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On Alexander modules and Blanchfield forms of
null-homologous knots in rational homology spheres

Delphine Moussard

Abstract

In this article, we give a classification of Alexander modules of null-homologous
knots in rational homology spheres. We characterize these modules A equipped
with their Blanchfield forms φ, and the modules A such that there is a unique
isomorphism class of (A, φ), and we prove that for the other modules A, there
are infinitely many such classes. We realise all these (A, φ) by explicit knots in
Q-spheres.
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1 Introduction

1.1 Short introduction

The Q[t, t−1]-modules appearing as Alexander modules of knots in S3 were determined by
Levine [8]. They are all the

⊕k
i=1Q[t, t−1]/(Pi), where the Pi are symmetric polynomials

(Pi(t) = Pi(t
−1)) in Z[t, t−1] such that Pi(1) = 1. We will generalize this classification

to null-homologous knots in rational homology spheres. The Alexander modules of these
knots are finitely generated Q[t, t−1]-torsion-modules on which x 7→ (1−t)x defines an iso-
morphism. The equivariant linking number defined in the infinite cyclic covering induces
a hermitian form on these Alexander modules, called the Blanchfield form since Blanch-
field showed that it is non degenerate [1]. We will show that these properties characterize
the Alexander modules A equipped with their Blanchfield forms φ. We characterize these
modules A equipped with their Blanchfield forms φ, and the modules A such that there
is a unique isomorphism class of (A, φ), and we prove that for the other modules A, there
are infinitely many such classes.
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In [5], Kricker defined a rational lift of the Kontsevich integral for null-homologous
knots in Q-spheres. Garoufalidis and Rozansky [3] introduced a filtration of the space of
these knots by null moves. Null moves preserve the isomorphism classes of (A, φ). Garo-
ufalidis and Rozansky computed the graded space of the filtration for the isomorphism
class of the unknot. This computation allowed Lescop to prove that the invariant she
constructed in [7] is equivalent to the 2-loop part of the Kricker lift for knots with trivial
Alexander modules. The work contained here should be useful to generalize this result.

1.2 Statement of the results

Except otherwise mentioned, all manifolds will be compact and oriented, and all manifolds
of dimension 2 or 3 will be connected. We set Λ = Q[t, t−1].

A rational homology 3-sphere, or Q-sphere, is a 3-manifold, without boundary, which
has the same rational homology as the standard sphere S3. In such a Q-sphere M , a
null-homologous knot K is a knot whose homology class in H1(M ;Z) is zero. Let T (K)
be a tubular neighborhood of K. The exterior of K is X = M \ Int(T (K)). Consider the

projection π : π1(X) → H1(X;Z)
torsion

∼= Z, and the covering map p : X̃ → X associated with

its kernel. The covering X̃ is the infinite cyclic covering of X . The automorphism group
of the covering, Aut(X̃), is isomorphic to Z. It acts on H1(X̃ ;Q). Denoting the action
of a generator τ of Aut(X̃) as the multiplication by t, we get a structure of Λ-module on
H1(X̃ ;Q). This Λ-module is called the Alexander module of K, and we will denote it by
A(K).

On the Alexander module A(K), one can define the Blanchfield form, or equivariant

linking pairing, φK : A(K)×A(K) → Q(t)
Λ

, as follows. First define the equivariant linking
number of two knots.

Definition 1.1. Let J1 and J2 be two links in X̃ such that J1∩τ
k(J2) = ∅ for all k ∈ Z. Let

δ(t) be the annihilator of A(K). Then δ(τ)J1 and δ(τ)J2 are rationally null-homologous
knots. The equivariant linking number of J1 and J2 is

lke(J1, J2) =
1

δ(t)δ(t−1)

∑

k∈Z

lk(δ(τ)J1, τ
k(δ(τ)J2))t

k.

One can easily see that lke(J1, J2) ∈
1

δ(t)
Λ, and lke(J2, J1)(t) = lke(J1, J2)(t

−1). Now,

if γ (resp. η) is the homology class of J1 (resp. J2) in A(K), define φK(γ, η) by :

φK(γ, η) = lke(J1, J2) mod Λ

The Blanchfield form is hermitian (φ(γ, η)(t) = φ(η, γ)(t−1) for all γ, η ∈ A(K)), and non
degenerate : φK(γ, η) = 0 for all η ∈ A(K) implies γ = 0.
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Proposition 1.2. Let (A(K), φK) be the Alexander module and the Blanchfield form of
a null-homologous knot K in a Q-sphere M .

1. The module A(K) is a finitely generated Λ-torsion-module.

2. The map x 7→ (1− t)x defines an isomorphism of A(K).

3. The form φK is hermitian and non degenerate.

Blanchfield showed (3.), we will show (1. 2.) in Section 2.2. We will also show the
following description of (A(K), φK).

Theorem 1.3. If (A, φ) satisfy Conditions (1. 2. 3.), then A is a direct sum, orthogonal
with respect to φ, of submodules of these two kinds :

• Λ
(πn)

γ, with π prime and symmetric, or π = t+ 2+ t−1, n > 0, and φ(γ, γ) = P
πn , P

symmetric and prime to π.

• Λ
(πn)

γ1⊕
Λ

(πn)
γ2, with either π prime, non symmetric, π(−1) 6= 0, n > 0, or π = 1+t,

n odd, and in both cases φ(γ1, γ2) =
1
πn , φ(γi, γi) = 0 for i = 1, 2.

This description will allow us to show the reciprocal result of Proposition 1.2.

Theorem 1.4. If (A, φ) satisfy Conditions (1. 2. 3.), then there is a null-homologous
knot K in a Q-sphere M such that (A(K), φK) is isomorphic to (A, φ).

We will give an explicit construction of a knot for the two kinds of modules of Theorem
1.3, and we will get the general case by using connected sums.

Considering only the Alexander modules, we have the following classification.

Theorem 1.5. Given a family (δ1, . . . , δp) of polynomials in Λ such that δi+1|δi for 1 ≤
i < p, the module

⊕p
i=1

Λ
δi(t)

is the Alexander module of a null-homologous knot in a
Q-sphere if and only if the δi satisfy the following conditions :

• δi(1) 6= 0 for 1 ≤ i ≤ p,

• δi(t
−1) = tqiδi(t), with qi ∈ Z, for 1 ≤ i ≤ p,

• if, for 1 ≤ i ≤ p, mi denotes the multiplicity of −1 as a root of δi, then, for any odd
integer m, the number of indices i such that mi = m is even.
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Then the Alexander polynomial of K is the order of A(K), ∆ = ∐p
i=1δi. The annihi-

lator of A(K) is δ = δ1. This result can be viewed as a corollary of the previous ones,
but we will show it first, independently of the existence of the Blanchfield form.

Moreover, using algebraic number theory, we will show :

Theorem 1.6. Let A =
⊕p

i=1
Λ

δi(t)
, with δi+1|δi for 1 ≤ i < p. Let ∆ = ∐p

i=1δi be the order
of A. For 1 ≤ i ≤ p, let mi denote the multiplicity of −1 as a root of δi. If ∆ has no prime
and symmetric divisor, and if all mi are odd, then there is a unique isomorphism class
of non degenerate hermitian forms φ : A ×A → Q(t)/Λ. Otherwise, there are infinitely
many isomorphism classes of such forms.

1.3 Plan of the article

The first section is devoted to the proof of Theorem 1.5. We introduce surgery presen-
tations of knots in Section 2.1, and show in Section 2.2 that the associated equivariant
linking matrices are presentation matrices of the Alexander module. We deduce the prop-
erties of the Alexander modules in Section 2.3. In Section 2.4, we realize any hermitian
matrix with coefficients in Λ whose determinant does not vanish at t = 1 as an equivariant
linking matrix. We conclude the proof of Theorem 1.5 in Section 2.5.

Section 3.1 gives an expression of the Blanchfield form in terms of an equivariant link-
ing matrix associated with a surgery presentation of the knot. Then, we prove Theorem
1.3 in Section 3.2, Theorem 1.4 in Section 3.3, and Theorem 1.6 in Section 3.4.

1.4 Acknowledgements

I wish to thank Greg Kuperberg and Gaël Rémond for their help and ideas concerning
the use of algebraic number theory in the last section. I am very thankful to my advisor,
Christine Lescop, for her precious guidance and advice.

2 Classification of Alexander modules

2.1 Surgery presentation of a knot

Let M0 be a 3-manifold such that H1(M0;Q) = 0. Consider a link L = ∐i∈IJi in M0,
with knot components Ji. For each i ∈ I, let T (Ji) be a tubular neighborhood of Ji, let
m(Ji) be a meridian of Ji in ∂T (Ji), and let l(Ji) be a parallel of Ji in ∂T (Ji). Define
the manifold M = χ(M0, L) obtained from M0 by surgery along the framed link L by
M = XL ∐h (∐i∈ITi), where XL = M0 \ ∐i∈IT (Ji) is the exterior of L, the Ti are solid
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tori, and h : ∂XL = ∐i∈I∂T (Ji) → ∐i∈I∂Ti is a homeomorphism sending ∂T (Ji) onto ∂Ti

and the parallel l(Ji) onto a meridian mi of Ti, for each i ∈ I. We have :

H1(χ(M0, L),Q) =

⊕

i∈I Qm(Ji)
⊕

i∈I Q l(Ji)

Remark If H1(M0,Z) = 0, Q can be replaced by Z.
In the manifold M , one can consider the link L̂, whose components are the cores of

the tori Ti, parallelised by the meridians m(Ji). The surgery along L̂ in M is the inverse
surgery of the surgery along L in M0. We have χ(χ(M0, L), L̂) = M0.

A surgery presentation is a triple (M0, L,K0), where M0 is a Q-sphere, K0 is a trivial
knot in M0, and L = ∐n

i=1Ji is a framed link in M0, such that lk(K0, Ji) = 0 for 1 ≤ i ≤ n.
It is called admissible if det((lk(Ji, Jj))1≤i,j≤n) 6= 0.

Lemma 2.1. Set (M,K) = (χ(M0, L), K0).

1. The knot K is null-homologous.

2. The manifold M is a Q-sphere if and only if the surgery presentation is admissible.

Proof. Consider a disk D bounded byK0, and tranverse to all the Ji. For all i, < Ji, D >=
0. So K bounds a surface obtained from D by tubing, that is by adding tubes around the
Ji connecting pairs of points of Ji ∩D with opposite signs.

We have :

H1(M ;Q) =

⊕n
i=1Qm(Ji)

⊕n
i=1Q l(Ji)

.

Now l(Ji) =
∑n

j=1 lk(Ji, Jj)m(Jj), so (lk(Jj , Ji))1≤i,j≤n is a presentation matrix for the
Q-module H1(M ;Q). Thus det((lk(Jj , Ji))1≤i,j≤n) 6= 0 if and only if H1(M ;Q) = 0. ⋄

Such a presentation always exists :

Lemma 2.2. If K is a null-homologous knot in a Q-sphere M , then K admits a surgery
presentation (S3, L,K0).

See Garoufalidis and Kricker [2, p.117, Fact 1] for the caseM = S3. The generalization
to any Q-sphere M easily follows from :

Theorem 2.3 (Lickorish-Wallace,1960). Any 3-manifold without boundary can be ob-
tained from S3 by surgery along a framed link.
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2.2 Hermitian presentation matrix

Definition 2.4. A matrix A ∈ M(Λ) is called hermitian if Āt = A, where Ā is defined
by Ā(t) = A(t−1).

Given a null-homologous knotK in a rational homology sphereM , we aim to determine
a hermitian presentation matrix of the Alexander module A(K).

Proposition 2.5. Let K be a null-homologous knot in a rational homology sphere M .
Consider a surgery presentation (M0, L = ∐n

i=1Ji, K0) of K. Let X̃0 be the infinite cyclic
covering of the exterior X0 of K0, and, for 1 ≤ i ≤ n, let J̃i be a lift of Ji in X̃0. The
equivariant linking matrix A(t) defined by Aij(t) = lke(J̃j, J̃i) is a presentation matrix of
the Alexander module A(K). This matrix is hermitian and satisfies det(A(1)) 6= 0.

Proof. We will need the following lemma :

Lemma 2.6. Let U be a trivial knot in a Q-sphere M , let X be the exterior of U , and let
X̃ be the infinite cyclic covering associated. We have H1(X̃,Q) = 0 and H2(X̃,Q) = 0.

Proof. Let D be a disk bounded by U , and set Y = M \D. Denote by τ the automorphism
of X̃ corresponding to the action of t. Let Ỹ be (resp. D̃) a copy of Y (resp. D) in X̃.
Set Yp = ∐k∈Zτ

2k(Y ), and Yi = ∐k∈Zτ
2k+1(Y ).

We first show that H2(X̃,Q) = 0. Use the Mayer-Vietoris sequence associated with
X̃ = Yp ∪ Yi :

H2(∐k∈Zτ
k(D̃)) −→ H2(Yp)⊕H2(Yi) −→ H2(X̃) −→ H1(∐k∈Zτ

k(D̃))

For i > 0, Hi(∐k∈Zτ
k(D̃)) = Λ ⊗Q Hi(D) = 0. Thus H2(X̃) ≃ H2(Yp) ⊕ H2(Yi) ≃

Λ⊗Q H2(Y ). It remains to show that H2(Y ) = 0.
Let V be a regular neighborhood of D. Since Y deformation retracts to Z = M \ V ,

we have H2(Y ) = H2(Z). Then use the exact sequence associated with (M,Z).

H3(M) = Q[M ] −→ H3(M,Z) −→ H2(Z) −→ H2(M) = 0

By excision, H3(M,Z) = H3(V, ∂V ) = Q[V ]. Since [V ] is the image of [M ] by the first
morphism, the second morphism is trivial and H2(Z) = 0.

We now show, with the same method, that H1(X̃,Q) = 0. Use the Mayer-Vietoris
sequence associated with X̃ = Yp ∪ Yi :

0 −→ H1(Yp)⊕H1(Yi) −→ H1(X̃) −→ H0(∐k∈Zτ
k(D̃)) −→ H0(Yp)⊕H0(Yi)
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The last morphism is injective, so H1(X̃) ≃ H1(Yp)⊕H1(Yi) ≃ Λ⊗QH1(Y ). It remains to
show that H1(Y ) = 0. We have H1(Y ) = H1(Z). Then use the exact sequence associated
with the pair (M,Z).

H2(M) = 0 −→ H2(M,Z) −→ H1(Z) −→ H1(M) = 0

Thus H1(Z) ≃ H2(M,Z) ≃ H2(V, ∂V ). Since V is a ball, we have H2(V, ∂V ) = 0. ⋄

We now prove the proposition. First note that the Ji lift in X̃0 into homeomorphic
copies, because lk(Ji, K0) = 0. The infinite cyclic covering X̃ associated with K ⊂ M
is obtained from X̃0 by surgery along all the J̃i,k = τk0 (J̃i), where τ0 is the generator of
Aut(X̃0) which induces the action of t.

We calculate H1(X̃;Q), using the exact sequence associated with the pair (X̃, Z̃),
where Z̃ is the preimage of Z = M0 \ ∐

n
i=1Int(T (Ji)) by the covering map.

H2(X̃, Z̃)
∂

−−−→ H1(Z̃) −→ H1(X̃) −→ H1(X̃, Z̃)

By excision, we have Hj(X̃, Z̃) = Hj(∐1≤i≤n,k∈ZT̃i,k,∐1≤i≤n,k∈Z∂T̃i,k) for all j, where
the T̃i,k are the lifts of the solid tori Ti glued during the surgery. Thus Hj(X̃, Z̃) =
⊕

1≤i≤n,k∈ZHj(T̃i,k, ∂T̃i,k), and we have H1(X̃, Z̃) = 0. For j = 2, we get H2(X̃, Z̃) =
⊕

1≤i≤n,k∈ZQ Di,k =
⊕

1≤i≤n Λ Di,0, where Di,k is a meridian disk for T̃i,k bounded by

l(J̃i,k).
We now calculate H1(Z̃;Q) using the exact sequence associated with the pair (X̃0, Z̃).

H2(X̃0) −→ H2(X̃0, Z̃) −→ H1(Z̃) −→ H1(X̃0)

By Lemma 2.6, H2(X̃0, Z̃) → H1(Z̃) is an isomorphism. Moreover,

H2(X̃0, Z̃) =
⊕

1≤i≤n,k∈Z

Q Σi,k,

where Σi,k is a meridian disk for T (J̃i,k) bounded by m(J̃i,k). So :

H1(Z̃) =
⊕

1≤i≤n,k∈Z

Q m(J̃i,k) =
⊕

1≤i≤n

Q[t, t−1] m(J̃i).

We can then rewrite the first sequence :

⊕

1≤i≤n

Λ Di,0
∂

−−−→
⊕

1≤i≤n

Q[t, t−1] m(J̃i) −→ H1(X̃ ;Q) −→ 0
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We get a presentation of H1(X̃ ;Q) with n generators m(J̃i) and n relations given by the
images of Di,0, that are the parallels l(J̃i).

We now write l(J̃i) in function of the m(J̃i).

l(J̃i) =

n
∑

j=1

∑

k∈Z

lk(J̃i, J̃j,k) m(J̃j,k)

=

n
∑

j=1

∑

k∈Z

lk(J̃i, J̃j,k) t
k m(J̃j)

=
n
∑

j=1

lke(J̃i, J̃j) m(J̃j)

Therefore A(t) is a presentation matrix for A(K).
It follows from the properties of the equivariant linking number that A(t) is hermitian.

Since M is a Q-sphere, we have det(A(1)) = det((lk(Jj, Ji))1≤i,j≤n) 6= 0. ⋄

2.3 Properties of the Alexander module

Consider a null-homologous knot K in a Q-sphere M , and write its Alexander module
A(K) =

⊕p
i=1

Λ
δi(t)

, with δi+1|δi for 1 ≤ i < p. Denote by
.
= the equality modulo a unit of

Λ.

Lemma 2.7. For 1 ≤ i ≤ p, δi(t)
.
= δi(t

−1) and δi(1) 6= 0.

Proof. Consider an equivariant linking matrix A(t) associated with K. By Proposition
2.5, A(t) is a presentation matrix of A(K). The matrix A is equivalent to a diagonal
matrix D with diagonal (1, . . . , 1, δp, . . . , δ1) : there are two matrices P and Q in GLn(Λ)
such that A = PDQ. So A = Āt = Q̄tD̄P̄ t, and A is also equivalent to D̄. By unicity of
the δi modulo a unit of Λ, we have δi(t)

.
= δi(t

−1).
Moreover, det(A(t)) =

∏p
i=1 δi(t), and this determinant does not vanish for t = 1. ⋄

We call degree of a polynomial
∑r

i=q αit
i ∈ Q[t, t−1] with αq 6= 0 and αr 6= 0 the integer

r − q. The δi with even degree can be normalised as symmetric polynomials.

Lemma 2.8. For 1 ≤ i ≤ p, if δi has even degree 2m, then there are rj ∈ Q for 0 ≤ j ≤ m
such that :

δi(t)
.
= r0 +

m
∑

j=1

rj(t
j + t−j)
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Proof. Multiplying by a suitable power of t, we get δi(t)
.
=
∑m

j=−m rjt
j , with rmr−m 6= 0.

Since δi(t)
.
= δi(t

−1), there is λ ∈ Q and k ∈ Z such that
∑m

j=−m rjt
j = λtk

∑m
j=−m rjt

−j.

Necessarily k = 0, and rj = λr−j for −m ≤ j ≤ m. Thus rm = λr−m = λ2rm, and λ2 = 1.
If λ = −1, then δi(1) =

∑m
j=−m rj = r0 = 0. But δi(1) 6= 0, so λ = 1. ⋄

The degree parity of δi is related to the multiplicity of the root −1. Indeed, since
δi(t)

.
= δi(t

−1), if α is a root for δi, then α−1 is a root for δi with the same multiplicity.
So the roots of δi come by pairs (α, α−1), except for α = ±1. The case α = 1 does not
occur, so δi has odd degree if and only if it admits −1 as a root with odd multiplicity.

Proposition 2.9. Consider a null-homologous knot K in a Q-sphere M , and its Alexan-
der module A(K) =

⊕p
i=1

Λ
δi(t)

, with δi+1|δi for 1 ≤ i < p. The δi satisfy the following
conditions :

• δi(t
−1)

.
= δi(t) and δi(1) 6= 0 for 1 ≤ i ≤ p,

• if, for 1 ≤ i ≤ p, mi denotes the multiplicity of −1 as a root of δi, then for any odd
integer m, the number of indices i such that mi = m is even.

Remark These conditions imply that the Alexander polynomial
∏p

i=1 δi has even degree.

Proof. Proposition 2.5 gives a hermitian presentation matrix A ∈ Mn(Λ) forA(K). There
are matrices P,Q ∈ GLn(Λ) such that D = PAQ is a diagonal matrix with diagonal
(1, . . . , 1, δp, . . . , δ1). The matrix B = Q̄tAQ = Q̄tP−1D is a hermitian matrix which has
its ith column (and thus its ith row) divisible by δi. Moreover, det(B)

.
= det(A)

.
=
∏p

i=1 δi.
The multiplicity of−1 as a root for det(B) ism0 =

∑p
i=1mi. Denote by βij the coefficients

of B. Note that (t+ 1)max(mi,mj) divides βij.

det(B) =
∑

σ

sign(σ)
n
∏

i=1

βiσ(i)

=
∑

σ;mi=mσ(i)∀i

sign(σ)

n
∏

i=1

βiσ(i) mod (t+ 1)m0+1

Set Im = {i ∈ {1 . . . n}|mi = m}, J = {m ∈ N|Im 6= ∅}, and Bm = (βij)(i,j)∈Im×Im .

det(B) =
∏

m∈J

det(Bm) mod (t+ 1)m0+1

For m ∈ J , the matrix Bm is hermitian, and has all coefficients divisible by (t + 1)m.
So det(Bm) is symmetric and divisible by (t + 1)mk(m), where k(m) = |Im|. As det(Bm)
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is symmetric, it is divisible by an even power of (t + 1), so if mk(m) is odd, det(Bm) is
divisible by (t + 1)mk(m)+1. But

∑

m∈J mk(m) = m0, and det(B) 6= 0 mod (t + 1)m0+1,
so for m ∈ J , the multiplicity of −1 as a root of det(Bm) is mk(m), and mk(m) is even.
Thus, if m is odd, k(m) is even. ⋄

Remark This proposition is a consequence of the existence of the Blanchfield form (see
Theorem 1.3). It shows one implication of Theorem 1.5.

2.4 Realization of equivariant linking matrices

In this subsection, we prove :

Proposition 2.10. Consider a matrix A(t) with coefficients in Λ, hermitian, and satis-
fying det(A(1)) 6= 0. The matrix A(t) is the equivariant linking matrix associated with a
surgery presentation of a null-homologous knot K in a Q-sphere M .

Proof. We first need to realize arbitrary linking numbers in Q-spheres.

Lemma 2.11. Consider coprime integers n and k, with n > 0. In the lens space L(n, k)
obtained by (−n

k
)-surgery on the trivial knot U , we have H1(L(n, k);Z) = Z

nZ
m(U) and

lk(m(U), m(U)) = k
n
.

Proof. Consider a tubular neighborhood T (U) of U , and the exterior X of U . Define
the preferred parallel l0(U) of U as the intersection of T (U) with a disk bounded by
U , and define the surgery curve of U by l(U) = nm(U) − k l0(U) in H1(∂T (U)). Now

consider the manifold L(n, k) = χ(S3, U). We have H1(L(n, k);Z) =
Zm(U)
Z l(U)

. In H1(X),

l(U) = nm(U). Thus H1(L(n, k);Z) =
Z
nZ
m(U).

We now compute lk(m(U), m(U)). Let T = S1 ×D2 be the solid torus glued during
the surgery. Set St = {x ∈ D2| ||x|| = t}. Define a homeomorphism h : ∂T = S1 × S1 →
S1 × S 1

2
by (s, x) 7→ (s, 1

2
x), and set mint(U) = h(m(U)). Then lk(m(U), m(U)) =

lk(mint(U), m(U)). Consider a meridian disk D of T bounded by l(U). Then

lk(mint(U), l(U)) =< mint(U), D >=< l(U), m(U) >∂T (U)= k,

and

lk(mint(U), l(U)) = lk(mint(U), nm(U)− k l0(U))

= n lk(mint(U), m(U))− k lk(mint(U), l0(U)).
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Since lk(mint(U), l0(U)) = 0, we have lk(m(U), m(U)) = k
n
. ⋄

Corollary 2.12. Take m > 0, and for all 1 ≤ i ≤ m, consider coprime integers ki ∈ Z

and ni ∈ N∗. There exist a Q-sphere M and curves ci such that H1(M ;Z) = ⊕m
i=1Z/niZ ci,

with lk(ci, ci) =
ki
ni

mod Z et lk(ci, cj) = 0 pour i 6= j.

Proof. By Lemma 2.11, there are m Q-spheres Mi such that H1(Mi;Z) = Z/niZ ci, with
lk(ci, ci) =

ki
ni
. Define M as the connected sum of the Mi. ⋄

Corollary 2.13. For any family of rational numbers (aij)1≤j≤i≤r, there are a Q-sphere
M and simple, closed, pairwise disjoint, framed curves fi, 1 ≤ i ≤ r, in M such that
lk(fi, fj) = aij for j ≤ i.

Proof. Given integers (nij)1≤j≤i≤r and (kij)1≤j≤i≤r, with nij > 0 et kij prime to nij

for all 1 ≤ j ≤ i ≤ r, Corollary 2.12 gives a Q-sphere M such that H1(M ;Z) =
⊕

1≤j≤i≤r Z/nijZ cij , with lk(cij , cij) =
kij
nij

mod Z and lk(cij , cst) = 0 if (i, j) 6= (s, t).

For j < i, take nij and kij such that aij =
kij
nij

mod Z. For i < j, set cij = cji, nij = nji,

and kij = kji. Then, for 1 ≤ i ≤ r, choose curves γi such that γi =
∑

l 6=i cil in H1(M ;Z).
For i 6= j, we get :

lk(γi, γj) = lk(cij , cij) mod Z

=
kij
nij

mod Z

For 1 ≤ i ≤ r, choose nii and kii such that lk(γi, γi) +
kii
nii

= aii mod Z, then consider f ′
i

such that f ′
i = γi + cii in H1(M ;Z). Then :

lk(f ′
i , f

′
i) = lk(γi, γi) + lk(cii, cii) mod Z

= aii mod Z,

and, if j < i,
lk(f ′

i , f
′
j) = lk(γi, γj) = aij mod Z.

Now, we can choose the curves fi in the homology classes of the f ′
i , and their preferred

parallels l(fi), such that lk(fi, fj) = aij in Q for all 1 ≤ j ≤ i ≤ r. ⋄

We now prove the proposition, generalizing the method of Levine [8] for knots in S3.
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Write A(t) = (Pji(t))1≤i,j≤n, and Pij(t) =
∑d

k=−d r
(k)
ij tk, with r

(k)
ij = r

(−k)
ji for all i, j, k.

By Corollary 2.13, there are a Q-sphere M0 and pairwise disjoint simple closed framed
curves γik, 1 ≤ i ≤ n, 0 ≤ k ≤ d, such that, for 1 ≤ i, j ≤ n and 0 ≤ k, l ≤ d :

lk(γik, γjl) =











r
(k)
ij if l = 0

r
(l)
ji if k = 0
0 otherwise

Consider a disk D in M0, disjoint from all γik. Set K0 = ∂D. For 1 ≤ i ≤ n and
1 ≤ k ≤ d, connect γi,k−1 to γik with an arc αik such that < αik, D >= 1, where < ., . >
denotes the algebraic intersection number. Choose the αik pairwise disjoint, and disjoint
from all the γik. Now consider a band Bik = hik([−1, 1]× [0, 1]) such that :

• hik({0} × [0, 1]) = αik,

• hik([−1, 1]× {0}) = Bik ∩ (−γi,k−1) ⊂ ∂Bik,

• hik([−1, 1]× {1}) = Bik ∩ γik ⊂ −∂Bik.

We also suppose that Bik meets the tubular neighborhoods T (γi,k−1) and T (γik) along the
preferred parallels l(γi,k−1) and l(γik).

γi,k−1 γik

K0

αik

K0

For all i, define a knot Ji by :

Ji = ((
d
∐

k=0

γik) \ (
d
∐

k=0

hik([−1, 1]× ∂[0, 1])))⋃(
d
∐

k=0

hik(∂[−1, 1]× [0, 1])).
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Define the preferred parallels l(Ji) similarly from the l(γik). Note that Ji is homologous
to
∑d

k=0 γik.
Set L = ∐n

i=1Ji. For all i, we have lk(Ji, K0) = 0. Since det(A(1)) 6= 0, (M0, L,K0) is
an admissible surgery presentation. Set (M,K) = (χ(M0, L), K0).

The Ji lift in the infinite cyclic covering X̃0 associated with K0. Since < Ji, D >= 0,
the lifts are homeomorphic to the Ji. Choose lifts J̃i such that the corresponding lifts of
the γi0 all lie in the same copy of M \D in X̃0. By Proposition 2.5, the equivariant linking
matrix associated with the surgery presentation (M0, L,K0) is a square matrix of order
n, whose coefficients are lke(J̃i, J̃j) =

∑

k∈Z lk(J̃i, J̃j,k)t
k, with J̃j,k = τk0 (J̃j). We have

lk(J̃i, J̃j,k) =















min(d,d+k)
∑

l=max(0,k)

lk(γil, γj,l−k) if − d ≤ k ≤ d

0 otherwise

Fix k such that −d ≤ k ≤ d.

lk(J̃i, J̃j,k) =

{

r
(k)
ij if k ≥ 0

r
(−k)
ji if k ≤ 0

Since r
(−k)
ji = r

(k)
ij , we get lke(J̃i, J̃j) = Pij(t). ⋄

2.5 Proof of Theorem 1.5

The modules satisfying the conditions of Theorem 1.5 can be written as a direct sum of
terms Λ

(P )
, with P symmetric, P (1) 6= 0, and terms Λ

((1+t)n)
⊕ Λ

((1+t)n)
, with n odd. Hence

we have to realize these two kinds of modules, and the direct sums of Alexander modules.

Lemma 2.14. If P ∈ Λ satisfies P (t−1) = P (t) et P (1) 6= 0, then there exist a Q-
sphere M and a null-homologous knot K in M such that the Alexander module of K is
A(K) = Λ/(P ).

Proof. Apply Proposition 2.10 and Proposition 2.5 to the 1× 1 matrix A(t) = (P (t)). ⋄

Lemma 2.15. For all integer n > 0, there exist a Q-sphere M and a null-homologous
knot K in M such that the Alexander module of K is :

A(K) =
Λ

(1 + t)n
⊕

Λ

(1 + t)n
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Proof. Apply Proposition 2.10 and Proposition 2.5 to the matrix :

A(t) =

(

0 (1 + t)n

(1 + t−1)n 0

)

.

⋄

Given two null-homologous knots K1 and K2 in Q-spheres M1 and M2, we define the
connected sum K1♯K2 of K1 and K2 in the connected sum M1♯M2 of M1 and M2 in the
following way. For i = 1, 2, remove from Mi a ball Bi which intersects Ki along an arc
αi([0, 1]), trivial in the sense that the complement of a regular neighborhood of αi([0, 1])
in Bi is a solid torus. Orient these arcs from αi(0) to αi(1). Then glue M1 \ Int(B1) to
M2 \ Int(B2) along a homeomorphism h : ∂B1 → −∂B2 such that h(α1(0)) = α2(1) et
h(α1(1)) = α2(0).

Lemma 2.16. If K1 and K2 are null-homologous knots in Q-spheres M1 and M2 respec-
tively, then their connected sum K = K1♯K2 is a null-homologous knot in the Q-sphere
M = M1♯M2, and A(K) = A(K1)⊕A(K2).

Proof. For i = 1, 2, consider a surgery presentation (S3
i , Li, Ji) of Ki. Setting S3

0 = S3
1♯S

3
2 ,

J = J1♯J2 and L = L1 ∐ L2, we get a surgery presentation (S3
0 , L, J) of K. Proposition

2.5 gives the presentation matrix

(

A1(t) 0
0 A2(t)

)

for A(K), where, for i = 1, 2, Ai(t) is

a presentation matrix for A(Ki). ⋄

3 Blanchfield forms

3.1 An expression of the Blanchfield form

Consider a null-homologous knotK in aQ-sphereM , with a surgery presentation (M0, L =
∐n

i=1Ji, K0). By Proposition 2.5, the associated equivariant linking matrix A(t) is a pre-
sentation matrix of A(K). The generators of A(K) associated with this presentation are
the meridians mi of the J̃i (fixed lifts of the Ji in the infinite cyclic covering X̃0 associated
with K0).

Lemma 3.1. Set L = −A(t)−1. Then lke(mi, mj) = Lji.

Note that lke(mi, mi) is well defined, because the mi are framed by the ∂T (J̃i).
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Proof. The parallel l(J̃i) is rationally null-homologous, so it bounds a rational chain Σ
(1)
i

in X̃0, which can be chosen to intersect the T (J̃j,k) along meridian disks. Removing from

Σ
(1)
i its intersections with the interiors of the T (J̃j,k) for all j ∈ {1 . . . n}, k ∈ Z, we get a

new rational chain Σ
(2)
i such that :

∂Σ
(2)
i = l(J̃i)−

n
∑

j=1

lke(J̃i, J̃j)mj .

The chain Σ
(2)
i can be viewed in the infinite cyclic covering X̃ associated with K. Now,

in X̃ , l(J̃i) bounds a disk Di,0 contained in the solid torus T̃i,0 glued during the surgery.

Gluing Di,0 and −Σ
(2)
i along l(J̃i), we get a rational chain Σi in X̃ such that :

∂Σi =

n
∑

j=1

lke(J̃i, J̃j)mj =

n
∑

j=1

Aji(t)mj .

This gives :

lke(∂Σi, mj) =
n
∑

k=1

Aki(t)lke(mk, mj).

Now, defining the (mj)int as in the proof of Lemma 2.11, we have :

< (mj)int,Σi >e =
∑

k∈Z

< (mj)int, τ
k(Σi) > tk

= −δij ,

where < ., . >e denotes the equivariant algebraic intersection number, given by definition
by the first equality. So lke(mj , ∂Σi) = −δij . Thus

∑n
k=1Aki(t)lke(mk, mj) = −δij . ⋄

Corollary 3.2. For 1 ≤ i, j ≤ n, φK(mi, mj) = (−A(t)−1)ji mod Λ.

3.2 Orthogonal decomposition

In this section, we prove Theorem 1.3. We begin with three useful lemmas.

Lemma 3.3. If γ ∈ A has order P , then there exists η ∈ A such that φ(γ, η) = 1
P
.
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Proof. If there exists a strict divisorQ of P such that Im(φ(γ, .)) ∈ 1
Q
Λ, thenQγ ∈ ker(φ),

and so Qγ = 0, which is a contradiction. Thus PIm(φ(γ, .)) is an ideal of Λ/(P ) which
contains a unit. So PIm(φ(γ, .)) = Λ/(P ). ⋄

Lemma 3.4. Let γ1, γ2 ∈ A have respective orders π1 and π2. If π1 is prime to π2, then
φ(γ1, γ2) = 0.

Proof. We have π1φ(γ1, γ2) ∈ Λ and π2φ(γ1, γ2) ∈ Λ. As Λ is a principal ideal domain,
there are A and B in Λ such that Aπ1 + Bπ2 = 1, thus φ(γ1, γ2) = Aπ1φ(γ1, γ2) +
Bπ2φ(γ1, γ2) ∈ Λ. ⋄

Lemma 3.5. Let F be a Λ-submodule of A, and denote by F⊥ its orthogonal with respect
to φ. We have A = F ⊕ F⊥ if and only if F ∩ F⊥ = 0.

Proof. Write F =
⊕p

i=1
Λ

(Pi)
xi. For y ∈ A, φ(xi, y) =

P
Pi
, with P defined modulo Pi. So

codimQx
⊥
i ≤ deg(Pi) for 1 ≤ i ≤ p. Now F⊥ = ∩p

i=1x
⊥
i , so codimQF

⊥ ≤
∑p

i=1 deg(Pi) =
dimQ F . Thus dimQ F + dimQ F⊥ ≥ dimQ A. ⋄

We now prove Theorem 1.3. We can write A =
⊕

i∈I
Λ

(π
ni
i )

with I finite and each πi

prime. Lemma 3.4 gives an orthogonal decomposition into terms
⊕

i∈I
Λ
πni

with π prime
and symmetric, and terms (

⊕

i∈I
Λ

(πni )
)⊕ (

⊕

i∈J
Λ

(πni)
), with π prime and non symmetric.

We have three cases to treat (the case π = 1 + t being particular).

First case : A =
⊕

i∈I
Λ
πni

, π prime and symmetric, and I finite. Denote n =
max{ni; i ∈ I}.

First note that there exists γ ∈ A such that φ(γ, γ) = P
πn , P prime to π. Indeed, if

such a γ does not exist, then, for η1 of order πn and η2 such that φ(η1, η2) =
1
πn , we have

φ(η1 + η2, η1 + η2) =
Q
πn with Q = 2 mod π, which gives a contradiction.

Consider such a γ, and denote by F the Λ-submodule of A generated by γ. If x ∈
F ∩ F⊥, then x = λγ for a λ ∈ Λ, and φ(x, γ) = 0 implies λ ∈ πnΛ. Hence A = F ⊕ F⊥.

As dimQ(F
⊥) < dimQ(A), we can conclude by induction.

Second case : A = (
⊕

i∈I
Λ

(πni )
)⊕ (

⊕

i∈J
Λ

(πni )
), with π prime, non symmetric, π(−1) 6=

0, and I and J finite. The conditions on π imply that π is prime to π. In particular, in
the direct sum above, the two main terms are submodules isotropic for φ.

Denote n = max{ni; i ∈ I ∪ J}. Without loss of generality, we suppose that n
appears as a power of π. Consider γ1 of order πn, and γ2 such that φ(γ1, γ2) =

1
πn . Since
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projecting γ2 on
⊕

i∈J
Λ

(πni )
does not change φ(γ1, γ2), we can suppose γ2 has order πk,

and φ(γ1, γ2) =
1
πn implies k = n.

Now denote by G the Λ-submodule of A generated by γ1 and γ2. If x ∈ G∩G⊥, write
x = λγ1+µγ2 with λ, µ ∈ Λ. Then φ(x, γ1) = 0 implies µ ∈ πnΛ, and φ(x, γ2) = 0 implies
λ ∈ πnΛ. So x = 0. Hence A = G⊕G⊥. Again dimQ(G

⊥) < dimQ(A), and we conclude
by induction.

Third case : A =
⊕

i∈I
Λ

((1+t)ni )
, with I finite. Denote n = max{ni; i ∈ I}.

If n is even, we can replace (1+ t)n by (t+2+ t−1)n/2, and proceed exactly like in the
first case. Now suppose n is odd.

First note that, for all γ ∈ A, φ(γ, γ) = P
(1+t)k

, with k even, P (−1) 6= 0 or P = 0.

Indeed, if φ(γ, γ) = P
(1+t)k

, we have P
(1+t)k

= P
(1+t−1)k

, so P = tkP , and k odd implies

P (−1) = 0.
Consider γ1 of order (1 + t)n and γ2 such that φ(γ1, γ2) = 1

(1+t)n
. Note that γ2 also

has order (1 + t)n. Denote by H the Λ-submodule of A generated by γ1 and γ2. For
x ∈ H ∩ H⊥, write x = λγ1 + µγ2, with λ, µ ∈ Λ. If λ or µ is in (1 + t)nΛ, then x = 0.
Suppose λ and µ are not in (1 + t)nΛ. We have :

{

λφ(γ1, γ1) +
µ

(1+t−1)n
= 0

λ
(1+t)n

+ µφ(γ2, γ2) = 0
.

Define minimal integers j and k such that (1 + t)jφ(γ1, γ1) and (1 + t)kφ(γ2, γ2) are in Λ,
and denote by mλ (resp. mµ) the multiplicity of the root −1 in λ (resp. µ). We get :

{

mλ − j = mµ − n
mλ − n = mµ − k

.

This implies n − j = k − n. But n − j ≥ 0 and k − n ≤ 0, so j = k = n, which is a
contradiction, because n is odd, whereas j and k are even. Hence A = H ⊕H⊥.

We have showed in particular that λγ1 + µγ2 = 0 implies (1 + t)n divides λ and µ. So
H = Λ

((1+t)n)
γ1 ⊕

Λ
((1+t)n)

γ2. The last point is to describe the form φ over this submodule.

The matrix of the form φ on H , with respect to the basis (γ1, γ2), is

(

α(t)
(t+2+t−1)k

1
(1+t)n

1
(1+t−1)n

β(t)
(t+2+t−1)l

)

,
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with k, l < n
2
, α and β symmetric. We want to show that there is a basis such that α and

β vanish. We shall first get α = 0. Define η1 = γ1 +
(−1)kα(−1)

2
(1 + t)n−2kγ2. We get :

φ(η1, η1) =
α(t) + (−1)kα(−1)

2
(tk−n + tn−k) + α(−1)2

4
(t+ 2 + t−1)(n−k−l)β(t)

(t+ 2 + t−1)k

Since n − k − l > 0, the numerator vanishes for t = −1. So φ(η1, η1) can be written

φ(η1, η1) = ν(t)

(t+2+t−1)k′
, where k′ < k. Now choose η2 ∈ H such that φ(η1, η2) = 1

(1+t)n
.

Replacing the basis (γ1, γ2) by the basis (η1, η2) makes the integer k decrease. Iterating
this process, we get a basis, again denoted (γ1, γ2), such that α = 0.

Now consider γ = γ2 + a(t)γ1. We have :

φ(γ, γ) =
a(t) + a(t)tn + β(t)tl(1 + t)n−2l

(1 + t)n
.

Set a(t) = −1
2
β(t)tl(1 + t)n−2l. Then a(t)tn = a(t), so φ(γ, γ) = 0. Hence in the

basis (γ1, γ), we get α = 0 and β = 0. This concludes the proof of Theorem 1.3.

As a direct consequence of Theorem 1.3, we get the following lemma.

Lemma 3.6. For an Alexander module Λ
(πn)

⊕ Λ
(πn)

, with π prime and non symmetric,

and n odd if π = (1 + t), there is a unique isomorphism class of Blanchfield forms. In
particular, the realization of the Alexander module gives a realization of the Blanchfield
form.

Now, for an Alexander module A(K) = Λ
(πn)

with π prime and symmetric or π =

t+2+t−1, there may be different isomorphism classes of Blanchfield forms. The realization
of the module described in Section 2.5 gives a generator γ of A(K) for which φK(γ, γ) =
−1
πn . Any other generator η can be written η = Rγ, with R prime to π, and we have

φK(η, η) =
−RR̄
πn . Here two questions arise. First, can any non degenerate hermitian form

over such a module be realized as a Blanchfield form ? Second, what are the classes of
symmetric polynomials prime to π modulo πn and all the RR̄ ? The purpose of the next
section is to give a positive answer to the first one. The last section gives a partial answer
to the second one, showing there are infinitely many such classes.

3.3 Realization of Blanchfield forms

Proposition 3.7. Consider a Λ-module A = Λ
(∆)

with ∆ symmetric and ∆(1) 6= 0.

Consider a non degenerate hermitian form φ : A×A → Q(t)
Λ

. There is a null-homologous
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knot K in a Q-sphere M such that (A(K), φK) is isomorphic to (A, φ).

This result, together with Theorem 1.3, Lemma 3.6, and Lemma 2.16, will conclude
the proof of Theorem 1.4.

Proof of Proposition 3.7. Let γ be a generator of A. We have φ(γ, γ) = P
∆
, with P prime

to ∆. Suppose there is a hermitian matrix A(t) such that det(A) = r∆ for an r ∈ Q, and
the cofactor (1, 1) of A is −rP . By Proposition 2.10 and Proposition 2.5, the matrix A(t)
is a presentation matrix of a null-homologous knot K in a Q-sphere M . By Corollary 3.2,
the first generator m1 of this presentation satisfies φK(m1, m1) = P

∆
. Let us construct

such a matrix A(t) to conclude.
Set :

A(t) =





















α1 1

1
. . .

. . . 0
. . .

. . .
. . .

. . .
. . . 1

0 1 αi q
q β





















,

with αj , β ∈ Λ and q ∈ Q. For 1 ≤ j ≤ i, consider the following sub-matrix of A(t) :

Aj(t) =





















αj 1

1
. . .

. . . 0
. . .

. . .
. . .

. . .
. . . 1

0 1 αi q
q β





















.

The determinants of these matrices satisfy the following relations :







det(Aj) = αj det(Aj+1)− det(Aj+2) for 1 ≤ j ≤ i− 2
det(Ai−1) = αi−1 det(Ai)− β
det(Ai) = αiβ − q2

.

Now set R1 = ∆ and R2 = −P . Consider the successive euclidean divisions Rj =
QjRj+1−Rj+2, with d◦Rj+2 < d◦Rj+1. Let k be the integer such that r := Rk+2 is a non-
zero rational number. We want to identify these equalities with the above relations. As r
may not be a square, multiply the equalities by r. This gives (rRj) = Qj(rRj+1)−(rRj+2).
In particular, (rRk) = Qk(rRk+1)− r2. Set i = k, q = r, β = rRk+1, and, for 1 ≤ j ≤ k,
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αj = Qj . Then det(Aj) = rRj for all j, and we get the required matrix A(t). ⋄

3.4 Isomorphism classes of Blanchfield forms

Proposition 3.8. Consider the Λ-module A = Λ
(∆n)

, with ∆ prime and symmetric, or

∆(t) = t + 2 + t−1, and n > 0. The set B∆n of isomorphism classes of non degenerate
hermitian forms on A is infinite.

This result and Theorem 1.3 prove Theorem 1.6.

Proof. A non degenerate hermitian form φ on A is determined by the value of φ(γ, γ) for
a generator γ of A. Consider two such forms φ1 and φ2, with φ1(γ, γ) =

P
∆n and φ2(γ, γ) =

Q
∆n , where P and Q are symmetric, prime to ∆, and defined modulo ∆n. The forms φ1

and φ2 are isomorphic if and only if there is R ∈ Λ such that φ1(Rγ,Rγ) = φ2(γ, γ), i.e.
RR̄P = Q mod ∆n.

Symmetric polynomials can be written as polynomials in the variable s = t + t−1.
Define ∆s by ∆s(t + t−1) = ∆(t), and set Dn = Q[s]

(∆n
s )

and En = Λ
(∆n)

. Now consider the

application ϕn : E⋆
n → D⋆

n given by ϕn(R)(t+ t−1) = RR̄(t). There is a natural bijection
between B∆n and coker(ϕn) = D⋆

n/ϕn(E
⋆
n). The next lemma allows us to restrict our

study to the case n = 1.

Lemma 3.9. There is an isomorphism coker(ϕn)
∼

−−−→ coker(ϕ1).

Proof. Consider the following commutative diagram of groups, where the morphisms πn,
π1, pE, pD are the natural projections :

E⋆
n

ϕn
−−−→ D⋆

n

πn−−−→ coker(ϕn)

↓ pE ↓ pD

E⋆
1

ϕ1
−−−→ D⋆

1

π1−−−→ coker(ϕ1)

Let us show the existence of a morphism pc : coker(ϕn) → coker(ϕ1) such that the diagram
still commutes. We have to show that πn(P ) = πn(Q) implies π1 ◦ pD(P ) = π1 ◦ pD(Q),
i.e. ker(πn) ⊂ ker(π1 ◦ pD).

π1 ◦ pD(ker(πn)) = π1 ◦ pD(ϕn(E
⋆
n)) = π1 ◦ ϕ1 ◦ pE(E

⋆
n) = 0

So pc is well defined, and it is obviously surjective. It remains to show that it is injective.
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Consider x ∈ ker(pc). There is y in D⋆
n such that x = πn(y). Then π1 ◦ pD(y) = 1,

so pD(y) = ϕ1 ◦ pE(z) = pD ◦ ϕn(z). Thus pD(yϕn(z
−1)) = 1. It remains to show that

P = yϕn(z
−1) ∈ Im(ϕn).

We can write P = 1+
∑n−1

i=1 Pi∆
i
s with d◦Pi < d◦∆s for 1 ≤ i ≤ n−1. We shall search

R ∈ E⋆
n such that RR̄(t) = P (t+ t−1) of the form R = 1+

∑n−1
i=1 Ri∆

i, with Ri symmetric
and d◦Ri < d◦∆ for 1 ≤ i ≤ n− 1. We have RR̄ = 1 +

∑n−1
i=1 Qi∆

i, where Qi is the sum
of 2Ri and a term depending on the Rj for j < i. So we can define the Ri by induction
in order to get Qi(t) = Pi(t+ t−1). Hence P ∈ ϕn(E

⋆
n). ⋄

We now suppose n = 1, and denote D1, E1, ϕ1, by D, E, ϕ. We first treat the case
∆(t) = t+ 2 + t−1.

Lemma 3.10. If ∆(t) = t+ 2 + t−1, then

coker(ϕ) ∼= Q⋆/(Q⋆)2 ∼= Z/2Z×
⊕

prime integers

Z/2Z.

Proof. We have D = Q[s]
(s+2)

≃ Q and E = Λ
(t+2+t−1)

. The elements of E⋆ can be written

at + b, with a 6= b in Q. Now ϕ(at + b) = a2 + b2 + abs = (a − b)2 mod (s + 2). So
Im(ϕ) = (Q⋆)2.

Each element of Q⋆ can be written uniquely ε
∏

p prime p
n(p) with only a finite number

of non-zero n(p), and ε = ±1. Thus each element in the quotient Q⋆/(Q⋆)2 can be written
uniquely ε

∏

p prime p
n(p) with n(p) = 1 for a finite number of primes p, and n(p) = 0 for

the others. ⋄

We now suppose ∆ prime. In the general case, we will use some material of algebraic
number theory. We will not detail these notions, and we refer the reader to [10].

Since ∆ is prime, ∆s is prime too, so D is a number field, that is a finite extension of
Q. We can write E = D[t]

(t2−st+1)
, so E is a Galois extension of D of degree 2. We denote by

σ the only non trivial element of its Galois group. Denote by α the image of t in D[t]
(t2−st+1)

.

It is a primitive element in E, i.e. E = D[α], and the morphism σ is given by σ|D = idD
and σ(α) = α−1. Note that σ is induced by the conjugation t 7→ t−1 in Λ. Define the
norm NE/D : E → D by NE/D(x) = xσ(x). On E⋆, the norm NE/D coincides with the
morphism ϕ.

Denote by AD the ring of integers of D. A fractional ideal of D is a AD-module I such
that I ⊂ D and kI ⊂ AD for a k ∈ D⋆. The product of two fractional ideals I and J is
made of all finite sums of products ij with i ∈ I and j ∈ J . It is again a fractional ideal.
With this multiplication, the non trivial fractional ideals of D form a group denoted by
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FD. The principal fractional ideals of D are the fractional ideals of type kAD for k ∈ D⋆.
They form a sub-group PD of FD. The quotient group CD = FD/PD is called the ideal
class group of D.

Theorem 3.11 (Dirichlet). ([10, p.71, Theorem 2])
The ideal class group of a number field is finite.

We have a short exact sequence :

0 → PD → FD → CD → 0.

This can be related to D⋆ by the surjective map D⋆
։ PD given by k 7→ kAD.

The field E also is a number field, so all the previous definitions and results apply to E.
We shall define commutative diagrams based on the above exact sequence and surjective
map, and the norm morphism. For an ideal xAE , define NE/D(xAE) = NE/D(x)AD. Now
we have the following commutative diagram, where the vertical arrows are given by the
norm NE/D.

E⋆
։ PE

↓ ↓
D⋆

։ PD

This induces a surjective map coker(NE/D : E⋆ → D⋆) ։ coker(NE/D : PE → PD).
Recall our aim is to show that coker(NE/D : E⋆ → D⋆) is infinite. It suffices to show that
coker(NE/D : PE → PD) is infinite. To see this, we will use the above exact sequence.

For a fractional ideal J of E, define NE/D(J) as the ideal of D generated over AD by
all the NE/D(x) for x ∈ J . For a principal ideal, we recover the previous definition. We
get the following commutative diagram, where the vertical arrows are again given by the
norm NE/D.

0 −→ PE −→ FE −→ CE −→ 0
↓ ↓ ↓

0 −→ PD −→ FD −→ CD −→ 0

Since CE and CD are finite, it remains to show that coker(NE/D : FE → FD) is infinite.
Any fractional ideal I of D has a unique factorisation I =

∏q
i=1 p

ei
i where q ∈ N⋆ and

for each i, pi is a prime ideal of AD and ei ∈ Z ([10, p.60, Theorem 3]). Now, for any
J ∈ FD, we have NE/D(JAE) = J2 ([6, p.25, Corollary 1]). So I is in the image of NE/D

if and only if, for each i such that ei is odd, pi is in the image of NE/D.
Note that there are infinitely many prime ideals in AD. Indeed, if p is a prime integer,

there is a prime ideal Ip of AD such that Ip ∩ Z = pZ ([6, p.9, Proposition 9]).
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Now consider a prime ideal p of AD and set J = pAE . The primes that appear in
the decomposition of J are exactly those whose intersection with AD is p. We have three
cases ([10, §5.2]) :

• J = P2, with P prime in AE , and NE/D(P) = p,

• J itself is prime, and NE/D(J) = p2,

• J = P1P2, with P1 and P2 primes, P2 = σ(P1), and NE/D(Pi) = p for i = 1, 2.

In the second case, the ideal p is not in the image of NE/D. It follows from the Tcheb-
otarev density theorem ([6, p.169, Theorem 10]) that the density of the subset of prime
ideals p of AD for which J is prime is equal to 1

2
in the set of all prime ideals. This

concludes the proof. ⋄
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