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Abstract

A class of finite difference schemes for solving a fracticarai-diffusive equation, recently pro-
posed by Andrew C. Fowler to describe the dynamics of dusesyrisidered. Their linear stability
is analyzed using the standard Von Neumann analysis: ityatyiiteria are found and checked nu-
merically. Moreover, we investigate the consistency antergence of these schemes.

Keywords: Anti-diffusive fractional operator, Finite difference @mpximations, Von Neumann stability
analysis, Error analysis.

Mathematics Subject Classification:35L65, 45K05, 65M12, 65M06.

1 Introduction

Partial Differential Equations with nonlocal or fractidraperators are widely used to model scientific
problems in mechanics, physics, signal processing, seex@ample [B] and references therein. We
consider in this chapter a nonlocal conservation law whigbears in the formation and dynamics of
sand structures such as dunes and ripdle§ ]7, 11]. Sincegérierally impossible to obtain analyti-
cal solutions of these nonlocal models, one must rely on migalesolutions. In the last few decades,
significant advances in numerical analysis and computtiomplementation of numerical methods for
nonlocal/fractional PDEs have been made. For instaft@r{fiose a finite volume method to approxi-
mate the solutions of a fractal scalar conservation lav,igh® say a conservation law regularized by a
diffusivefractional power of the Laplacian operator aphd [I3, 15] usifidifference methods to approx-
imate fractional diffusive equations.

In this chapter, we develop the basic numerical analysibefdllowing evolution equation proposed by
A.C. Fowler (se€[]7],[I8] and 9] for more details) to study thonlinear dune formation:

02
Owu(t, ) + Oy <7> (t,z) +nZTu(t,)](z) — e 2u(t,z) =0, 1)
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whereu = u(t, x) represents the dune height ahds a nonlocal operator defined as follows: for any
Schwartz functionp € S(R) and anyz € R,

00 1
Ilol(x) = /0 €7 (@ — €) de. @)

The second and fourth terms of equatiph (1) correspond tadhénear and dissipative terms respec-
tively, while the third term is the nonlocal term, which istiagissipative as we will show later on. The
positive parameters(resp.n) quantify the amount of local diffusion (resp. nonlocaliatitfusion).

Remark 1. For causal functions (i.eo(z) = 0 for z < 0), this operator is, up to a multiplicative
constant, the Riemann-Liouville integral which is definedalows:

L (@9  _d?p
5 T e ) = e @

with I" the Euler function.

Many numerical methods for the evaluation of fractionalewridtegrals and the solution of fractional
order equations are proposed in the literature. Usuathe &ind spatial fractional derivatives are consid-
ered: we refer for instance tf] [5,] 12] 15].

In our case, the integral operatbrcan be seen as a fractional power of or2lés of the Laplacian with
the bad sign. Indeed, it has been proved #hhas the following Fourier transforrf] [1]:

F(Z[))(&) = vz (&) Fep(8), (4)

whereyz(&) = —azyg\% +z‘b1§]§\§ with az = 272T(2), by = 272 V/3T(2) and.F denotes the Fourier
transform defined fof € L'(R) by: for all ¢ € R

F1©) = [ e (o) o
R
Formula [) stems from the following integral formufa [1]:

4 /0 oo +2) — o) = ¢/ ()2

Zlpl(x) = 5

9/ BUE z. (5)

Finally, equation [[1) involves two antagonistic terms: #mei-diffusive operato which creates insta-
bilities and the diffusion operatord?, which controls these perturbations.

Recently, some theoretical results regarding the Fowlateh@d) have been obtained, namely, existence
of travelling-waves, the global well-posedness, the failof the maximum principle and the instability
of constant solutiond[{] 2] 4]. The last two results are sequence of the non-positivity of the kernel
K of T — 92, defined fort > 0 andz € R by

K(t,)(x) = FH (e 0TI @), (6)

These two “bad properties” show that the discrete problerstinelhandled with care. Indeed, for mono-
tone models, a classical way to get numerical stabilityedetfor explicit scheme is to ensure that the
approximated problem satisfies the discrete maximum grliecihich cannot be true for Equatidn (1).



In [f], some numerical results regarding this equation Hmen obtained using an explicit finite differ-
ence scheme but the detailed numerical study was not pextbriience, in this chapter, we would like
to go one step further investigating the numerical stabitibnsistency and convergence of a class of
explicit finite difference schemes approximating the Faowelguation.
The numerical stability is specially interesting here huseathe growth of the solution depends on fre-
guencies and time. Hence, the notion Afstability, also called strong stability, is not suitablern
desirable. In the literature, some authors use anotherititafiof stability, less restrictive than thé-
stability: theC-stability. This is an abbreviation for convergence stgbdnd is linked with stability in
the Lax-Richtmyer sense. In this definition, a numericalescé is stable for the nort - || if for all
T > 0, there exists a constahf(7") > 0 independent of the time and space st&psit such that for all
initial datawug -
"Il < K(D)lluoll, VO<sn< o,
whereu™ represents the approximated solution at the time- ndt. This definition allows the solution
to grow with time, which is the case for example for the equrati; — u,, = cu. For theL?-stability, a
simple way to prove the numerical stability and speciallgéb stability criteria is Fourier analysis, see
Sectior[B. Hence, considering thestability, the Von Neumann condition is written as

3C > 0,36t* > 0, such thatv'dt €]0, 6t*];Vk € Z
lg(k)| <1+ Cot, @)

whereg is the discrete amplification factdt,the wave number and is a positive constant independent
of 6= anddt. If C' = 0, the Von Neumann condition coincides with tHestability.

As we will see later in Sectiof] 2, the amplification of solatoof the Fowler equation also depends on
frequencies: low frequencies are slowly amplified wherbashigh frequencies are dampened. Hence,
the notion ofC-stability is not adapted for this model because it considelly the amplification due to
time. To take into account this phenomenon, the “constatititroduced in the Von Neumann condition
() should also depend on the space step in order to be abtstmkthe amplification w.r.t. different
frequencies and this is not possible for a constant, by dieimi Since high frequencies are usually
responsible of numerical instabilities, we are going taisour attention on them. Thereafter, the idea
is to exhibit numerical stability conditions to ensure tladidity of simulations. We then seek numerical
stability criteria such that the amplification factor siis:

wherekg is some threshold frequency. To ensure this inequality, Weewhibit two sufficient condi-
tions. The first one is rather unusual: it imposes to the spg®x to be smaller than a given positive
constant which depends on the ratjo; of local diffusion to non-local anti-diffusion. We will inafct
check numerically that this condition is not necessary. S¢end one looks more familiar. It is a classi-
cal CFL-type condition modified by@dt/d=*/3 term, which stems from the nonlocal operator. We will
see in the numerical simulations that this condition is bwbessary and sufficient to ensure numerical
stability.

For a comprehensive study, we also carry out an error asalyg compute the truncation and phase
errors of several finite difference schemes. We finally itigate the convergence of these schemes.

The remaining of this chapter is organized as follows: inrtbet section, we present finite difference
schemes with some discrete version for the fractional déviz and we study the continuous amplifica-

3



tion factor of the linearized Fowler model. Sectighs 3 fnde4 eespectively, devoted to the stability and
error analysis. The paper ends with some remarks in sgdtion 5

2 Preliminaries

2.1 Finite difference approximations

The spatial discretization is given by a set of pointsj = 0,..., N and the discretization in time is
represented by a sequence of timés= 0 < ... < t" < ... < T. For the sake of simplicity we will
assume constant step sizasandot in space and time respectively. The discrete solution aird pall
be represented hy; ~ u(t", z;). The schemes consist in computing approximate vaitjesf solution
to @) on[nét, (n + 1)6t[x[jdz, (j + 1)dz[ for n € N andj € N thanks to the following relation:

e u? = 2u 4+ u't

+1 -1

e F(ufyuf uf) — e
whereZs, and F are, respectively, the discretizations of the nonlocal mmdinear terms. Note that the
Laplacian term is discretized using centred finite diffeeeapproximation. We begin by considering two
discretizationszgm,zgx for the operatofZ corresponding to formulad](2) and (5), respectively. Irhbot
cases, we use a basic quadrature rule on the 1tigsh, (j + 1)dz|) ;o to approximate each integral
and we use a finite difference approximation of the derieativ

+nZsp[u"]; =0, 9)

+o0
T3, lpl; = 62743 17 (o — 2050+ i), (10)
=1
4 - Pj+1 — Pi-1
ZLlels = 031 (4 (2H 2R, (1)
=1

Let us remark that we begin the sumd at 1 in order to avoid the singularity af/|z|'/3 and1/|z|"/?
atz = 0. We will comment later on the truncation of the series, se&i@®[4. Let us simply note that
if o; = 0forall j < 0then the serieq (JLO) is in fact a finite sum. Since the spatésnis given by
([70x, (j + 1)dz[) ;c, we will indeed assume that; = 0 for all j < 0.

Remark 2. Using fractional calculus, we could also consider, for amusal functionp, the standard
Griunwald-Letnikov formula for the fractional derivatiZe Indeed, using the expressi8), Z can be
approximated by the following two formulae

I'(2/3 4/3 I'(2/3 I'(l—4/3
Lol = 5;4//3) l;(—l)l< é ><sz = 5(354//3) ;F(l_ﬁl)r(éi/g)@jlv (12)
and
lel; = 1;(54//2) % [_2/3} (Pj—t+1 = 2051 + @j—i-1), (13)

where, for allae > 0 andk € N we denote b><z> the binomial coefficient defined by

(a) .:a(a—l)...(a—k—i—l):(_ )i Ik — )
k) ! T(—a)L(k + 1)



and {p

k:} denotes the negative binomial given by

-t ()

For more details about Gmwald-Letnikov derivatives, we refer the reader to thekofdid].

To analyze the stability of the discrete probldjn (9) usingries analysis, we investigate the follow-
ing linearized explicit scheme

U?H —u? u? _u?—l J 2“ +u] 1
+ v —€

ot ox 5x2

wherev is a positive constant.

+ 771.5:1:[ ]j = 07 (14)

Remark 3. In the case where we consider thats a non-positive constand), v is discretized using a
downstream finite difference approximation andis@ given by

+1
F( Uj— 1,u],u]+1) UJT

Therefore, taking into account the discretizatipr] (103, taimerical scheme is written as follows:

41 €0t vot €0t vot  edt
u? - @u?+1+<1—5 QW n+ g#-w u;ll
Nt <2 ~1/3 (' n n n
5B Zl (“j—l+1 —2uj + Uj—z_1) ) (15)
=1
and since
—+o00

+o0

—-1/3 n n n _
Zl P =20 )y ) =
=1

(]

[(z + 1)V B 1= 1)

N
[|
N

— = (2=2"l
the numerical schemg {15) reads
i1 €0t vt €t n ot n vt  €dt _1/3, N6t n
YT W“ﬁl*(”ﬂ”@‘mw GG o T2 g )
ot = L+ 1)" 8 o3 g — 1) 13] 16
_ x4/3 (I + +(-1) (o (16)

Considering now the discretizatiopn [11), the numericaksot [1}#) can be written as follows:

ntl €0t n 1_1)5t €0t n vt 6_675 n
" + ox a2 ) 5o ox 6:62 )ujfl

J 522 ditl
4 77(St = 77/3 n—|—1 —u?—l
YT Z gt 2 ‘



Recall that the Riemann zeta function, for(Re> 1

[e.e]
s) = Z n°
n=1

Since
< —7/3 n n u?—l—l - u;‘l—l 1 4 n 7 n
E l uj_ —uy +1 B S = §C(§)uj+1—C(§)uj

=1
1 .4
- <§<(3 > - 1+Zl 7 Uit

with ¢(%) ~ 3.601, ¢() ~ 1.415, the numerical scheme reads
et (€00 A mot LA _vOb_peot A ot T\
A <5m2 95,72%3) ) un T 1= 5 ~ e tenaet3) ) w

vdt  edt 4 ndt 1 4 n 4 0ot X —7/3.n
(5 5 5ranGlE) ) o~ s 2 UG A

Remark 4. If the Fowler equatior(fl]) satisfied the maximum principle, a classical way to get seffic

conditions for theL*°-stability of the scheme would be to ensure Hn}%\fl is a convex combination of
(u;?)jeN. Though one can easily check that all coefficients sum up weelemark that(l + 1)~1/3 —
207134 (1—1)71/3 > 0 because the functian — 2~/ is convex and-4 -2 ~7/3 < o forall { > 1.
Thus,u” " is not a convex combination (my)]eN. To get conditions of numerical stability we have to

rely on the Von Neumann method.

2.2 The continuous amplification factor
In this section, we are going to study the amplification factfthe following equation
Oyu(t, x) + v dpu(t, z) — e 2 u(t, ) + nZlu(t,-)](z) = 0. (18)

Then,u(t, z) = e****7t is a solution to[(1]8) if and only if the following dispersioelation is satisfied
1
o +ivk + ek? — n]k\‘l/?’ 3) (1 —iv/3sign(k )) =0,
wherek € R ando € C. Indeed, we havey,(t,x) = ou(t,z),us(t,z) = iku(t,x),ug(t,z) =
—k2u(t,z) and
+00 )
Tl o) = [ € Ree g
0
400 )
— Rulto) [ e
0

2 e s [Ty
= —Rulto) | [ P eos(reyds i [ €7 sinhe) de |
1/3f

1
- [—|k|4/35 (3) + KK

<3>] u(t, )



where we have used Fresnel integrals.
Hence the multiplicative factor which enables to get thetsoh at the time,, ; from the solution at the
timet,, is

Gcont(k) = eiét d)(k)’ (19)

where (k) = ¢ k2 — niT(2) [k|*/3 + i (nér(g) k|k|1/3 + vk). Therefore

|Gleont (k)| = =01 (eR?=nal(5) I/7)

Figure 1: Behaviour of R@p) for 7, € fixed. ko = (3T (3) 151)3/2 is the threshold frequency.

Figure[] shows that the modulus of the continuous ampliioaictor during one time step is con-

trolled by e®!, with o, := — minRe(¢) = — Reg(k*) = 5 (3T (%))3 ’Z—s where

3/2
3 3/ ¢

Thereby, the exact continuous amplification is maximum fegfiencyk,, and its modulus is bigger
than 1 only for frequencies in the rang@ kq]. The magnitude of this amplification during one time
step will also be proportional t6t. Obviously, this phenomenon affects only the low frequesidn
the range(0, ko] and strongly depends on the choice of paramegesade. This is why the standard
definitions of stability are not adapted for this model besesilney do not take into account the possibility
of amplification of certain frequencies.

And since high frequencies are usually responsible of nizalanstabilities, we are going to focus our
attention on the high frequencies which are quickly damgené-owler’s continuous model in order to
exhibit numerical stability conditions.

3 Stability analysis

The purpose of this section is to study the numerical stgbilf schemes introduced in the previous
section and to exhibit stability criteria. We recall thag thumerical stability enables to ensure that the



difference between the approximated solution and the esxcdigtion remains bounded for &ll > 0 with
ox, 6t given. To get numerical stability criteria, we consider tfm Neumann or Fourier method. In
this approach, we assume that the discrete solution isewriiitt as a single Fourier mode

uf = etk (20)
wherek € Z is the wave number. Injecting (20) in the numerical schendg, (&e get
aptt = g(0w, ot, k)ay, (21)

whereg is the discrete amplification factor. In what follows, formilicity, we denote indifferently
g(0x,o0t, k) = g(dx,dt,0), where = kix.

Remark 5. Note that due to the aliasing phenomenon it is enough to stuglyliscrete amplification
factor for6 € [0, 7.

Following the previous discussion concerning the notiomwherical stability (see Sectidh 2), we
introduce the following definition:

Definition 1. We say that a numerical scheme which approximates the lzezhFowler equation prob-
lem is stable if the high frequencies are strongly stable ifh&o say:
30 < 0y < 7 such thatvd € (6y, 7], |g(dx, 0t,0)| < 1,

whereg is the discrete amplification factor.

Lemma 1. Leta,b € Randd € RT. Then we have
V6 € [0,27],|a + be | < d ifand onlyif a+ |b| < danda — |b| > —d.

Proof. We can easily check this property, see Fidire 2.
|

Proposition 1. The finite difference schen®4) is stable in the sense of Definitiph Wif and 5t satisfy
the following conditions:

o FOrZ}:
v ot €t _1/3, not
— 42—+ (2271 <1 22
oz * da? * )5304/3 - (22)
o FOrZ::
v ot edt 4 4 1ot
— 42—+ = -)—1 <1 23
w5t 9 (4(3) ) Sat/3 = (23)

and if moreover, the space-stép is small enough in order that



Figure 2: Dashed circle (resp. continuous circle) is cehéite: (resp. 0) and of radiu| (resp.d).

o FOrZ}:
(1— 21/5”)(5797Efff3 < 2% siDQ(%O), (24)

o FOrZ?:
5 (<) -1+¢Q) 157 < 257D, (25)

whered, designates the stability threshold frequency.

Proof. For Z},.
For the numerical schemE [16), the amplification factorvemgiby:

B v ot €t ] n ot v ot —1/3\ N0t _io
gl(6$,5t,9) = 1—§—2w(1—(3059)—5x4/3+<E+(2—2 )6:5—4/3 e
0t — _ _ - —i
524/3 3 [(z F 1) B (-1 1/3} emil0. (26)
=2

wheref = kéx. Since, for allN € N

N
[(l + 1)_1/3 —o 13 (1— 1)_1/3} — (N + 1)—1/3 N3 _9m1B
=2
then
+oo
3 [(z F 1)V g8y (- 1)—1/3} ) @27)
=2



Thus, from [2p), to havey, (6z, 6t, 0)| < 1 itis sufficient to have

v ot . 9,0 €0t n ot v ot ~1/3 n ot _io
- i - _ e <
! Sz dsin (2)5362 dat/3 <5m +(2-2 )5354/3 ‘ -
ot _
1- 675764/3 (1 -2 1/3)7 (28)
where we assume that 5t
n _ o9—1/3
5954/3(1 2719 < 1. (29)
Next from Lemmd]1,[(38) is satisfied if and only if we have
€ot . 5,0 10t _ _ n ot
1—4$§m¥S)+&#Bu—21ﬁ)§1—u—215%ﬁﬁ,
vt eot . 5.0 —1/3y N0t —1/3y Mot
A sulfficient condition is then
_ g-1/3y_ 10t < €t . o0
(1-2 )5564/3 < 25362 sin (2), (30)
v ot €ot —1/3y N0t
— 42— — <
dx +25x2 +(2-2 )51'4/3 -

Let0 < 6y < 7. Then, for alld € (6, 7], condition [3p) can be rewritten as

n ot edt . 5,0
< 2? sin“(—).

o-1/3
(1-2 )55134/3_ 1) 2

Therefore, the numerical schenje](14) with the discretinj,, is stable in the sense of Definitifh 1 if
the space and time stefis §z satisfy the following conditions

2 Oy €
2/3 . 2,00
v ot €ot _1/3y MOt
22— (22713 < 2
dx + dx2 + )51'4/3 - (32)

Note that from condition[(32), we can see that hypothds]si€2€atisfied.

10



For Z2,. Injecting (20) in [1)), the amplification factgs associated to this scheme is given by:

- ot 1,44 ndt v ot edt 4 7. nodt
5z,0t,0) = e? (S 2 1- 2% o™
g2(6x, 6t,0) <5x2 2 (3)95 4/3) o ox? +9<(3)5 4/3
o (vt €dt 41 4 ndt\ 4 ndt —7/3 —i6l
e <5:U o2 T8 T VEE ) T g5, Zl ©
B v ot edt . 5.0 4 7 775t 4 4 nét .
vot 4 not _io 4 1= T/3=i0l,
i (ﬂ‘%xm) D 4/3Z
B v ot edt . 5.0 4 7 4 n ot
= 1—5—4Wsm (§)+§<C(§)_C(§)COSH> 52473
vot 4 4 n ot g 4ot = —7/3 _—ifl
2oz 2y-1 - = .
+ <5m +9 <C(3) >5x4/3>e 9 54/3 ;l € (33)
Since
Zz /8 — —1~0.415,

from (33), g2 (6, 0t,0)| < 1if

v ot €eot . 5.0 4 7 4 n ot vit 4
1= 2% % a2y S (eldy — ¢ vty 2
5w s ()t g <<(3) C(?,)COSQ> 5/3 +<5w +9<
1

where we assume that

4 <g(z) - 1) (fos <1 (35)

9 3
From Lemmd]l, we have thdt [34) is satisfied if and only if
7 not
()-1)

da? 2 9 3 dxA/3 —

1480 sin2(€) L4 (((Z) -1+ ((%)(1 — cos9)> ot %
5t 5t 0. 4/ 7 4 5 4
1252 agsint(g) 4 g (6 +1- <)+ cos0)) :

A sufficient condition is then

4 7 4 n ot edt . 5.0
9 <C(§) -1 +C(§)> 508 = 25z sin (), (36)
v ot edt 4 4 n ot
—(¢(2) - <1.
T2t <<(3) 1> s <1 (37)
Let0 < 6y < 7. Then, for all§ € (6, «], condition [3B) is rewritten as
4 7 4 not edt . 5.6
= —) — = <9 g
5 (03 -1+ 0p) 2195 < 2t (38)

11



where¢(%) — 1+ ((3) ~ 4.02.
Note again that from conditiori (37), we can see that hyp@hB§) is satisfied.
[ |

Notations. We will denote byCFL! . andCFL? , the following modified Courant-Friedrichs-Lewy
conditions

ot €ot _ 10t
CFL! =22 1 95% 4 (2 271/3
mod Sox + Sx2 +( )5.%.4/3 -
ot edt 4 4 n ot
CFIL? , = 0ot 2— + — -)—1 < 1.
mod = "5y * da? * 9 <C(3) ) Sz4/3 —

Some remarks.

1. Condition [2P) (resp.[(23)) can be seen as an extension afdsical CFL condition with in addition
the anti-diffusive termé—gf—fg. This criterion is not more restrictive than the usual ctindiof stability
without the nonlocal operator which corresponds to thesliized Burgers equation with viscous term.
This condition is very restrictive on the space and timesstearticular because of the tergﬂgé which
stems from the explicit discretization of the Laplacian.ohder to have less restrictive conditions, we
can implicit some terms. For instance, if we decide to iniptitze nonlocal and the Laplacian terms,

condition (2R) (resp.[(23) ) is reduced to
v ot

o

We find again the well-known CFL condition.

< 1.

Figure[3 shows the behaviour of amplification factors Fgr andZ2,. We can see, foZ},, that the
maximal value obt which ensures the numerical stabilitydig, .. ~ 0.042 and that for this value we
haveCFL! . ~ 0.99. Figure[} displays the behaviour of the modulus of the ansglifbn factor with

mod

maxe\g(e,éi 1)

Figure 3: Amplification factors fof} (blue line) andz?, (dashed line).

discretizatiorizgm as a function o). We can notice that the high frequencies are strongly areglifT his
phenomenon illustrates the numerical instability becduigle frequencies should be quickly dampened.

12



Figure 4: Amplification factor foZ}, with CFL} , ~ 1.22.

Figure[p shows that the low frequencies are slowly amplifiebis phenomenon is not due to the
instability of numerical schemes but stems from the modaeTableqdJ1[]2 anf] 3 (see Sectign 4), we have
studied the quotlen{G‘L, i = 1,2. We can see that globally the discrete schemes dampen naore th
the continuous problem when the stability conditigng (28) §3) are satisfied.

la(0)]

Figure 5: Amplification factoZ} with n = 8,v = 1,¢ = 0.5 anddz = 0.05,5t = 0.001. For these
coefficientsCFL} , ~ 0.94.

2. Conditions [214) and (25) are unusual and deserve some etjulas. The term proportional %

represents the amount of nonlocal anti-diffusion while tdven proportional to:2; 6‘” corresponds to the
amount of classical diffusion. Both conditions simply mefaat, for frequenmes above the threshéid
diffusion should control nonlocal anti-diffusion.

We can see that conditions [24) afd] (25) cannot be satisfiddvicfrequencies. Indeed, f@k close to

0, these criteria impose to the space step to vanish, whiebtipossible. Let us note that this is coher-
ent because the low frequencies are not “strongly statbie¥; are slowly amplified by the continuous

13



problem. We can see in Figufk 6 that conditipr] (24) is not searg. Indeed, if we choose the threshold
6y = /2 “large enough”, condition[(24) reads

5z < 0.25, (39)

and we have plottefl; | in function ofd for 5= = 0.5 which does not satisfy the condition {39) but we
can still notice that the numerical scheme is stable. All etoal simulations that we performed confirm
this statement. This leads us to think that conditioh (243¢r [2F)) is too pessimistic. In fact to estimate
the magnitude of sums

i [(l + 1)—1/3 _o 13 (- 1)—1/3} el
1=2

(resp.>_;% 177/3¢=0), we just controlled the sum of the modulus
S [+ — 2B - 1)),
=2

(resp. ng’;l—m). In this manner, we probably miss some cancellation efféthe ¢—*?. But we
could not find any other way to estimate these polylogaritbries.

Figure 6: Amplification factor, forn =v = 1,e = 0.1 andéx = 0.5, 5t = 0.01. For these coefficients,
we haveCFL! .~ 0.0584.

3. Finally, in practice, the single conditiof {22) (resp.] (283n be used to ensure the numerical stability
of the schemd (}4) with} _ (resp.ZZ,). We saw in Figuref] 5 arfdl 6 that the scheme with the disctietiza
7}, is stable if condition[(32) is satisfied. Figuie 7 shows thathigh frequencies are amplified, when
condition {2B) is violated. This phenomenon is only due tmatical instability because the continuous
problem quickly dampens the high frequencies.
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Figure 7: Gain function foZ?, for n = v = ¢ = 1, d= = 0.1, 6t = 0.05. For these coefficients, we have
CFL? ,~13.

m

4 Error analysis

4.1 Truncation error

In this section, we analyze the truncation error. Finitdetéince schemd (14) is consistent with the
linearized partial differential equation if for any smodtimction ¢(¢, ) the local errorEs; 5, satisfies

Estox = Pdp — Py 5,60 — 0, (40)
asdt, dx — 0 with

P = ¢ +vdg — € pzx + 1 Z[¢],

+1
GY-G Bl a2t
ot ox o2

Pgt,éx(b = + 772’-(251 [(b]v

fori=1,2.

Remark 6. The practical implementation of the schemes requires toensakne truncations. First,
we consider a bounded domajii, 7] x [0, D] and to simplify, we also assume thdt= 7"/N; and
dx = D/Ny, for some integersVs, and Ns;. Another truncation concerns the integral operator for
the nonlocal terniZ. We replacefo+OO with fOA and in the finite difference approximatio@§Q) and
(L3) seriesd ;°, are replaced with partial sumif‘:“f, whereA = As, dxz. However, the truncation
parameterA has to be chosen judiciously. A “short memory” principle hmeen investigated to choose
this parameter. This principle is based on the fact that &/ andi~'/3 in discretizationg([{) and
(L) decrease withi therefore, we have to take into account the behavioup(af) only in the recent
past, i.e. in the intervalz — L, z], whereL > 0 is called the “memory length”. Finally, the use of the
short-memory principle leads to the simple replacemelﬁjg;f:f’lo by Zﬁf, whereAs, = [ﬁ] [L4].

Note that the truncation parametet also strongly depends on the discretization of the nonloeah

7 becausé~"/? decreases more quickly than'/3. For the sake of simplicity, we will denote bythe
truncation parameter for the discretizatiosd) and (7).
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Proposition 2 (Local error) The local error of the numerical schen(f&}) satisfies:

e ForZ} :
By se.al < O() + 062%%) + O(A7) + 0 (A7 oz) + 0 (4% 62%) . (41)

e FOrZ::
1B 55,41 < O(0) +0(62%%) + O(A™3) 40 (A7 52) + O (42 6%) + O (Aba?) . (42)

Proof. From Taylor series, we have

n+l _ n
on (tmxi) — ¢ 5t gb O(5t) (43)
b (o) — T — 0 (o), (44)
oy (tna xz) - ¢?+1 — iig - ¢Zn_1 = O((SxQ) (45)

Let us now study the truncation error for the nonlocal t&rm
For Z} . We rewrite [P) as follows

Ase  p(j+1/2)0x

Zlp(t™, ))(x;) = V3G (7, i — €) dE + %5_1/3%1@", i — &) de
LERIOEDY /( v /0 .

Jj—1/2)éz
A Feo
- / §M (" s — €) dE + / § Pua (", 2: — €) €, (46)
Ayd2 A

and the discretizatior (JL0) becomes
Aox r(j+1/2)0w
T}l sugPag =3 [T e
Z ]Zl (i-1/2)z

¢""'“72§;;j+¢i‘j‘l. Using {4P), we then get the following relation:

with &5, := jox and®y =

Az r(j+1/2)0w
T [6(t", )i = Zlo(t", )] (@) = Z /( gy (B = 0= ) ) e
J—

- / § 1/3¢$$ , L — 5) dg +/ 671/3¢xx(tnaxi - 5) g
A
- /A 13 (17, s — €) de,
= T —Tr+1T5—Ty.
Let us study the terrdy. Since
&P O — € Pt - &) = (&0 - €7 dualt” 2 — &)
+ 5_1/3( — Gaa(t",2i = §))
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then

Ase r(j+1/2)6z
no- Y | &8 ) gt i — €) de
]Z:; (j-1/2)6z < )
Az r(j+1/2)00
+Z/ 5(51‘1/3( gx - ¢x$(tn7xi - 6)) d&?
=7 G-1/2)80
= Tyq+Thp.

By the mean value theorem appliedzte- |z|~1/3, we have for alt € [(j — 1)dx; (j + 2)da]

1

327 e = £,

6.2 — 13 < sup |
z€[(j—3)0w;(j+3 ) o]

1.1 _
< Sl - 02l — &),

Lo Lo —ags
< |G -= :
< 5l —3)dz[7 0

Thus, integrating ovel(j — 3)dx; (j + 3)dz] we get

A&x
1
2/3 2/3
j=1

becauser21 W < +oo andC is a positive constant which depends |, || . (0,1)xr)-
Moreover, by classical midpoint quadrature rule

(j+1/2)éz 53
/ Gax(t", s — &) dE = 6 P (1", 2 — Eo2) + 1 Paz (™, 23 — 1j), (48)
(i-1/2)de 24

with n; € [(j — 1/2)0x; (j + 1/2)dz] then

Asz (j+1/2)6x
Tip = Y (jox) /3 |s20f, — / Gua (™, 5 — €) dE|
j:1 (j71/2)5:’3
Ao ox3
= D (jox) 71 [&c@f;x = 02 G (1", i = €a) = - bun(t" i — m-)] :
j=1
From Taylor series, we have
ox?
(bxx(tnaxi - 651) — gz - E¢4m(tn7xi - 551) + 0(51'4)7 (49)
thus we obtain
Aéz 3 3
ox ox
_ . —1/3 no.. s no.. . 5
T1,2 = ;(]5x) / {E ¢4m(t s Lj — 5(53{:) - 24 ¢4:v(t s Lj — 77]) + O((Sx )} .
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We finally get

Asz 1 Asa 1
’TLQ’ < O(5$8/3)Zﬁ - 0(5.%'8/3) 1 +Z]1T 5
j=1 j=2

which implies that
T1o| < O02%2) + O(AY? 522),

becaused;, = 4.
We next control the terrii, by

dx

2
To| < H%xHLoo((o,T)xR)/o |73 de = Coa?/3,

We estimatel; as follows:

A+dx
T5l < [ldusllmor)m) /A €713 de,
< |bwallpo(0.1)xr) A3 62,

Finally, using an integration by parts, the tefinis written as
+oo
T, = / PG (1" — €) d&,
A

A g Ay k[ sy g
A ¢J:(t Ly A)+ 3 /4 § (bx(t » L f)df,

hence, we obtain
Ty < CA™V/3,

whereC is a positive constant which depends|@f. || (0, 1)xR)-

Hence, using relation$ (43], {44), 149).,1(41).] (50)] (5B)(@nd [5B), we obtain
| B pt,4l = |1PO(tn, i) = Piyspl < O(82%7%) + O(3t) + O(A™Y?)
FO(AY352%) + O (A*1/3 595) :

which completes the proof f&} .
For 72 : As previously, we rewrite[]5) as

Aoz r(j+1/2)6z 5
T n ) = (1", —7/3d (", —7/3d
o) = 3 L I e [ e g el
A +oo
(" 77/3d (" 77/3d
+ /M @l e+ [ o e,
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with @(t",&) = 2 ((t", 2 — &) — o(t", z;) + ¢, (t", z;) €) and the approximated integrgl [11) be-
comes

Ase 1(j41/2)6x
—-7/3
ng[‘ﬁ(tn’)]l = Z/ 55;):/ gxdg’
o1/ G-1/2)0
with &7 = 4 (gr  — gp 4 20951 5) andgg, = 4
5e =9\ 9 — o + 5 J §ox = JOT.
Let us now estimate the error on the nonlocal term.

Asz 1(j4+1/2)0x
I3[0, )i — Z[p(t", )] (2:) = 5_7/3 . 6)|¢|773) de
2 (667, s — Z(o(E", ) () ;/(jl/m (e (1", &)l

2 s
/ (e, €) 6] T/ de + / (e, €) 6] T/ de
0 A

—+00
| e
= T —Tr+ T35 —Ty.

Let us study the terrii;. As previously fotZ(}gC, we rewriteT as

A G+1/2dz
— _/3 7/3 7/3 — d(" d
D Y R R L R LR L

= Ti1+Thp.
By the mean value theorem appliedzte~ |z|~7/3, we have for alk € [(j — 1/2)dz; (j + 1/2)dx]

. _ 7

& =€ sup 15275 652 — €,
2€[(j—1/2)dx;(j+1/2)éz]

zém !

671G — 1/2)02"

751'77/3 !

6 (G —1/2)107
Next, by Taylor-Lagrange formula, we have

A

IN

A .
4 (+1/2)6x
Tial = = / 1657 — 17T o (" mi — €) — (", m1) + du (", m1) €]

9 G-1/28

Asa 1 (j+1/2)0x . -
—7/3
< C /(j s ox /WH¢MHLOO((O7T)XR)?C%’
j=1 - T
& (j+1/2)6z
1 J
< O i / 3
Z(1—1/2)10/3 ey
A(Sz 1
< Céx_7/3z (536 +5$)
= (G- 1/2)18
< C5x2/3,
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becaus&_~, G120
may vary from line to line.
Moreover, using again midpoint quadrature rule, we have

(5+1/2)0x 53
/ (i, €) de = Sz D", jor) + 2Ly (1, 1),
(i-1/2)bz 24

with n; € [(j — 3)dz, (j + %)63:]. Hence,

3

But using again Taylor expansion, we get

A", 1) — (", 25 1)

T
—(I):v:v(tn,nj) .

i 7z < oo. C denotes a positive constant which depend§ o5 || 1. ((0,7)xr) and

¢I(tn, :EZ).](S‘T ;

But" 1) = O " ) 1 O62)
x s Lj) = 257 6 3x s L T ),
and so
n n 4 n n ZnJrl - gb?,l . n . n
5. — (", jox) = 9 i — O +#J—¢(t , T — jox) + o(t", x;) —
4 2
=9 {551 G (", ;) +](’)(5w )| -
Thus,
A(Sz _7/3 53:3
na = 036 5.2 s, + 5060 ~ ()]
AM ~7/3 oz 4623
- oy e o0 na(0,22) + GO0) — § bl =)
We finally get

Aéz
1o < cZ( 4/35x5/3+](’)(5x)+5x)

= 0(5355/3) + 0 (A%62%) + O (Ad2?),

whereC is a positive constant which depends|@y. |[ 1. (0,7)xr) and||dzz|| Lo ((0,7)xR)-

Let us now studyl,. Using Taylor-Lagrange formula, we have

dx 2

2 £
C Tx o0 ?
|zl ((O,T)XR)/O [ d§
< 0@,

T3]

IN
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where(C' is a positive constant.
Let us next considery:

A+ 8z

T, - /A e €) de,

A+%x
- %/ [G(t", 25 — €) = (", 1) + da(t", m:)E] |€] 77/ d.
A

Then

T3]

IN

A+%’
c /A (eI + Je~*/3) de,
C (A—7/3 + A—4/3) 5z,
O (535 A*4/3) ,

IN

IN

with C' a positive constant which depends [0p}| .o ((0,7)xr) @nd|[¢z || Lo ((0,7)xR)-
And since

IN

4 [T 4 [to°
< 5 / St 25 = &) = o(t", )| |€] 7T de + / 62 (8", i) €] 77 de,
A A

< CA™Y3,

whereC' is a positive constant which depends|@#| . (o,7)xr) and||¢z || (0, 1)xr), We finally get

1B 0.4l = 1Po(tn, 22) = Pl gp0] < O31) + O(02%/%) + O(A7%) + 0 (A~ b
+ O(A%62°) + 0 (Adsz?).
The proof of this proposition is now completed. |

Remark 7. From previous Proposition, we can see that the numericabse{fl4) with Z} (resp.Z?,)
is consistent ifz << A~1/3 (resp.dz << A=%/3).

4.2 Convergence experiments.

In this section, we investigate the convergence using nicalesimulations. Despite much effort we are
unable to prove theoretically the convergence of the nuwaksolution towards the exact continuous
solution. Indeed, the Lax procedure “stabilityconsistence= convergence” cannot be applied here due
to the instability of low frequencies.
In what follows,!'-norm is used to measure the accuracy of approximated sotutiThus, we analyze
the following error

N

By = o 3wl (T) ~ (7)), (54)

n=0
whereu!, u? are, respectively, computed for space si&p& anddz /4, until a final timeT.
Figure[d shows the numerical convergence rates obtainddthat initial data displayed in Figuf¢ 8.
These rates were obtained usifig = 10~!,1072,1073,10~%. We plot the logarithm of the errak;
versus the logarithm afx.

21



Figure 8: Initial data used for numerical experiments.

25
log, 5 (5 %)

Figure 9: Convergence in space fB (red) andZ?, (blue). Dotted line has slop/3.

4.3 Phase error

Numerical schemes produce, according to cases, resuttsl afier delayed w.r.t exact solutions. In this
section, we are interested in the error made on the velatitgduced by the discretization. Let us first
note that, in addition to the anti-diffusive effect, the tomal term is also responsible of the motion of

the initial data. Indeed, we saw in Sectidn 2 that the comtisuamplification factor has an imaginary

—i(nBr(2 1/3 . . . .
parte i(n ) klk +vk>5t. Therefore, the advection term is not the unique factor gfldiszment.

It is the error on the argumentdt(v k + @F(%)n k|k|'/3) that causes the phase error. To evaluate this
error, we rewrite the discrete amplification factgrintroduced in Sectiofi 3 as

—i0 .
d;

g5 = lgjle 7%,
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for j = 1,2, whered,, is the argument of the discrete amplification fagtpr The phase lag during one
time step is then given by
V3

By = ok + Tk KY2)5t — 6,

Thus, if £ is positive, the numerical wave goes slower than the phlygiage and it goes faster if; is
negative. We have computed, in Talfe§| 1, 2 @nd 3, the phaag aféér one oscillation

0,
4 forj=1,2,

Aj=1-
! (vk + BD(2)nk |k]1/3)ot

for different values ofor = 4%, Dy = 2<0t andF, = J137;.

We remark that scheme with the drscretrzaﬁ@ﬁ; involves a delay larger than the model with .

4.4 Discrete amplification vs. continuous amplification fators

Let us define
g1 g

9 =
|Gcont| ' |Gcont| ’

for different values ofCr = 4%, Dy = 256t and F, = S 19t Results are reported in Tablgs[1L, 2 and
B. We haveCFL! , = Cr+ Df + \F,, whereh; = 2 —271/3 ), = 2 ({(2) —1). When the
conditonCFL; . > 1is violated becaus€'r or D are close to one, we note that high frequencies
6 > 7/2 are more amplified by the discrete schemes than by the exatitheous problem. Whereas
when the conditiorCFL! . > 1 is violated becausé, is close to one, high frequenciés> /2

are less amplified by the discrete schemes than by the comsnproblem, as can be checked in Table
B. This is one unexpected benefit of the discretization sehienthe unfavourable case where nonlocal
anti-diffusion is predominant. If we take a closer look abled} we notice thaliy»| may be greater than
one even ifCFL?md < 1. This is due to the fact thatbeing big, the stability threshold frequengyis
close torr, the aliasing limit frequency.

Gy =

5 Concluding remarks

We have presented in this work a first investigation of finitifetcences schemes approximating the
Fowler equation. We saw that the anti-diffusive behaviduhe nonlocal term does not enable to con-
sider the classical notion of stability. Nevertheless,sidering only the behaviour of the high frequen-
cies (which should be quickly dampened), we exhibit nunaéstability criteria which can be used to
make simulations. Numerical computations have shown thatemical schemes dampened more than
the continuous problem. Finally, consistency propertyldeen proved and convergence of schemes has
been investigated.
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