cδx−7/3
Aδx
∑

j=1

1

(j − 1/2)10/3

(

δx3j2 + δx3
)

,

≤ Cδx2/3,
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because
∑∞

j=1
j2

(j−1/2)10/3
<∞. C denotes a positive constant which depends on||φxx||L∞((0,T )×R) and

may vary from line to line.
Moreover, using again midpoint quadrature rule, we have

∫ (j+1/2)δx

(j−1/2)δx
Φ(tn, ξ) dξ = δxΦ(tn, jδx) +

δx3

24
Φxx(t

n, ηj),

with ηj ∈ [(j − 1
2 )δx, (j +

1
2 )δx]. Hence,

T1,2 =

Aδx
∑

j=1

ξ
−7/3
δx

[

δxΦnδx − δxΦ(tn, jδx) − δx3

24
Φxx(t

n, ηj)

]

.

But using again Taylor expansion, we get

φx(t
n, xi) =

φ(tn, xi+1)− φ(tn, xi−1)

2δx
− δx2

6
φ3x(t

n, xi) +O(δx3),

and so

Φnδx − Φ(tn, jδx) =
4

9

[

φni−j − φni +
φni+1 − φni−1

2
j − φ(tn, xi − jδx) + φ(tn, xi)− φx(t

n, xi)jδx

]

,

=
4

9

[

ξδx
δx2

6
φ3x(t

n, xi) + jO(δx4)

]

.

Thus,

T1,2 = C

Aδx
∑

j=1

ξ
−7/3
δx

[

ξδx
δx3

6
φ3x(t

n, xi) + jO(δx5)− δx3

24
Φxx(t

n, ηj)

]

,

= C

Aδx
∑

j=1

ξ
−7/3
δx

[

ξδx
δx3

6
φ3x(t

n, xi) + jO(δx5)− 4

9

δx3

24
φxx(t

n, xi − ηj)

]

.

We finally get

|T1,2| ≤ C

Aδx
∑

j=1

(

j−4/3δx5/3 + jO(δx5) + δx3
)

,

= O(δx5/3) +O
(

A2 δx3
)

+O
(

Aδx2
)

,

whereC is a positive constant which depends on||φ3x||L∞((0,T )×R) and||φxx||L∞((0,T )×R).
Let us now studyT2. Using Taylor-Lagrange formula, we have

|T2| ≤ C||φxx||L∞((0,T )×R)

∫ δx
2

0

ξ2

|ξ|7/3 dξ,

≤ O(δx2/3),
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whereC is a positive constant.
Let us next considerT3:

T3 =

∫ A+ δx
2

A
|ξ|−7/3Φ(tn, ξ) dξ,

=
4

9

∫ A+ δx
2

A
[φ(tn, xi − ξ)− φ(tn, xi) + φx(t

n, xi)ξ] |ξ|−7/3 dξ.

Then

|T3| ≤ C

∫ A+ δx
2

A
(|ξ|−7/3 + |ξ|−4/3) dξ,

≤ C
(

A−7/3 +A−4/3
)

δx,

≤ O
(

δxA−4/3
)

,

with C a positive constant which depends on||φ||L∞((0,T )×R) and||φx||L∞((0,T )×R).
And since

|T4| ≤ 4

9

∫ +∞

A
|φ(tn, xi − ξ)− φ(tn, xi)| |ξ|−7/3 dξ +

4

9

∫ +∞

A
|φx(tn, xi)| |ξ|−4/3 dξ,

≤ CA−1/3,

whereC is a positive constant which depends on||φ||L∞((0,T )×R) and||φx||L∞((0,T )×R), we finally get

|E2
δx,δt,A| := |Pφ(tn, xi)− P 2

δt,δxφ| ≤ O(δt) +O(δx2/3) +O(A−1/3) +O
(

A−4/3 δx
)

+ O
(

A2 δx3
)

+O
(

Aδx2
)

.

The proof of this proposition is now completed. �

Remark 7. From previous Proposition, we can see that the numerical scheme(14) with I1
δx (resp.I2

δx)
is consistent ifδx << A−1/3 (resp.δx << A−2/3).

4.2 Convergence experiments.

In this section, we investigate the convergence using numerical simulations. Despite much effort we are
unable to prove theoretically the convergence of the numerical solution towards the exact continuous
solution. Indeed, the Lax procedure “stability+ consistence= convergence” cannot be applied here due
to the instability of low frequencies.
In what follows,l1-norm is used to measure the accuracy of approximated solutions. Thus, we analyze
the following error

E1 =
1

N

N
∑

n=0

(|u1j (T )− u2j (T )|), (54)

whereu1, u2 are, respectively, computed for space stepsδx/2 andδx/4, until a final timeT .
Figure 9 shows the numerical convergence rates obtained with the initial data displayed in Figure 8.
These rates were obtained usingδx = 10−1, 10−2, 10−3, 10−4. We plot the logarithm of the errorE1

versus the logarithm ofδx.
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Figure 8: Initial data used for numerical experiments.

Figure 9: Convergence in space forI1
δx (red) andI2

δx (blue). Dotted line has slope2/3.

4.3 Phase error

Numerical schemes produce, according to cases, results ahead of or delayed w.r.t exact solutions. In this
section, we are interested in the error made on the velocity introduced by the discretization. Let us first
note that, in addition to the anti-diffusive effect, the nonlocal term is also responsible of the motion of
the initial data. Indeed, we saw in Section 2 that the continuous amplification factor has an imaginary

parte
−i

(

η
√

3

2
Γ( 2

3
) k|k|1/3+ vk

)

δt
. Therefore, the advection term is not the unique factor of displacement.

It is the error on the argument−δt(v k +
√
3
2 Γ(23 )η k|k|1/3) that causes the phase error. To evaluate this

error, we rewrite the discrete amplification factorgj introduced in Section 3 as

gj = |gj |e−iθdj ,
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for j = 1, 2, whereθdj is the argument of the discrete amplification factorgj . The phase lag during one
time step is then given by

Ej = (v k +

√
3

2
Γ(

2

3
)η k |k|1/3)δt− θdj .

Thus, ifEj is positive, the numerical wave goes slower than the physical wave and it goes faster ifEj is
negative. We have computed, in Tables 1, 2 and 3, the phase delay after one oscillation

∆j = 1−
θdj

(v k +
√
3
2 Γ(23 )η k |k|1/3)δt

, for j = 1, 2,

for different values ofCr = v δt
δx ,Df = 2 ǫ δt

δx2
andFo =

η δt
δx4/3

.
We remark that scheme with the discretizationI2

δx involves a delay larger than the model withI1
δx.

4.4 Discrete amplification vs. continuous amplification factors

Let us define

G1 =
|g1|

|Gcont|
, G2 =

|g2|
|Gcont|

,

for different values ofCr = v δt
δx , Df = 2 ǫ δt

δx2 andFo = η δt
δx4/3

. Results are reported in Tables 1, 2 and

3. We haveCFLimod = Cr + Df + λiFo, whereλ1 = 2 − 2−1/3, λ2 = 4
9

(

ζ(43)− 1
)

. When the
conditionCFLimod > 1 is violated becauseCr or Df are close to one, we note that high frequencies
θ > π/2 are more amplified by the discrete schemes than by the exact continuous problem. Whereas
when the conditionCFLimod > 1 is violated becauseFo is close to one, high frequenciesθ > π/2
are less amplified by the discrete schemes than by the continuous problem, as can be checked in Table
3. This is one unexpected benefit of the discretization scheme in the unfavourable case where nonlocal
anti-diffusion is predominant. If we take a closer look at Table 3 we notice that|g2| may be greater than
one even ifCFL2

mod < 1. This is due to the fact thatη being big, the stability threshold frequencyθ0 is
close toπ, the aliasing limit frequency.

5 Concluding remarks

We have presented in this work a first investigation of finite differences schemes approximating the
Fowler equation. We saw that the anti-diffusive behaviour of the nonlocal term does not enable to con-
sider the classical notion of stability. Nevertheless, considering only the behaviour of the high frequen-
cies (which should be quickly dampened), we exhibit numerical stability criteria which can be used to
make simulations. Numerical computations have shown that numerical schemes dampened more than
the continuous problem. Finally, consistency property hasbeen proved and convergence of schemes has
been investigated.
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