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Abstract. Except in the specific case of in vitro fertilization, the precise date of onset of

pregnancy is unknown. In clinical practice, the date of pregnancy may only be estimated,

and most commonly from ultrasound biometric measurements of the embryo. We want

to estimate the density of the random variables corresponding to the interval between last

menstrual period and true onset of pregnancy. The observations, which are the intervals

between last menstrual period and the date estimated by ultrasound, correspond to

the variables of interest up to an additive noise. We suggest an estimation procedure

based on deconvolution. It requires the knowledge of the density of the noise which is not

available. But we have at our disposal another specific sample with replicate observations

for twin pregnancies. This allows both to estimate the noise density and to improve

the deconvolution step. Convergence rates are studied and compared to other settings.

Our estimator involves a cut-off parameter for which we propose a cross-validation type

procedure. Lastly, we estimate the target density in spontaneous pregnancies with an

estimation of the noise obtained from replicate observations in twin pregnancies.

Keywords. Deconvolution; Density estimation; Nonparametric methods; Dating of
pregnancy; Mean square risk; Replicate observations

1. Introduction

In spontaneously conceived pregnancies, the date of pregnancy is unknown. Although
pregnancies occur at around 14 days following last menstrual period (LMP), the fertile
window of a woman may vary widely based upon hormonal studies (Wilcox et al. [2000]).
These studies, however, provide day-specific probabilities of a fertile window within a
female cycle in non-pregnant women and not the probability density of onset of preg-
nancy in pregnant women. Since the exact date of pregnancy is never precisely known in
women conceiving spontaneously, the probability distribution function of onset of preg-
nancy within female cycles is unknown in the general population. This density, however,
may have important implications both for clinical practice and physiology knowledge.

Ultrasound is the most widely used method for dating pregnancies in clinical practice.
First trimester biometric measurements such as the crown-rump length (CRL) have been
proven to perform better than LMP for dating pregnancies. Several formulas, derived from
simple regression analysis have been developed for dating pregnancies (Sladkevicius et al.
[2005]), the most widely used being the formula initially suggested by Robinson [1973].
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Denoting by X the interval between LMP and true onset of pregnancy, and by Y the
interval between LMP and ultrasound estimate, the purpose of this study is to estimate
the density f of X. However, only the noisy observations

(1) Yj = Xj + εj , j = 1, . . . , n

are available. Here, the Xj and the εj for j = 1, . . . , n are independent identically dis-
tributed and the sequences (Xj)1≤j≤n and (εj)1≤j≤n are independent. Moreover, in this
setting the density fε of ε is unknown and the noise cannot be directly estimated from a
preliminary sample of εj .

Since X is measured with an unknown error, the estimation of f may be seen as a
deconvolution problem. Regarding the assumptions on the distribution of the error, several
approaches have been studied in the literature. Numerous works have addressed this
problem under the assumption of a known density for the error. These works comprise
kernel methods (see Fan [1991], Liu and Taylor [1989], Stefanski and Carroll [1990], Hesse
[1999], Delaigle and Gijbels [2004]) as well as wavelet methods (see Fan and Koo [2002],
Pensky and Vidakovic [1999]). Minimax optimality of convergence rates have been studied
by Fan [1991], Butucea [2004], Butucea and Tsybakov [2008a]. When a sample of the error
is given, density estimation has been addressed by Diggle and Hall [1993] and Neumann
[1997]. The latter considers the case of ordinary smooth densities for both desnities of the
error and X, and provides minimax rates of convergence. More contributions by Johannes
[2009] and Comte and Lacour [2011] propose different approaches with regard to bandwidth
selection. A full scheme of estimation in this setting with data-driven bandwidth selection
may be found in Comte and Lacour [2011].

In this article, we consider yet a different setting in which neither a known density nor
a sample of noise are available. Rather, we consider the situation of replicate and noisy
observations of the random variable X. Consider we have a sample of pregnancies with
two replicate measurements of X:

(2) Y−j1 = X−j + ε−j1, Y−j2 = X−j + ε−j2, j = 1, . . . ,M

with X−j , ε−j1 and ε−j2, for j = 1, . . . ,M , independent and identically distributed. The
sequences (X−j)1≤j≤M , (ε−j1)1≤j≤M and (ε−j2)1≤j≤M are independent. These noisy ob-
servations could be replicate measurements of CRL of the same embryo or measurements
of CRL in twin pregnancies. Therefore, we consider that two independent samples are
available: the first, of size M , containing replicate observations and the second, of size n
containing non-replicate observations. Density estimation by deconvolution with replicate
observations has been studied by Delaigle et al. [2008], Li and Vuong [1998] and Meister
and Neumann [2009]. Our approach suggests a similar estimator that is related to the
truncated estimator of Neumann [1997]. The second sample with replicate observations
allows both to estimate the noise density and to improve the deconvolution step. Our esti-
mator involves a cut-off parameter for which we propose a cross-validation type procedure,
following the procedure described in Comte and Lacour [2011].

The outline of this article is as follows. In Section 2 we define our estimator. We
then majorate the L2 risk based upon a new version of the fundamental lemma of Neu-
mann [1997]. Convergence rates are compared to the settings of known noise density
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and observed noise samples. We discuss the relationship between M , n and the resulting
convergence rates and show that the convergence rate is the same as that found with an
assumed known noise density in several cases. In Section 4 we discuss model selection
and the choice of an appropriate penalty. Simulations are conducted to illustrate the
performance of our estimator together with a comparison with existing results in Section
5. Finally, in Section 6, we apply our method to real data and estimate the distribution
f of onset of pregnancy within a female cycle using ultrasound measurements in twin
pregnancies as replicate noisy observations.

2. Model and estimator

We denote fY , f and fε the densities of Y , X and ε. We denote by g∗(x) =
∫

eitxg(x)dx,
the Fourier transform of any integrable function g. The characteristic functions of each of
the variables Y , X and ε are therefore denoted f∗

Y , f∗ and f∗
ε respectively. For a function

g : R 7→ R, we denote by ‖g‖2 =
∫

R
g2(x)dx the L2 norm. For two real numbers a and b,

we denote a ∧ b = min(a, b). As a rule in this paper, unless otherwise specified, C and C ′

will denote universal constants that may change from line to line.
The convolution problem may be written as fY (x) = f ? fε(x) =

∫
f(x − t)fε(t)dt

where ? denotes the convolution operator. Using the characteristic functions, we have
f∗

Y (u) = f∗(u)f∗
ε (u). In our setting we consider fε unknown, therefore we must estimate

it or at least the square of its characteristic function f∗
ε as we will see shortly.

In the following, we consider the model described by the two independent samples (1)
and (2). A noise sample is not available and we suggest that the estimation of f∗

ε relies
upon replicate observations given in (2) instead.

The following preliminary assumption regarding the behavior of fε will be considered
fulfilled throughout the article.

Assumption(A1) We assume ε is symmetric and that its characteristic function never
vanishes.

Since assuming ε symmetric is equivalent to assuming f∗
ε real-valued, we can see that

(A1) is equivalent to the assumption 2.2 in Delaigle et al. [2008]. Therefore, Assumption
(A1) implies that

∀t ∈ R, f∗
ε (t) ∈ R∗

+.

Under this reasonable assumption, we have:

E
(
eit(ε−j1−ε−j2)

)
= |E

(
eitε−j1

)
|2 (A1)

=
(

E
(
eitε−j1

))2
=
(
f∗

ε (t)
)2

.

Therefore, given that E
(
eit(ε−j1−ε−j2)

)
= E

(
eit(Y−j1−Y−j2)

)
and under the hypothesis (A1),

Delaigle et al. [2008] propose the following estimator of (f∗
ε )

∣∣∣∣∣∣
1

M

M∑

j=1

cos
(
t(Y−j1 − Y−j2)

)
∣∣∣∣∣∣

1/2
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As we will see shortly, our estimator of f∗
ε is used over a domain for which f∗

ε is strictly
positive. Therefore we have the following estimation of (f∗

ε )2 without the absolute value:

(3) (̂f∗
ε )2(t) =

1

M

M∑

j=1

cos
(
t(Y−j1 − Y−j2)

)

We then define a truncated estimate of 1/f∗
ε :

(4)
1

f̃∗
ε (t)

=
1

(̂f∗

ε )2(t)≥M−1/2√
(̂f∗

ε )2(t)

Fourier inversion of f∗ = f∗
Y /f∗

ε yields the following estimator of f using a πm cut-off for
integrability purpose :

(5) f̂m(x) =
1

2π

∫ πm

−πm
e−ixt f̂

∗
Y (t)

f̃∗
ε (t)

dt, where f̂∗
Y (t) =

1

n + M




n∑

j=1

eitYj +
M∑

j=1

eitY−j1


 .

This estimator can also be viewed as a deconvolution kernel estimator with the sinc kernel
and the bandwidth 1/(πm).

Remark 1. Data Y−j2 are not used in f̂∗
Y (t). Indeed, using the n+2M variables deterio-

rates the variance of the estimator of f∗
Y (t) due to the dependency between Y−j1 and Y−j2

(see Appendix).

For further discussion, we recall the definitions of the estimators given in (3), (4) and
(5) for the cases (i) with known density of noise, denoted with superscript KN and (ii)
with an independent sample (ε−j) of noise observations, denoted with superscript ON (see
Comte and Lacour [2011]):

(i) In the case of a known density fε of the noise, the estimate of f is:

f̂KN
m (x) =

1

2π

∫ πm

−πm
e−ixt f̂

∗
Y (t)

f∗
ε (t)

dt

where f̂∗
Y is defined as previously.

(ii) In the case of an unknown density but with a sample of (ε−j), the estimate of the
characteristic function f∗

ε is

f̂ON∗
ε (t) =

1

M

M∑

j=1

eitε−j

and its truncated estimate

1

f̃ON∗
ε (t)

=
1|f̂ON∗

ε (t)|≥M−1/2

f̂ON∗
ε (t)

.

The estimate of f in this case is

f̂ON
m (x) =

1

2π

∫ πm

−πm
e−ixt f̂∗

Y (t)

f̃ON∗
ε (t)

dt,
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where f̂∗
Y is defined as previously with M = 0. The additional sample with size M can

not be used here to improve the estimation of f∗
Y since it concerns the noise only. These

estimators differ from (5) in several ways:
(a) First, because of replications, we can only estimate (f∗

ε )2 and not directly f∗
ε as in

case (ii).
(b) Subsequently, the levels of truncations required will also differ in (4) and (ii). This

directly arises from the previous comment since the truncation will be in M−1/4 in (4),

whereas it is in M−1/2 in the ON case (ii).
(c) Finally, compared to our setting and (ii) which share the fact that fε is unknown,

the case (i) does not require a truncation and the estimator is the classical expression of
density estimation by deconvolution with a Fourier transform of compact support. The
risk bound obtained in this case is considered as a benchmark of the best reachable bound.

The estimator f̂m(x) also differs from Delaigle et al. [2008] in several ways:
(a) A cut-off πm is used instead of a ridge parameter. This cut-off allows to consider

super-smooth densities fε and f , which is not the case with the ridge parameter. The cut-
off use yields to restrict to the sinc kernel in order to optimize the bias of the estimator.

(b) As already mentioned earlier, we only use the estimation of f∗
ε where f∗

ε is non-
negative so the absolute value used by Delaigle et al. [2008] is not required. This substan-
tially simplifies the theoretical study.

3. Upper bound of the L2 risk

Let us define fm such that f∗
m = f∗1[−πm,πm](.). The function fm is the function which

is in fact estimated by f̂m. Therefore, this implies a nonparametric bias measured by
the distance between f and fm. Delaigle et al. [2008] study the pointwise risk of their
estimator. In this paper, we propose to complete their theoretical study by considering
the integrated risk of our estimator. We wish to bound the mean integrated squared error
(MISE) defined as E(‖f − f̂m‖2). We will first generalize Neumann’s Lemma (Neumann
[1997]) to the case of replicate measurements and use this result to deduce a risk bound.

3.1. General MISE bound. The extension of Neumann’s lemma for replicate measure-
ments is

Lemma 1. Assume that (A1) holds, and let p be an integer, p ≥ 1. There exists a
constant Cp such that

E

(∣∣∣∣
1

f̃∗
ε (t)

− 1

f∗
ε (t)

∣∣∣∣
2p
)

≤ Cp

(
M−1/2

|f∗
ε (t)|4 ∧ M−1

|f∗
ε (t)|6

)p

.

Proof is given in appendix.

Let us define, for k ∈ N∗,

∆k(m) =

∫ πm

−πm

dt

|f∗
ε (t)|k and ∆

(f)
k (m) =

∫ πm

−πm

|f∗(t)|2
|f∗

ε (t)|k dt
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as well as their estimates

∆̂k(m) =

∫ πm

−πm

dt

|f̃∗
ε (t)|k

and ∆̂
(f)
k (m) =

∫ πm

−πm

|f̂∗
Y (t)|2

|f̃∗
ε (t)|k+2

dt since f∗ =
f∗

Y

f∗
ε

.

Using the previous lemma we may deduce the following bound for the MISE:

Proposition 1. Assume that (A1) holds and f̂m is defined by (5). Then there exists a
constant C such that
(6)

E(‖f−f̂m‖2) ≤ ‖f−fm‖2+C

(
∆2(m)

n + M
+

∆4(m)

(n + M)
√

M
∧ ∆6(m)

(n + M)M
+

∆
(f)
2 (m)√

M
∧ ∆

(f)
4 (m)

M

)
.

Proof is given in appendix.

This decomposition underlines the different terms involved in the bound of the inte-
grated risk. We recognize in this last inequality (6) the bias ‖f − fm‖2 and variance
denoted Var(m) := Q1(m) + Q2(m) + Q3(m) with

Q1(m) := ∆2(m)/(n + M)

Q2(m) := ∆4(m)/((n + M)
√

M) ∧ ∆6(m)/((n + M)M)

Q3(m) := ∆
(f)
2 (m)/

√
M ∧ ∆

(f)
4 (m)/M.

We can also recognize Q1(m) as the variance term that arises alone when f∗
ε is assumed

as known (see Comte et al. [2006]) and for sample size n+M . The following terms Q2(m)
and Q3(m) are specific to our setting involving replicate observations and show the loss
in the resulting rates. In the case of observed noise (see Comte and Lacour [2011]), the
upper bound is

‖f − fm‖2 + C∆2(m)/n + (C + 2)∆
(f)
2 (m)/M.

Therefore, compared to the case with observed noise or known density, the terms Q2(m)
and Q3(m) resulting from the estimation of (f∗

ε )2 with replicate observations are a sub-
stantial step in complexity. A theoretical and an empirical study of the behavior of each
of these terms is presented later.

3.2. Resulting rates. Let us consider the following classical assumptions regarding the
behavior of f∗

ε :

Assumption (A2) There exist α ≥ 0, β > 0, γ ∈ R (γ > 0 if α = 0) and k0, k1 > 0 such
that

k0(x
2 + 1)−α/2 exp(−β|x|γ) ≤ |f∗

ε (x)| ≤ k1(x
2 + 1)−α/2 exp(−β|x|γ)

The noise distribution is called ordinary smooth if γ = 0 and supersmooth otherwise.
A Gaussian noise is supersmooth with γ = 2 and a Laplace noise is ordinary smooth with
γ = 0 and α = 2.
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Now, we know that, under (A2), the dominating variance term has the following order
[see Comte et al., 2006, Comte and Lacour, 2011]:

Q1(m) =
∆2(m)

n + M
≤ C

m2α+1−γ exp(2β(πm)γ)

n + M
.

Such orders are non standard for variance terms in nonparametric estimation and in par-
ticular larger than orders m/n which are obtained for standard problems (e.g. density
estimation without noise, corresponding to α = γ = 0, M = 0). Similarly, we get

Q2(m) ≤ C

(
m4α+1−γ exp(4β(πm)γ)

(n + M)
√

M

)
∧
(

m6α+1−γ exp(6β(πm)γ)

(n + M)M

)
.

If we want to give precise examples of the rates that can be obtained in the deconvo-
lution context, we must also make assumptions on the rate of decrease of f∗. Classically,
we consider the following smoothness spaces for density f on R:

Assumption (A3) f ∈ Aa,b,c(l) = {f ∈ L1 ∩ L2,
∫
|f∗(x)|2(x2 + 1)a exp(2b|x|c)dx ≤ l}

with c ≥ 0, b > 0, a ∈ R (a > 1/2 if c = 0), l > 0.

As previously, when c > 0, the function f is known as supersmooth, and as ordinary
smooth otherwise. The spaces of ordinary smooth functions correspond to classical Sobolev
classes, while supersmooth functions are infinitely differentiable (analytic function), and
we have necessarily c ≤ 2. It includes for example Gaussian (c = 2) and Cauchy (c = 1)
densities.

Then, under (A3), we have the following bias order:

(7) ‖f − fm‖2 ≤ Cm−2a exp(−2b(πm)c).

Moreover, under both (A3) and (A2), we have

Q3(m) ≤ C

(
m2(α−a)+e(2β(πm)γ )−2b(πm)c)+

√
M

)
∧
(

m2(2α−a)+e(4β(πm)γ )−2b(πm)c)+

M

)
.

Therefore, we have the following results when both f and fε are ordinary smooth.

Proposition 2. We consider assumptions (A1), (A2), (A3) and the ordinary smooth
case for both f and fε with c = γ = 0. The bound (6) then becomes

E(‖f − f̂m‖2) ≤ C

(
m−2a +

m2α+1

n + M

(
1 +

m2α

√
M

∧ m4α

M

)
+

m2(α−a)+
√

M
∧ m2(2α−a)+

M

)
.

If moreover M ≥ n and a ≥ α − 1/2, then we have for m = mopt = M1/(2a+2α+1),

(8) E(‖f − f̂mopt‖2) ≤ CM−2a/(2a+2α+1)

If M = nω with ω < 1, and m = mopt = n1/(2a+2α+1), then

(9) E(‖f − f̂mopt‖2) ≤ Cn−2a/(2a+2α+1)

if a ≥ (2/ω − 1)α − 1/2 and either (a < 2α) or (a ≥ 2α and (α + 1/2)ω/(1 − ω) ≤ a).
For instance for ω = 1/2, the above condition reduces to a > 3α − 1/2 if α > 1/2.
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The first inequality is a consequence of (6), (7) and elementary bounds for the variance.
Inequalities (8) and (9) allow us to recover the deconvolution rates as if the noise had
known density for a sample size of observations of order M and n respectively. This
rate is known to be the optimal one when the noise density is assumed to be known
(see Fan [1991], Butucea [2004], Butucea and Tsybakov [2008a,b]). The first case was
already mentioned in Delaigle et al. [2008]. The case M < n is new and interesting as
it corresponds to our real data setting. Another case is generally considered, where still
c = 0 but γ > 0:

Proposition 3. We consider assumptions (A1), (A2), (A3) and the ordinary smooth
case for f while fε is super smooth: c = 0, γ > 0. Then if M ≥ n and m = mopt =

π−1(log(M)/(8β))1/γ , we have

(10) E(‖f − f̂mopt‖2) ≤ C[log(M)]−2a/γ

The rate in (10) is the optimal rate in this context. Unfortunately, it is logarithmic,
but practical experiments show that, nevertheless, the procedure works well. It happens
that, when the noise density is known, the choice of the optimal cutoff mopt is known also.
In our case, an adaptive procedure would be required in this case as well, since β, γ are
unknown. This enhances the interest of adaptive procedures in general.

Proposition 3 is often summarized as: ”when the noise is super-smooth, the rate of
deconvolution is logarithmic”. This is not true since the regularity parameters of f are
involved in the computation of the rate. Let us give two counterexamples.
Example 1. Consider M = n, a = α = 0 and 2bπ = 2βπ = 1, c = γ = 1. We have

E(‖f − f̂m‖2) ≤ C

(
e−m +

em

M

(
1 +

em

√
M

∧ e2m

M

)
+

1√
M

∧ em

M

)
.

Then the choice mopt = log(M)/2 yields

E(‖f − f̂mopt‖2) ≤ CM−1/2

which is also still an optimal deconvolution rate in this case, and is obviously much better
than logarithmic.

Example 2: Gaussian-Gaussian case. Consider M = n and a = α = 0 and 2b = 2β = 1,
c = γ = 2. In that case, the risk bound can be written

E(‖f − f̂m‖2) ≤ C

(
e−(πm)2 +

m−1e(πm)2

M

(
1 +

e(πm)2

√
M

∧ e2(πm)2

M

)
+

1√
M

∧ e(πm)2

M

)
.

Then, choose

πmopt =

(
1

2
log(M) +

1

4
log(log(M))

)1/2

,

so that the risk is bounded by

E(‖f − f̂mopt‖2) ≤ C(log(M))−1/4M−1/2
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which is still a rate better than logarithmic for a sample size of order M .

We can give a more general result.

Proposition 4. Assume that assumptions (A1), (A2), (A3) are fulfilled with c > γ > 0.
If M ≥ n, then there exists a constant C such that

E(‖f − f̂m‖2) ≤ C

(
m−2a exp(−2b(πm)c) +

m2α+1−γe2β(πm)γ

M
(1 +

m2αe2β(πm)γ

√
M

)

)
.

Consequently, for any ε, 0 < ε < 1/2, the choice πm0 = (ε log(M)/(2β))1/γ yields

E(‖f − f̂m0‖2) ≤ C[log(M)](2α+1−γ)/γM−1+ε.

The last inequality also presents a general context where a polynomial rate can be reached
in the supersmooth case.

3.3. Discussion about the dominating variance term. We have shown that the
optimal rate could be reached both for M ≤ n or M ≥ n, depending on the configuration
of the parameters. Now, for cross validation choice of the cutoff parameter, it is useful
to determine which term in the variance decomposition is dominating. In particular,
we hypothesize that the main variance term defined in (6) may be simply Var(m) =
CQ1(m) = C∆2(m)/(n + M) where C is a numerical constant.

An estimation of Var(m) is V̂ar(m) = Q̂1(m) + Q̂2(m) + Q̂3(m) with

Q̂1(m) =
∆̂2(m)

n + M

Q̂2(m) =
∆̂4(m)

(n + M)
√

M
∧ ∆̂6(m)

(n + M)M

Q̂3(m) =
∆̂

(f)
2 (m)√

M
∧ ∆̂

(f)
4 (m)

M

An example of empirical behavior of Q̂1(m), Q̂2(m) and Q̂3(m) is depicted in Figure 1 for
M � n and M � n and in the setting of ordinary smooth or supersmooth functions for f
chosen as Laplace and Gaussian respectively, together with an ordinary smooth Laplace
noise. Expectedly, Q̂1(m) is larger than the other terms when M � n. Interestingly,
this seems to be also true when M � n, at least empirically. This finding was invariable

throughout simulations, thus making V̂ar(m) ' C∆̂2(m)/(n + M) an appropriate choice
regardless of the respective values of n and M . The previous considerations will become
prominent in the choice of a penalty in Section 4.

4. Cross-validation cut-off selector

The parameter m belongs to the set of admissible values

Mn = {m = k/κ, k = 1, . . . , bnκc, Var(m) ≤ C0}.
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Figure 1. Empirical behavior of Q̂1(m), Q̂2(m) and Q̂3(m) as a function
of m when M � n and M � n for f ordinary smooth and supersmooth,
chosen as Laplace (left figures) and Gaussian (right figures) respectively.
The influence of M and n is illustrated by M = 200, n = 2000 (top figures)
and M = 2000, n = 200 (bottom figures).

for fixed κ > 0 and C0, and bzc denoting the integer part of z. The general outline of
the method used to select among all considered indexes Mn is borrowed from Comte and
Lacour [2011]. Our approach aims to select m ∈ Mn based upon an adequate bias-variance
compromise. First, notice that in our case ‖f − fm‖2 = ‖f‖2 − ‖fm‖2. Indeed, denoting
〈·, ·〉 the scalar product, we have

‖f − fm‖2 = ‖f‖2 − 2〈f∗, f∗
m〉 + ‖fm‖2

= ‖f‖2 − 2

∫
f∗(x)(f̄∗1[−πm,πm])(x)dx + ‖fm‖2 = ‖f‖2 − ‖fm‖2

The theoretical optimal choice of m is defined as:

mth = argmin
m∈Mn

(
‖f − fm‖2 + Var(m)

)
= argmin

m∈Mn

(
− ‖fm‖2 + Var(m)

)

The previous value of mth may only be estimated since ‖f − fm‖ and Var(m) are both

unknown. Using the estimator f̂m defined by (5), we will consider the following preliminary
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estimate of m:

(11) m̂ = argmin
m∈Mn

(
− ‖f̂m‖2 + pen(m)

)

where pen(m) is a penalty term related to the variance that remains to be defined.

4.1. Choice of an appropriate penalty. The penalty term is related to the variance
Var(m) as defined by (6). When M ≥ n and f is sufficiently more regular than fε,
the optimal rates computations show that Var(m) ' C∆2(m)/(n + M). The empirical

behavior of Q̂1(m), Q̂2(m) and Q̂3(m) seems to suggest that V̂ar(m) ' C∆̂2(m)/(n + M)
even when M � n (see Figure 1). Therefore, based upon Theorem 1 in Comte and Lacour
[2011], we define pen(m) as

(12) pen(m) = K0

(
log
(
∆2(m)

)

log(m + 1)

)2
∆2(m)

n + M

where K0 is a numerical constant. Note that the term log
(
∆2(m)

)
/ log(m + 1) has the

order of a constant when the noise is ordinary smooth and yields only a slight correction
when the noise is supersmooth. This quantity has been introduced by Comte and Lacour
[2011] to take into account negligible loss in the rates that sometimes (not systematically)
occur in this last case.

4.2. Estimation procedure. We define p̂en(m) the estimator of pen(m) as:

p̂en(m) = K1

(
log
(
∆̂2(m)

)

log(m + 1)

)2
∆̂2(m)

n + M
.

Throughout numerical estimations we will consider K1 = 1, after a set of simulation ex-
periments to calibrate it. The computation of ‖f̂m‖ is performed following Comte and
Lacour [2011] and Comte et al. [2006] by considering the following expression of the esti-
mator (5) as an orthogonal projection. We denote ϕ(x) = sin(πx)/πx the sinus cardinal
function. The orthonormal basis {ϕm,j}j∈Z is thus defined by ϕm,j(x) =

√
mϕ(mx − j),

m ∈ N∗, j ∈ Z and ϕ∗
m,j(x) = e−ixj/m1[−πm,πm](x)/

√
m. We also recall from Comte and

Lacour [2011] the estimated projection coefficients

âm,j =

√
m

2
(−1)l

∫ 2

0
eilπx f̂∗

Y

f̃∗
ε

(πm(x − 1))dx.

The estimator (5) may then be expressed:

(13) f̂m =
∑

`∈Z

âm,`ϕm,`

This expression of the estimator allows us to use Inverse Fast Fourier Transform (IFFT)
Algorithms in the estimation process. Therefore, for numerical tractability we use only
a finite sample of projection coefficients with f̂m =

∑
|`|≤Kn

âm,`ϕm,`. Theoretical results

assert that Kn = n always suits (see Comte et al. [2006]) but we make the constant choice
Kn = 255.
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Since Mn is unknown we consider an estimation of this domain,

M̂n = {k/κ, k = 1, . . . , m̂nκ}
by defining an integer m̂n such that

m̂n = argmax
(
m ∈ N,

∆̂2(m)

n + M
≤ 1
)

Following, we have the final estimation of mth defined by:

(14) ̂̂m = argmin
m∈{1,...,m̂n}

(
− ‖f̂m‖2 + p̂en(m)

)

Finally, by plugging (14) in (13) we obtain f̂ ̂̂m which is our final estimator. The choice
of the constant κ will influence the quality of the final estimation since it governs the
number of models that are proposed before selection. Choosing κ small will offer only a
restricted number of models for the algorithm to choose from, whereas choosing κ large
will allow a more refined estimation of m̂n. For the simulations in Section 5, we choose
κ = 4 to keep the computing time reasonable. Conversely, for the real data application in
Section 6, we choose κ = 30.

5. Simulation study

5.1. Design of simulation. Noise was given a Laplace or a Gaussian density with vari-
ance σ2 as follows:

• Laplace noise.

fε(x) =
σ

2
e−σ|x| and f∗

ε (x) =
σ2

σ2 + x2

• Gaussian noise.

fε(x) =
1√
2π

e−0.5x2/σ2
and f∗

ε (x) = e−0.5σ2x2

We compared our results to estimations under the assumption of a known noise density
(see Comte et al. [2006], Comte and Lacour [2011] for the description of the estimation
procedure and penalties for Gaussian and Laplace noises).
Following Comte et al. [2006], we considered the following four different densities:

(i) Mixed Gamma distribution: X = 1/
√

5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1)
(ii) Cauchy distribution: f(x) = (1/π)/(1 + x2)

(iii) Laplace distribution: f(x) = e−
√

2|x|/
√

2
(iv) Gaussian distribution: X ∼ N (0, 1)

Except the case of the Cauchy density, these densities are normalized with unit variance,
thus allowing the ratio 1/σ2 to represent the signal-to-noise ratio, denoted s2n. We con-
sidered signal to noise ratios of s2n = 5 and s2n = 10 in our simulations. To study the
influence of the relationship between n and M , we considered several values of n and
values of M = n and M =

√
n. Additionally, we considered the density (v) defined by
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X ∼ 0.5N (−3, 1)+0.5N (2, 1) with a signal-to-noise ratio of 4 for comparison with Delaigle
et al. [2008].

5.2. Results. The values of the MISE risk multiplied by 100 for each density and sim-
ulation scenario and computed from 100 simulated data sets, are given in Table 1. As
expected, the risk decreases as n or M increases. Similarly, when increasing the level of
contamination of the data by reducing the signal-to-noise ratio, the risk increases. Com-
pared to Gaussian noise, Laplace noise demonstrates overall lower risks whatever the other
simulation parameters. Indeed, Gaussian noise is supersmooth whereas Laplace noise is
ordinary smooth thus explaining the improvement in risk. Strikingly, in most cases the
estimation of the square of the characteristic function of noise density f∗

ε has reduced the
risk compared to the known density case. This phenomenon is counter-intuitive and we
do not have a clear explanation. However, this has been noticed in Comte and Lacour
[2011].
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Figure 2. Estimations for n = M = 200 (dashed line) and n = M =
500 (dotted line) for the Gaussian mixture density (plain line) (v). (left):
Laplace noise; (right): Gaussian noise. Two independent samples were
used, of size n and M respectively.

Table 2 presents the comparison of the penalized estimator and the estimator given
by Delaigle et al. [2008] for the Gaussian mixture density (v). The integrated squared
error (ISE) is computed over 100 estimations and we present the results using the median
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Table 1. Results of simulations presented as MISE×100. In each case the
MISE was averaged over 100 estimations. The case “fε known” corresponds
to the estimator denoted f̂KN

m with sample of size 2n (to be compared to
the case M = n).

ε Gaussian s2n = 10 s2n = 5

n = 200 n = 2000 n = 200 n = 2000

f Mixed Gamma fε known 0.447 0.104 0.700 0.668
M =

√
n 0.401 0.118 0.562 0.236

M = n 0.241 0.102 0.411 0.158

f Cauchy fε known 0.371 0.044 0.728 0.624
M =

√
n 0.422 0.161 0.753 0.234

M = n 0.287 0.152 0.461 0.177

f Laplace fε known 2.066 0.588 3.506 1.815
M =

√
n 2.348 2.211 3.814 2.574

M = n 2.288 2.195 2.636 2.223

f Gaussian fε known 0.191 0.041 0.355 0.846
M =

√
n 0.196 0.050 0.686 0.087

M = n 0.133 0.037 0.212 0.051

ε Laplace s2n = 10 s2n = 5

n = 200 n = 2000 n = 200 n = 2000

f Mixed Gamma fε known 0.349 0.062 0.588 0.107
M =

√
n 0.441 0.133 0.598 0.186

M = n 0.250 0.107 0.357 0.117

f Cauchy fε known 0.339 0.167 0.420 0.149
M =

√
n 0.526 0.171 0.652 0.200

M = n 0.310 0.157 0.378 0.168

f Laplace fε known 1.110 0.367 1.967 0.664
M =

√
n 2.384 2.264 3.348 2.267

M = n 2.312 2.200 2.330 2.208

f Gaussian fε known 0.511 0.219 0.720 0.386
M =

√
n 0.330 0.045 0.550 0.102

M = n 0.126 0.037 0.226 0.036

and inter-quartile range (IQR). In all cases, the penalized estimator enjoys lower risks
compared to those given by Delaigle et al. [2008].

In Figure 2, we present an estimation of f using the penalized estimator as in the
simulated case (i) aforementioned. We considered the Gaussian mixture distribution (v)
contaminated by Gaussian and Laplace noise with a signal-to-noise ratio of 4 with n =
M = 200 and n = M = 500. The bimodal character of distribution (v) is well described
by the estimation in both cases whereas the increase in precision for n = M = 500 is
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Table 2. Comparison of the ISE between the estimators of Delaigle et al.
[2008] and the penalized estimator for the Gaussian mixture density (v).
For the sake of comparison, the results are presented by the median × 100
(inter-quartile range × 100) of 100 estimations with M = n.

Delaigle et al. [2008] Penalized estimator

n = 200 n = 500 n = 200 n = 500

ε Laplace 1.41 (0.94) 0.89 (0.51) 0.33 (0.13) 0.25 (0.06)

ε Gaussian 2.09 (1.33) 1.42 (0.92) 0.44 (0.87) 0.27 (0.06)

mostly visible in the Laplace noise case which closely matches the theoretical density in
that case.

6. Density estimation of onset of pregnancy

As defined previously, X denotes the interval between last menstrual period (LMP) and
the true onset of pregnancy. We denote Y the interval between LMP and the onset of
pregnancy estimated by the sonographic measurement of the crown-rump length (CRL)
with Y = X+ε. Two separate independent samples are available: the first is an M -sample
of spontaneous twin pregnancies, M = 86, each embryo with its own CRL measurement;
the second is an n-sample of spontaneous singleton pregnancies, n = 1378, with Yj =
Xj + εj . Each of these samples is a sample of the general unselected population and
was obtained from the screening unit of the department of obstetrics and maternal-fetal
medicine of the children’s hospital Necker - Enfants Malades in Paris, France. Since the
onset of pregnancy is identical for both twins, we thus have replicate noisy observations
Y−j1 = Xj + ε−j1 and Y−j2 = X−j + εj2, −j = 1, . . . ,M . We wish to estimate f which
represents the distribution of probability of onset of pregnancy within a female cycle.

Figure 3 (b) presents the penalized estimator f̂ ̂̂m(.). As expected, the mode of the
distribution is at around 13 days, meaning that the likelihood of onset of pregnancy is
greatest at 13 days following the last menstrual period. However this distribution is
positively skewed with a significant remaining probability of onset after 20 days. The risk
was assessed by simulation in the setting of our data by considering X ∼ Γ(16, 1.2) and
a Laplace ε ∼ Lap(0, 0.95) or Gaussian ε ∼ N (0, 1.2) noise. These densities were chosen
empirically because they fitted our estimate (see Figure 3 (a) for the comparison of the
empirical characteristic function of ε with Laplace and Gaussian characteristic functions).
Under this simulation model, the risk MISE×100 was 0.038 and 0.034 for Laplace and
Gaussian noise respectively over 100 estimations. We emphasize that the strong side-
effects which are observed on the estimated characteristic function in Figure 3 (a) can also
be seen on simulated data (for a size sample 86) and mainly appear when going from the
direct noise observation to the replicate case (where only differences of noise are observed).
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Figure 3. (left): estimation of the characteristic function of the noise in
twin pregnancies (plain line). Laplace (dashed line) and Gaussian (dotted
line) characteristic functions are plotted for comparison. (right): estima-
tion of the density of onset of pregnancy.

7. Concluding remarks

We have presented an adaptive deconvolution estimator of a density when the noise den-
sity is unknown. Instead, a sample of noisy replicate observations is available. Although
this estimator seems to perform nicely in simulation, it can exhibit poorer theoretical rates
than in other settings. This expected loss is directly related to the use of replicate obser-
vations for the estimation of the characteristic function of noise density or more precisely
the square of its module. Simulations show that the influence of the relative values of M
and n is likely to be small. We also find that the gain in precision for increasing values
of M may be small. Whereas this may be of little value in the field of engineering, it is
of importance in biomedical applications or clinical research. Indeed, obtaining a sample
of ε is often difficult or impossible in these applications, as well as a strong prior assump-
tion regarding its density. However, replicate data may be found in clinical or biomedical
applications. Nevertheless they are likely to be scarce since they involve multiple mea-
surements/observations in one patient. In the case of dating pregnancy this is dealt with
by using twin pregnancies instead. The estimation of a density of onset of pregnancy may
find multiple clinical applications. The knowledge of the underlying variability of onset
of pregnancy may help clinicians in the follow-up of pregnancies and mostly regarding



DECONVOLUTION WITH REPLICATE MEASUREMENTS 17

growth monitoring by ultrasound and delivery since both these aspects rely upon an ac-
curate estimation of onset of pregnancy. Furthermore, this density is of interest for the
physiology of the female cycle, confirming with simple clinical data the variation in onset
of pregnancy that could be expected from biological experiments (Wilcox et al. [2000]).
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Appendix 1: Proofs

.1. Proof of Remark 1. Let us denote the estimator of f∗
Y based on the samples (Yj),

(Y−j1) and (Y−j2):

f̃∗
Y (t) =

1

n + 2M




n∑

j=1

eitYj +

M∑

j=1

eitY−j1 +

M∑

j=1

eitY−j2




Due to the dependency between (Y−j1) and (Y−j2), we have

V ar f̃∗
Y (t) ≤ 1

(n + 2M)2


V ar




n∑

j=1

eitYj


+ 2V ar




M∑

j=1

eitY−j1


+ 2V ar




M∑

j=1

eitY−j2






≤ n + 4M

(n + 2M)2

Easy calculations provide (n + 4M)/(n + 2M)2 ≥ 1/(n + M) which is a bound on the

variance of f̂∗
Y (t).

.2. Proof of Lemma 1. The proof is given for p = 1. Let us denote R(t) =
1

f̃∗
ε (t)

− 1

f∗
ε (t)

.

E(|R(t)|2) = E

(
1

(̂f∗

ε )2(t)<M−1/2

(f∗
ε )2(t)

)

+
1

(f∗
ε )2(t)

E


1 ˆ(f∗

ε )2(t)≥M−1/2

((̂f∗
ε )2(t) − (f∗

ε )2(t))2

(̂f∗
ε )2(t)(

√
(f̂∗

ε )2(t) + f∗
ε (t))2




≤ 1

(f∗
ε )2(t)

+
M1/2

(f∗
ε )4(t)

E[((̂f∗
ε )2(t) − (f∗

ε )2(t))2]

≤ 1

(f∗
ε )2(t)

+
M−1/2

(f∗
ε )4(t)

≤ 3

2

M−1/2

(f∗
ε )4(t)

(i) if (f∗
ε )2(t) ≤ 2M−1/2, we have M−1/2/(f∗

ε )4(t) ≤ 2M−1/(f∗
ε )6(t).
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(ii) If (f∗
ε )2 > 2M−1/2, using the Bernstein Inequality as in Neumann yields:

P(| ˆ(f∗
ε )2(t)| < M−1/2) ≤ P(|(̂f∗

ε )2(t) − (f∗
ε )2(t)| > (f∗

ε )2(t) − M−1/2)

≤ P(|(̂f∗
ε )2(t) − (f∗

ε )2(t)| > (f∗
ε )2(t)/2)

≤ 2 exp(−M(f∗
ε )4(t)/16)

≤ O
((

M−1(f∗
ε (t))−4

)p)

and with the same decomposition as above, this yields

E(|R(t)|2) ≤ E

(
1

(̂f∗

ε )2(t)<M−1/2

(f∗
ε )2(t)

)

+
1

(f∗
ε )4(t)

E


1

(̂f∗

ε )2(t)≥M−1/2

((̂f∗
ε )2(t) − (f∗

ε )2(t))2

(

√
(f̂∗

ε )2(t) + f∗
ε (t))2




+
1

(f∗
ε )2(t)

E


1

(̂f∗

ε )2(t)≥M−1/2

((̂f∗
ε )2(t) − (f∗

ε )2(t))2

(

√
(f̂∗

ε )2(t) + f∗
ε (t))2

(
1

f̂∗
ε )2(t)

− 1

(f∗
ε )2(t)

)


≤ 1

(f∗
ε )2(t)

P((̂f∗
ε )2(t) < M−1/2) +

M−1

(f∗
ε )6(t)

+
M−1/2

(f∗
ε )6(t)

E[(|̂f∗
ε )2(t) − (f∗

ε )2(t)|3]

≤ M−1

(f∗
ε )6(t)

+
M−1

(f∗
ε )6(t)

+
M1/2

(f∗
ε )6(t)

M−3/2 ≤ c
M−1

(f∗
ε )6(t)

Thus, in that case where M−1/2/(f∗
ε )4(t) ≥ 2M−1/(f∗

ε )6(t), we get

E(|R(t)|2) ≤ M−1

|f∗
ε (t)|6 .

This ends the proof of the lemma. �

.3. Proof of Proposition 1. Let us study the integrated mean square risk. By writing
in the Fourier domain that

f∗ − f̂∗
m = (f∗ − f∗

m) + (f∗
m − f̂∗

m) = f∗1[−πm,πm]c + (f∗
m − f̂∗

m)1[−πm,πm],

we get, as ‖f−fm‖2 = (2π)−1‖f∗−f∗
m‖2 = (2π)−1(‖f∗1[−πm,πm]c‖2+‖(f∗

m−f̂∗
m)1[−πm,πm]‖2),

that

(15) ‖f − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2.

Moreover, by applying the Parseval formula, we obtain

‖fm − f̂m‖2 =
1

2π

∫ πm

−πm

∣∣∣∣∣
f̂∗

Y (u)

f̃∗
ε (u)

− f∗
Y (u)

f∗
ε (u)

∣∣∣∣∣

2

du.
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It follows that

(16) ‖fm − f̂m‖2 ≤ 1

π

∫ πm

−πm
|f̂∗

Y (u)|2|R(u)|2du +
1

π

∫ πm

−πm

|f̂∗
Y (u) − f∗

Y (u)|2
|f∗

ε (u)|2 du.

The last term of the right-hand-side of (16) is the usual term that is found when f∗
ε is

known, and the first one is specific to the framework with estimated f∗
ε .

We take the expectation of (16):

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗

Y (u)|2E(|R(u)|2)du +
1

π

∫ πm

−πm

(n + M)−1

|f∗
ε (u)|2 du.

Applying Lemma 1 yields:

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
(E(|f̂∗

Y (u) − f∗
Y (u)|4)E(|R(u)|4))1/2du

+
2

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2E(|R(u)|2)du + 2
∆2(m)

n + M

≤ 2C1

π

∫ πm

−πm
(n + M)−1

(
M−1/2

|f∗
ε (u)|4 ∧ M−1

|f∗
ε (u)|6

)
du

+
2C1

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2
(

M−1/2

|f∗
ε (u)|4 ∧ M−1

|f∗
ε (u)|6

)
du + 2

∆2(m)

n + M
(17)

By gathering (15) and (17), we obtain the result. �
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