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Abstract. Except in the specific case of in vitro fertilization, the precise date of onset

of pregnancy is unknown. In clinical practice, the date of pregnancy may only be es-

timated, and most commonly from ultrasound biometric measurements of the embryo.

Denoting X the interval between last menstrual period and true onset of pregnancy and

Y the interval between last menstrual period and the date estimated by ultrasound, we

wish to estimate the density f of X. Only noisy observations Yj = Xj + εj , j = 1, . . . , n

are observed and the density fε of ε is unknown. Because the noise itself cannot be sam-

pled for the estimation of its density, we consider the specific setting of replicate noisy

observations Y−j1 = X−j + ε−j1 and Y−j2 = X−j + ε−j2, j = 1, . . . , M . We suggest an

adaptive non-parametric estimator of f built following a deconvolution device. Conver-

gence rates are studied and compared to other settings that do not involve replicates.

Lastly, we estimate the density f in spontaneous pregnancies with an estimation of the

noise obtained from replicate observations in twin pregnancies.

Keywords. Deconvolution. Density estimation. Nonparametric methods. Dating of pregnancy. Mean

square risk. Replicate observations.

1. Introduction

In spontaneously conceived pregnancies, the date of pregnancy is unknown. Although
pregnancies occur at around 14 days following last menstrual period (LMP), the fertile
window of a woman may vary widely based upon hormonal studies (Wilcox et al. [2000]).
These studies, however, provide day-specific probabilities of a fertile window within a fe-
male cycle in non-pregnant women and not the probability density of onset of pregnancy
in pregnant women. Since the exact date of pregnancy is never precisely known in women
conceiving without assisted reproductive techniques, the probability distribution function
of onset of pregnancy within female cycles is unknown in the general population. This den-
sity, however, may have important implications both for clinical practice and physiology
knowledge.

Ultrasound (US) is the most widely used method for dating pregnancies in clinical prac-
tice. First trimester biometric measurements such as the crown-rump length (CRL) have
been proven to perform better than LMP for dating pregnancies. Several formulas, derived
from simple regression analyses have been developed for dating pregnancies (Sladkevicius
et al. [2005]), the most widely used being the formula initially suggested by Robinson
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[1973]. Denoting by X the interval between LMP and true onset of pregnancy, and by
Y the interval between LMP and ultrasound estimate, the purpose of this study is to
estimate the density f of X. However, only the noisy observations

(1) Yj = Xj + εj , j = 1, . . . , n

are available. Here, the Xj and the εj for j = 1, . . . , n are independent identically dis-
tributed and the sequences (Xj)1≤j≤n and (εj)1≤j≤n are independent. Moreover, in this
setting the density fε of ε is unknown and the noise cannot be directly estimated from a
preliminary sample of εj .

Since X is measured with an unknown error, the estimation of f may be seen as a
a deconvolution problem. Regarding the assumptions on the distribution of the error,
several approaches have been studied in the literature. Numerous works have addressed
this problem under the assumption of a known density for the error. These works comprise
kernel methods (see Fan [1991], Liu and Taylor [1989], Stefanski and Carroll [1990], Hesse
[1999], Delaigle and Gijbels [2004]) as well as wavelet methods (see Fan and Koo [2002],
Pensky and Vidakovic [1999]). Minimax optimality of convergence rates have been studied
by Fan [1991], Butucea [2004], Butucea and Tsybakov [2008a]. When a sample of the error
is given, density estimation has been addressed by Diggle and Hall [1993] and Neumann
[1997]. The latter considers the case of ordinary smooth densities for both desnities of the
error and X, and provides minimax rates of convergence. More contributions by Johannes
[2009] and Comte and Lacour [2011] propose different approaches with regard to bandwidth
selection. A full scheme of estimation in this setting with data-driven bandwidth selection
may be found in Comte and Lacour [2011].

In this article, we consider yet a different setting in which neither a known density nor
a sample of noise are available. Rather, we consider the situation of replicate and noisy
observations of the random variable X. Consider we have a sample of pregnancies with
two replicate measurements of X:

(2) Y−j1 = X−j + ε−j1, Y−j2 = X−j + ε−j2, j = 1, . . . ,M

with X−j , ε−j1 and ε−j2, for j = 1, . . . ,M , independent and identically distributed. More-
over the sequences (X−j)1≤j≤M , (ε−j1)1≤j≤M and (ε−j2)1≤j≤M are independent. These
noisy observations could be replicate measurements of CRL of the same embryo or mea-
surements of CRL in twin pregnancies for example. Therefore, we consider that two
independent samples are available: the first, of size M , containing replicate observations
and the second, of size n containing non-replicate observations. Density estimation by
deconvolution with replicate observations has been studied by Delaigle et al. [2008], Li
and Vuong [1998] and Meister and Neumann [2010]. Our approach suggests a different
estimator that is related to the truncated estimator of Neumann [1997]. We also use an
adaptive cut-off selection with a penalization device, following the procedure described in
Comte and Lacour [2011].

The outline of this article is as follows. In Section 2 we define our estimator. We
then majorate the L2 risk based upon a new version of the fundamental lemma of Neu-
mann [1997]. Convergence rates are compared to the settings of known noise density
and observed noise samples. We discuss the relationship between M , n and the resulting
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convergence rates and show that the convergence rate is the same as that found with an
assumed known noise density when M is large compared to n. In Section 4 we discuss
model selection and the choice of an appropriate penalty. Simulations are conducted to il-
lustrate the performance of our estimator together with a comparison with existing results
in Section 5. Finally, in Section 6, we apply our method to real data and estimate the
distribution f of onset of pregnancy within a female cycle using ultrasound measurements
in twin pregnancies as replicate noisy observations.

2. Model and estimator

We denote fY , f and fε the respective densities of Y , X and ε. We denote by
g∗(x) =

∫
eitxg(x)dx, the Fourier transform of any integrable function g. The charac-

teristic functions of each of the variables Y , X and ε are therefore denoted f∗
Y , f∗ and f∗

ε

respectively. For a function g : R 7→ R, we denote by ‖g‖2 =
∫

R
g2(x)dx the L2 norm. For

two real numbers a and b, we denote a ∧ b = min(a, b). As a rule in this paper, unless
otherwise specified, C and C ′ will denote universal constants that may change from line
to line.

The convolution problem may be written as fY (x) = f ⋆ fε(x) =
∫

f(x − t)fε(t)dt
where ⋆ denotes the convolution operator. Using the characteristic functions, we have
f∗

Y (u) = f∗(u)f∗
ε (u). In our setting we consider fε unknown, therefore we must estimate

it or at least the square of its characteristic function f∗
ε as we will see shortly.

In the following, we consider the model described by the two samples (1) and (2). A
noise sample is not available and we suggest that the estimation of f∗

ε relies upon replicate
observations given in (2) instead.

The following preliminary assumption regarding the behavior of fε will be considered
fulfilled throughout the article.

A1. We assume ε is symmetric and that its characteristic function never vanishes.

Since assuming ε symmetric is equivalent to assuming f∗
ε real-valued, we can see that

A1 is equivalent to the assumption 2.2 in Delaigle et al. [2008]. Therefore, assumption
A1 implies that

∀t ∈ R, f∗
ε (t) ∈ R∗

+.

Under this reasonable assumption, we have:

E
(
eit(ε−j1−ε−j2)

)
= |E

(
eitε−j1

)
|2 A1

=
(
E
(
eitε−j1

))2
=
(
f∗

ε (t)
)2

.

Therefore, given that E
(
eit(ε−j1−ε−j2)

)
= E

(
eit(Y−j1−Y−j2)

)
and under the hypothesis

A1, we have the following estimation of (f∗
ε )2:

(3) (̂f∗
ε )2(t) =

1

M

M∑

j=1

cos
(
t(Y−j1 − Y−j2)

)
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We also define a truncated estimate of 1/f∗
ε :

(4)
1

f̃∗
ε (t)

=
1

(̂f∗

ε )2(t)≥M−1/2√
(̂f∗

ε )2(t)

Fourier inversion of f∗ = f∗
Y /f∗

ε yields the following estimator of f using a πm cut-off
for integrability purpose :

(5) f̂m(x) =
1

2π

∫ πm

−πm
e−ixt f̂

∗
Y (t)

f̃∗
ε (t)

dt, where f̂∗
Y (t) =

1

n

n∑

j=1

eitYj .

For further discussion, we recall the definitions of the estimators given in (3), (4) and
(5) for the cases (i) with known density of noise, denoted with superscript KN and (ii)
with an independent sample (ε−j) of noise observations, denoted with superscript ON (see
Comte and Lacour [2011]).
(i) In the case of a known density fε of the noise, the estimate of f is:

f̂KN
m (x) =

1

2π

∫ πm

−πm
e−ixt f̂

∗
Y (t)

f∗
ε (t)

dt

(ii) In the case of an unknown density but with a sample of (ε−j), the estimate of the
characteristic function f∗

ε is

f̂ON∗
ε (t) =

1

M

M∑

j=1

eitε−j

and its truncated estimate

1

f̃ON∗
ε (t)

=
1|f̂ON∗

ε (t)|≥M−1/2

f̂ON∗
ε (t)

.

The estimate of f in this case is

f̂ON
m (x) =

1

2π

∫ πm

−πm
e−ixt f̂∗

Y (t)

f̃ON∗
ε (t)

dt

These estimators differ from (5) in several ways:
(a) First, because of replications, we can only estimate (f∗

ε )2 and not directly f∗
ε as in

case (ii).
(b) Subsequently, the levels of truncations required will also differ in (4) and (ii). This

directly arises from the previous comment since the truncation will be in M−1/4 in (4),

whereas it is in M−1/2 in the ON case (ii).
(c) Finally, compared to our setting and (ii) which share the fact that fε is unknown,

the case (i) does not require a truncation and the estimator is the classical expression of
density estimation by deconvolution with a Fourier transform of compact support. The
risk bound obtained in this case is considered as a benchmark of the best reachable bound.
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3. Upper bound of the L2 risk

Let us define fm such that f∗
m = f∗

1[−πm,πm](.). The function fm is the function which

is in fact estimated by f̂m. Therefore, this implies a nonparametric bias measured by the
distance between f and fm. We wish to bound the mean integrated squared error (MISE)

defined as E(‖f − f̂m‖2). We will first generalize Neumann’s Lemma (Neumann [1997]) to
the case of replicate measurements and use this result to deduce a risk bound.

3.1. General MISE bound. The extension of Neumann’s lemma for replicate measure-
ments is

Lemma 1. Assume that A1 holds, and let p be an integer, p ≥ 1. There exists a constant
Cp such that

E

(∣∣∣∣
1

f̃∗
ε (t)

− 1

f∗
ε (t)

∣∣∣∣
2p
)

≤ Cp

(
M−1/2

|f∗
ε (t)|4 ∧ M−1

|f∗
ε (t)|6

)p

.

Proof. See appendix

Let us define, for k ∈ N∗,

∆k(m) =

∫ πm

−πm

dt

|f∗
ε (t)|k and ∆

(f)
k (m) =

∫ πm

−πm

|f∗(t)|2
|f∗

ε (t)|k dt

as well as their estimates

∆̂k(m) =

∫ πm

−πm

dt

|f̃∗
ε (t)|k

and ∆̂
(f)
k (m) =

∫ πm

−πm

|f̂∗
Y (t)|2

|f̃∗
ε (t)|k+2

dt since f∗ =
f∗

Y

f∗
ε

.

Using the previous lemma we may deduce the following bound for the MISE:

Proposition 1. Assume that A1 holds and f̂m is defined by (5). Then there exists a
constant C such that

(6) E(‖f−f̂m‖2) ≤ ‖f−fm‖2+C

(
∆2(m)

n
+

∆4(m)

n
√

M
∧ ∆6(m)

nM
+

∆
(f)
2 (m)√

M
∧ ∆

(f)
4 (m)

M

)
.

Proof. See appendix

We recognize in this last inequality (6) the bias ‖f − fm‖2 and variance denoted
Var(m) := Q1(m) + Q2(m) + Q3(m) with

Q1(m) := ∆2(m)/n

Q2(m) := ∆4(m)/(n
√

M) ∧ ∆6(m)/(nM)

Q3(m) := ∆
(f)
2 (m)/

√
M ∧ ∆

(f)
4 (m)/M.

We can also recognize Q1(m) as the variance term that arises alone when f∗
ε is assumed

as known (see Comte et al. [2006]). The following terms Q2(m) and Q3(m) are specific
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to our setting involving replicate observations and show the loss in the resulting rates. In
the case of observed noise (see Comte and Lacour [2011]), the upper bound is

‖f − fm‖2 + CQ1(m) + (C + 2)∆
(f)
2 (m)/M.

Therefore, compared to the case with observed noise or known density, the terms Q2(m)
and Q3(m) resulting from the estimation of (f∗

ε )2 with replicate observations are a sub-
stantial step in complexity. A theoretical and an empirical study of the behavior of each
of these terms is presented later.

3.2. Resulting rates. Let us consider the following classical assumptions regarding the
behavior of f∗

ε :

A2. There exist α ≥ 0, β > 0, γ ∈ R (γ > 0 if α = 0) and k0, k1 > 0 such that

k0(x
2 + 1)−α/2 exp(−β|x|γ) ≤ |f∗

ε (x)| ≤ k1(x
2 + 1)−α/2 exp(−β|x|γ)

The noise distribution is called ordinary smooth if γ = 0 and supersmooth otherwise.
A gaussian noise is supersmooth whith γ = 2 and a Laplace noise is ordinary smooth with
γ = 0 and α = 2.

Let us also consider the set of admissible values of m, defined as follows. Let κ > 0 and
C0 be fixed, and ⌊z⌋ denoting the integer part of z,

m ∈ Mn = {m = k/κ, k = 1, . . . , ⌊nκ⌋, Var(m) ≤ C0}.
Then, under A2, Lemma 3 in Comte and Lacour [2011] states that: ∀p ≥ 1/2, there exists
a constant cp such that

(7) ∆4p(m) ≤ cp (∆2(m))2p (log(n))(2p−1)1γ>1 .

This enables us to prove the following result

Proposition 2. Assume that assumptions A1 and A2 hold and assume that M ≥
n2(log(n))21γ>1. Then, there exists a constant C such that, ∀m ∈ Mn,

(8) E(‖f − f̂m‖2) ≤ ‖f − fm‖2 + C
∆2(m)

n

Proof. First, if m ∈ Mn, then ∆2(m)/n ≤ C0. Next, by (7) recalled above, we have

Q2(m) ≤ ∆4(m)

n
√

M
≤ c1

∆2
2(m)(log(n))1γ>1

n
√

M
.

Then as M ≥ n2(log(n))21γ>1 and with the initial remark, we get

Q2(m) ≤ c1

(
∆2(m)

n

)2

≤ c1C0
∆2(m)

n
.

Lastly, as |f∗(t)| ≤ 1, ∀t ∈ R, we have ∆
(f)
2 (m) ≤ ∆2(m) and with the condition on M :

Q3(m) ≤ ∆
(f)
2 (m)√

M
≤ ∆2(m)

n
.
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It follows that Var(m) ≤ c1(C0 + 2)∆2(m)/n which implies the result of Proposition 2. �

Note that in addition, we know that, under A2, the dominating variance term has the
following order (see Comte et al. [2006], Comte and Lacour [2011]):

Q1(m) =
∆2(m)

n
≤ C

m2α+1−γ exp(2β(πm)γ)

n
.

Such orders are non standard for variance terms in nonparametric estimation and in par-
ticular larger than orders m/n which are obtained for standard problems (e.g. density
estimation without noise, corresponding to α = γ = 0).

If we want to give precise examples of the rates that can be obtained in the deconvolution
context, we must also make assumptions on the regularity of f∗. Classically, we consider
the following smoothness spaces for density f on R:

A3. f ∈ Aa,b,c(l) = {f ∈ L1 ∩L2,
∫
|f∗(x)|2(x2 +1)a exp(2b|x|c)dx ≤ l} with c ≥ 0, b > 0,

a ∈ R (a > 1/2 if c = 0), l > 0.

As previously, when c > 0, the function f is known as supersmooth, and as ordinary
smooth otherwise. The spaces of ordinary smooth functions correspond to classical Sobolev
classes, while supersmooth functions are infinitely differentiable (analytic function), and
we have necessarily c ≤ 2. It includes for example Gaussian (c = 2) and Cauchy (c = 1)
densities.

Then, under A3, we have the following bias order:

(9) ‖f − fm‖2 ≤ Cm−2a exp(−2b(πm)c).

Therefore, we have the following results when both f and fε are ordinary smooth.

Proposition 3. We consider assumptions A1, A2, A3 and the ordinary smooth case for
both f and fε with c = γ = 0. The bound (6) then becomes

E(‖f − f̂m‖2) ≤ C

(
m−2a +

m2α+1

n

(
1 +

m2α

√
M

∧ m4α

M

)
+

m2(α−a)+
√

M
∧ m2(2α−a)+

M

)
.

If moreover M ≥ n2, ∀m ∈ Mn, we have

(10) E(‖f − f̂m‖2) ≤ C

(
m−2a +

m2α+1

n

)
.

The first inequality is a consequence of (6), (9) and elementary bounds for the variance.
Despite assumptions, the resulting rate in the ordinary smooth case presented in Propo-
sition 3 is still practically intractable. Inequality (10) is a consequence of Proposition 2
and allows us to recover deconvolution rates as if the noise had known density.

Indeed, we can see on (10) that the estimator can reach the rate n−2a/(2a+2α+1) for

m ∝ n1/(2α+2a+1). This rate is known to be the optimal one when the noise density is
assumed to be known (see Fan [1991], Butucea [2004], Butucea and Tsybakov [2008a,b]).

The result (10) of Proposition 3 can be extended to the general case of f ∈ Aa,b,c(l)
with more stringent conditions on M with regard to n.
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Proposition 4. Assume that assumptions A1, A2, A3 are fulfilled. If M ≥ (n log(n))2,
∀m ∈ Mn, then there exists a constant C such that

E(‖f − f̂m‖2) ≤ C

(
m−2a exp(−2b(πm)c) +

m2α+1−γ exp(2β(πm)γ)

n

)
.

3.3. Discussion about the relative orders of M and n. In the case M ≥ (n log(n)1γ>1)2,
Proposition 2 clearly implies that the variance term defined in (6) may be simply Var(m) =
CQ1(m) = C∆2(m)/n where C is a numerical constant.

In the general case, the relationship between n and M may influence the resulting rates
especially when M ≪ n.

An estimation of Var(m) is V̂ar(m) = Q̂1(m) + Q̂2(m) + Q̂3(m) with

Q̂1(m) =
∆̂2(m)

n

Q̂2(m) =
∆̂4(m)

n
√

M
∧ ∆̂6(m)

nM

Q̂3(m) =
∆̂

(f)
2 (m)√

M
∧ ∆̂

(f)
4 (m)

M

An example of empirical behavior of Q̂1(m), Q̂2(m) and Q̂3(m) is depicted in Figure 1 for
M ≪ n and M ≫ n and in the setting of ordinary smooth or supersmooth functions for f
chosen as Laplace and Gaussian respectively, together with an ordinary smooth Laplace
noise. Expectedly, following Proposition 2, Q̂1(m) majorates the other terms when M ≫
n. Interestingly, this seems to be also true when M ≪ n, at least empirically. This finding

was invariable throughout simulations, thus making V̂ar(m) ≃ C∆̂2(m)/n an appropriate
choice regardless of the respective values of n and M . The previous considerations will
become prominent in the choice of a penalty in Section 4.

4. Model selection

The general outline of the method used to select the parameter m among all considered
indexes Mn is borrowed from Comte and Lacour [2011]. Our approach aims to select
m ∈ Mn based upon an adequate bias-variance compromise. First, notice that in our case
‖f − fm‖2 = ‖f‖2 − ‖fm‖2. Indeed, denoting 〈·, ·〉 the scalar product

‖f − fm‖2 = ‖f‖2 − 2〈f∗, f∗
m〉 + ‖fm‖2

= ‖f‖2 − 2

∫
f∗(x)(f̄∗

1[−πm,πm])(x)dx + ‖fm‖2 = ‖f‖2 − ‖fm‖2

The theoretical optimal choice of m is defined as:

mth = argmin
m∈Mn

(
‖f − fm‖2 + Var(m)

)
= argmin

m∈Mn

(
− ‖fm‖2 + Var(m)

)

The previous value of mth may only be estimated since ‖f − fm‖ and Var(m) are both

unknown. Using the estimator f̂m defined by (5), we will consider the following preliminary
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(a) (b)

m
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(c) (d)

m
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m
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Q̂1(m)
Q̂2(m)
Q̂3(m)

Figure 1. Empirical behavior of Q̂1(m), Q̂2(m) and Q̂3(m) as a function
of m when M ≪ n and M ≫ n for f ordinary smooth and supersmooth,
chosen as Laplace (panels (a) and (c)) and Gaussian (panels (b) and (d))
respectively. The influence of M and n is illustrated by M = 200, n = 2000
(figures (a) and (b)) and M = 2000, n = 200 (figures (c) and (d)).

estimate of m:

(11) m̂ = argmin
m∈Mn

(
− ‖f̂m‖2 + pen(m)

)
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where pen(m) is a penalty term related to the variance that remains to be defined.

4.1. Choice of an appropriate penalty. The penalty term is related to the variance
Var(m) as defined by (6). Therefore, as discussed in the previous section, the choice of an
appropriate penalty will depend on the relative values of n and M :

(i) When M ≥ (n log(n)1γ>1)2, following Proposition 2, we have shown that Var(m) ≃
C∆2(m)/n. Therefore, based upon Theorem 1 in Comte and Lacour [2011], we define
pen(m) as

(12) pen(m) = K0

(
log
(
∆2(m)

)

log(m + 1)

)2
∆2(m)

n

where K0 is a numerical constant. Note that the term log
(
∆2(m)

)
/ log(m + 1) has the

order of a constant when the noise is ordinary smooth and yields only a slight correction
when the noise is supersmooth. This quantity has been introduced by Comte and Lacour
[2011] to take into account negligible loss in the rates that sometimes (not systematically)
occur in this last case.

(ii) When M ≪ n, the choice of an appropriate penalty is difficult since we did not
obtain a majoration under reasonable assumptions in this case. However, the empirical

behavior of Q̂1(m), Q̂2(m) and Q̂3(m) seems to suggest that V̂ar(m) ≃ C∆̂2(m)/n (see
Figure 1). Therefore, the penalty defined in (12) may be a safe choice to be plugged into
(11) in this case as well.

In the following we will consider that the penalty defined by (12) is an appropriate
choice regardless of the respective values of M and n.

4.2. Estimation procedure. We define p̂en(m) the estimator of pen(m) as:

p̂en(m) = K1

(
log
(
∆̂2(m)

)

log(m + 1)

)2
∆̂2(m)

n
.

Throughout numerical estimations we will consider K1 = 2, after a set of simulation ex-
periments to calibrate it. The computation of ‖f̂m‖ is performed following Comte and
Lacour [2011] and Comte et al. [2006] by considering the following expression of the esti-
mator (5) as an orthogonal projection. We denote ϕ(x) = sin(πx)/πx the sinus cardinal
function. The orthonormal basis {ϕm,j}j∈Z is thus defined by ϕm,j(x) =

√
mϕ(mx − j),

m ∈ N∗, j ∈ Z and ϕ∗
m,j(x) = e−ixj/m

1[−πm,πm](x)/
√

m. We also recall from Comte and

Lacour [2011] the estimated projection coefficients

âm,j =

√
m

2
(−1)l

∫ 2

0
eilπx f̂∗

Y

f̃∗
ε

(πm(x − 1))dx.

The estimator (5) may then be expressed:

(13) f̂m =
∑

ℓ∈Z

âm,ℓϕm,ℓ

This expression of the estimator allows us to use Inverse Fast Fourrier Transform (IFFT)
Algorithms in the estimation process. Therefore, for numerical tractability we use only
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a finite sample of projection coefficients with f̂m =
∑

|ℓ|≤Kn
âm,ℓϕm,ℓ. Theroetical results

assert that Kn = n always suits (see Comte et al. [2006]) but we make the constant choice
Kn = 255.

Since Mn is unknown we consider an estimation of this domain,

M̂n = {k/κ, k = 1, . . . , m̂nκ}
by defining an integer m̂n such that

m̂n = argmax
(
m ∈ N,

∆̂2(m)

n
≤ 1
)

Following, we have the final estimation of mth defined by:

(14) ̂̂m = argmin
m∈{1,...,m̂n}

(
− ‖f̂m‖2 + p̂en(m)

)

Finally, by plugging (14) in (13) we obtain f̂ b̂m
which is our final estimator. The choice

of the constant κ will influence the quality of the final estimation since it governs the
number of models that are proposed before selection. Choosing κ small will offer only a
restricted number of models for the algorithm to choose from, whereas choosing κ large
will allow a more refined estimation of m̂n. For the simulations in Section 5, we choose
κ = 4 to keep the computing time reasonable. Conversely, for the real data application in
Section 6, we choose κ = 30.

5. Simulation study

5.1. Design of simulation.

5.1.1. Density of noise. Noise was given a Laplace or a Gaussian density with variance σ2

as follows:

• Laplace noise.

fε(x) =
σ

2
e−σ|x| and f∗

ε (x) =
σ2

σ2 + x2

• Gaussian noise.

fε(x) =
1√
2π

e−0.5x2/σ2
and f∗

ε (x) = e−0.5σ2x2

We compared our results to estimations under the assumption of a known noise density
(see Comte et al. [2006], Comte and Lacour [2011] for the description of the estimation
procedure and penalties for Gaussian and Laplace noises).

5.1.2. Densities for f . Following Comte et al. [2006], we considered the following four
different densities:

(i) Mixed Gamma distribution: X = 1/
√

5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1)
(ii) Cauchy distribution: f(x) = (1/π)/(1 + x2)

(iii) Laplace distribution: f(x) = e−
√

2|x|/
√

2
(iv) Gaussian distribution: X ∼ N (0, 1)
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Except the case of the Cauchy density, these densities are normalized with unit variance,
thus allowing the ratio 1/σ2 to represent the signal-to-noise ratio, denoted s2n. We con-
sidered signal to noise ratios of s2n = 5 and s2n = 10 in our simulations. To study the
influence of the relationship between n and M , we considered several values of n and
values of M = n and M =

√
n. Additionally, we considered the density (v) defined by

X ∼ 0.5N (−3, 1)+0.5N (2, 1) with a signal-to-noise ratio of 4 for comparison with Delaigle
et al. [2008].

5.2. Results. The values of the MISE risk multiplied by 100 for each density and simula-
tion scenario and computed from 100 simulated data sets, are given in Table 1. The results
for the known noise case are similar with those reported in Comte et al. [2006], Comte
and Lacour [2011]. As expected, the risk decreases as n or M increases. Similarly, when
increasing the level of contamination of the data by reducing the signal-to-noise ratio,
the risk increases. Compared to Gaussian noise, Laplace noise demonstrates overall lower
risks whatever the other simulation parameters. Indeed, Gaussian noise is supersmooth
whereas Laplace noise is ordinary smooth thus explaining the improvement in risk. Strik-
ingly, in most cases the estimation of the square of the characteristic function of noise
density f∗

ε has reduced the risk compared to the known density case. This phenomenon is
counter-intuitive and we do not have a clear explanation. However, this has been noticed
in Comte and Lacour [2011].

(a) (b)
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Figure 2. Estimations for n = M = 200 (dotted line) and n = M = 500
(dashed line) for the Gaussian mixture density (v). (a): Laplace noise; (b):
Gaussian noise. Two independent samples were used, of size n and M
respectively.



DECONVOLUTION WITH REPLICATE MEASUREMENTS 13

Table 1. Results of simulations presented as MISE×100. In each case the
MISE was averaged over 100 estimations. The case “fε known” corresponds
to the estimator denoted f̂KN

m .

ε Gaussian s2n = 10 s2n = 5

n = 200 n = 2000 n = 200 n = 2000

f Mixed Gamma fε known 0.746 0.171 0.901 0.740
M =

√
n 0.535 0.126 0.837 0.261

M = n 0.540 0.126 0.797 0.264

f Cauchy fε known 0.642 0.081 1.052 0.561
M =

√
n 0.395 0.175 0.861 0.213

M = n 0.394 0.175 0.834 0.204

f Laplace fε known 3.045 0.841 4.440 3.768
M =

√
n 2.408 2.203 3.862 2.690

M = n 2.403 2.201 3.726 2.232

f Gaussian fε known 0.269 0.061 0.826 0.543
M =

√
n 0.301 0.052 0.752 0.092

M = n 0.291 0.052 0.558 0.085

ε Laplace s2n = 10 s2n = 5

n = 200 n = 2000 n = 200 n = 2000

f Mixed Gamma fε known 0.740 0.099 0.910 0.173
M =

√
n 0.526 0.121 0.758 0.203

M = n 0.535 0.121 0.743 0.206

f Cauchy fε known 0.555 0.179 0.750 0.238
M =

√
n 0.417 0.175 0.697 0.198

M = n 0.404 0.175 0.658 0.194

f Laplace fε known 1.581 0.580 2.808 1.222
M =

√
n 2.408 2.199 3.603 2.362

M = n 2.377 2.196 2.936 2.217

f Gaussian fε known 0.741 0.330 0.661 0.427
M =

√
n 0.313 0.054 0.632 0.079

M = n 0.302 0.053 0.555 0.076

Our estimator differs from the one provided by Delaigle et al. [2008] in several ways.
Whereas Delaigle et al. [2008] uses a single sample containing replicate noisy observations
for the estimation of f , we use two independent samples. The first sample, of size M ,
comprises replicate noisy observations, and is used for the estimation of f∗

ε and the sec-
ond, of size n, containing single observations is used for the estimation of f . This may
be useful when only a small amount of replicate data is available. Also, our method is
based on a data driven selection of the cutoff parameter through a penalization device
whereas Delaigle et al. [2008] uses kernel methods with a plug-in bootstrap estimation of
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Table 2. Comparison of the ISE between the estimators of Delaigle et al.
[2008] and the penalized estimator for the Gaussian mixture density (v).
For the sake of comparison, the results are presented by the median × 100
(inter-quartile range × 100) of 100 estimations.

Delaigle et al. [2008] Penalized estimator Penalized estimator
with two samples with one sample

n = 200 n = 500 n = 200 n = 500 n = 200 n = 500

ε Laplace 1.41 (0.94) 0.89 (0.51) 1.28 (0.24) 1.16 (0.85) 1.22 (0.55) 0.29 (0.13)

ε Gaussian 2.09 (1.33) 1.42 (0.92) 1.28 (0.31) 1.19 (0.11) 1.27 (0.19) 1.13 (0.93)

the bandwidth parameter (see Delaigle and Gijbels [2004]). Table 2 presents the com-
parison of the penalized estimator and the estimator given by Delaigle et al. [2008] for
the Gaussian mixture density (v). We studied two cases: (i) two separate samples are
used for the estimation of f∗

ε and f respectively; (ii) the same sample, containing two
replicate observations is used for the estimation of f∗

ε and f as in the estimator of Delaigle
et al. [2008]. The integrated squared error (ISE) is computed over 100 estimations and we
present the results using the median and inter-quartile range (IQR). In most cases, the
penalized estimator enjoys lower risks compared to those given by Delaigle et al. [2008].
Furthermore, these risks seem to be improved when using only one sample compared to
the two samples setting.

In Figure 2, we present an estimation of f using the penalized estimator in the two
samples setting as in the simulated case (i) aforementioned. We considered the Gaussian
mixture distribution (v) contaminated by Gaussian and Laplace noise with a signal-to-
noise ratio of 4 with n = M = 200 and n = M = 500. The bimodal character of
distribution (v) is well described by the estimation in both cases whereas the increase
in precision for n = M = 500 is mostly visible in the Laplace noise case which closely
matches the theoretical density in that case.

6. Density estimation of onset of pregnancy

As defined previously, X denotes the interval between last menstrual period (LMP) and
the true onset of pregnancy. We denote Y the interval between LMP and the onset of
pregnancy estimated by the sonographic measurement of the crown-rump length (CRL)
with Y = X+ε. Two separate independent samples are available: the first is an M -sample
of spontaneous twin pregnancies, M = 86, each embryo with its own CRL measurement;
the second is an n-sample of spontaneous singleton pregnancies, n = 1378, with Yj =
Xj + εj . Each of these samples is a sample of the general unselected population and
was obtained from the screening unit of the department of obstetrics and maternal-fetal
medicine of the children’s hospital Necker - Enfants Malades in Paris, France. Since the
onset of pregnancy is identical for both twins, we thus have replicate noisy observations
Y−j1 = Xj + ε−j1 and Y−j2 = X−j + εj2, −j = 1, . . . ,M . We wish to estimate f which
represents the distribution of probability of onset of pregnancy within a female cycle.
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Figure 3. (a): estimation of the characteristic function of the noise in twin
pregnancies. Gaussian and Laplace characteristic functions are plotted for
comparison. (b): estimation of the density of onset of pregnancy.

Figure 3 (b) presents the penalized estimator f̂ b̂m
(.). As expected, the mode of the

distribution is at around 13 days, meaning that the likelihood of onset of pregnancy is
greatest at 13 days following the last menstrual period. However this distribution is
positively skewed with a significant remaining probability of onset after 20 days. The risk
was assessed by simulation in the setting of our data by considering X ∼ Γ(16, 1.2) and
a Laplace ε ∼ Lap(0, 0.95) or Gaussian ε ∼ N (0, 1.2) noise. These densities were chosen
empirically because they fitted our estimate (see Figure 3 (a) for the comparison of the
empirical characteristic function of ε with Gaussian and Laplace characteristic functions).
Under this simulation model, the risk MISE×100 was 0.05 and 0.04 for Laplace and
Gaussian noise respectively over 100 estimations. We emphasize that the strong side-
effects which are observed on the estimated characteristic function in Figure 3 (a) can also
be seen on simulated data (for a size sample 86) and mainly appear when going from the
direct noise observation to the replicate case (where only differences of noise are observed).

7. Concluding remarks

We have presented an adaptive deconvolution estimator of a density when the noise den-
sity is unknown. Instead, a sample of noisy replicate observations is available. Although
this estimator seems to perform nicely in simulation, it exhibits poorer theoretical rates
than in other settings. This expected loss is directly related to the use of replicate obser-
vations for the estimation of the characteristic function of noise density or more precisely
the square of its module. However, when the sample size M of replicate observations is
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large compared to the sample size n of single observations, the resulting rates are satisfy-
ing compared to usual deconvolution settings. Regardless of theoretical convergence rates,
simulations show that the influence of the relative values of M and n is likely to be small.
We also find that the gain in precision for increasing values of M may be small. Whereas
this may be of little value in the field of engineering it is of importance in biomedical appli-
cations or clinical research. Indeed, obtaining a sample of ε is often difficult or impossible
in these applications, as well as a strong prior assumption regarding its density. However,
replicate data may be found in clinical or biomedical applications, but they are likely to be
scarce since they involve multiple measurements/observations in one patient. In the case
of dating pregnancy this is dealt with by using twin pregnancies instead. The estimation
of a density of onset of pregnancy may find multiple clinical applications. The knowledge
of the underlying variability of onset of pregnancy may help clinicians in the follow-up
of pregnancies and mostly regarding growth monitoring by ultrasound and delivery since
both these aspects rely upon an accurate estimation of onset of pregnancy. Furthermore,
this density is of interest for the physiology of the female cycle, confirming with simple
clinical data the variation in onset of pregnancy that could be expected from biological
experiments (Wilcox et al. [2000]).

Appendix A. Proofs

A.1. Proof of Lemma 1. The proof is given for p = 1. Let us denote R(t) =
1

f̃∗
ε (t)

−
1

f∗
ε (t)

.

E(|R(t)|2) = E

(
1

(̂f∗

ε )2(t)<M−1/2

(f∗
ε )2(t)

)

+
1

(f∗
ε )2(t)

E


1 ˆ(f∗

ε )2(t)≥M−1/2

((̂f∗
ε )2(t) − (f∗

ε )2(t))2

(̂f∗
ε )2(t)(

√
(f̂∗

ε )2(t) + f∗
ε (t))2




≤ 1

(f∗
ε )2(t)

+
M1/2

(f∗
ε )4(t)

E[((̂f∗
ε )2(t) − (f∗

ε )2(t))2]

≤ 1

(f∗
ε )2(t)

+
M−1/2

(f∗
ε )4(t)

≤ 3

2

M−1/2

(f∗
ε )4(t)

(i) if (f∗
ε )2(t) ≤ 2M−1/2, we have M−1/2/(f∗

ε )4(t) ≤ 2M−1/(f∗
ε )6(t).

(ii) If (f∗
ε )2 > 2M−1/2, using the Bernstein Inequality as in Neumann yields:

P(| ˆ(f∗
ε )2(t)| < M−1/2) ≤ P(| ˆ(f∗

ε )2(t) − (f∗
ε )2(t)| > (f∗

ε )2(t) − M−1/2)

≤ P(| ˆ(f∗
ε )2(t) − (f∗

ε )2(t)| > (f∗
ε )2(t)/2)

≤ 2 exp(−M(f∗
ε )4(t)/16)

≤ O
((

M−1(f∗
ε (t))−4

)p)
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and with the same decomposition as above, this yields

E(|R(t)|2) ≤ E

(
1

(̂f∗

ε )2(t)<M−1/2

(f∗
ε )2(t)

)

+
1

(f∗
ε )4(t)

E


1 ˆ(f∗

ε )2(t)≥M−1/2

((̂f∗
ε )2(t) − (f∗

ε )2(t))2

(

√
(f̂∗

ε )2(t) + f∗
ε (t))2




+
1

(f∗
ε )2(t)

E


1 ˆ(f∗

ε )2(t)≥M−1/2

((̂f∗
ε )2(t) − (f∗

ε )2(t))2

(

√
(f̂∗

ε )2(t) + f∗
ε (t))2

(
1

f̂∗
ε )2(t)

− 1

(f∗
ε )2(t)

)


≤ 1

(f∗
ε )2(t)

P((̂f∗
ε )2(t) < M−1/2) +

M−1

(f∗
ε )6(t)

+
M−1/2

(f∗
ε )6(t)

E[(|̂f∗
ε )2(t) − (f∗

ε )2(t)|3]

≤ M−1

(f∗
ε )6(t)

+
M−1

(f∗
ε )6(t)

+
M1/2

(f∗
ε )6(t)

M−3/2

≤ c
M−1

(f∗
ε )6(t)

Thus, in that case where M−1/2/(f∗
ε )4(t) ≥ 2M−1/(f∗

ε )6(t), we get

E(|R(t)|2) ≤ M−1

|f∗
ε (t)|6 .

This ends the proof of the lemma. �

A.2. Proof of Proposition 1. Let us study the integrated mean square risk. By writing
in the Fourier domain that

f∗ − f̂∗
m = (f∗ − f∗

m) + (f∗
m − f̂∗

m) = f∗
1[−πm,πm]c + (f∗

m − f̂∗
m)1[−πm,πm],

we get, as ‖f−fm‖2 = (2π)−1‖f∗−f∗
m‖2 = (2π)−1(‖f∗

1[−πm,πm]c‖2+‖(f∗
m−f̂∗

m)1[−πm,πm]‖2),
that

(15) ‖f − f̂m‖2 = ‖f − fm‖2 + ‖fm − f̂m‖2.

Moreover, by applying the Parseval formula, we obtain

‖fm − f̂m‖2 =
1

2π

∫ πm

−πm

∣∣∣∣∣
f̂∗

Y (u)

f̃∗
ε (u)

− f∗
Y (u)

f∗
ε (u)

∣∣∣∣∣

2

du.

It follows that

(16) ‖fm − f̂m‖2 ≤ 1

π

∫ πm

−πm
|f̂∗

Y (u)|2|R(u)|2du +
1

π

∫ πm

−πm

|f̂∗
Y (u) − f∗

Y (u)|2
|f∗

ε (u)|2 du.
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The last term of the right-hand-side of (16) is the usual term that is found when f∗
ε is

known, and the first one is specific to the framework with estimated f∗
ε .

We take the expectation of (16):

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗

Y (u)|2E(|R(u)|2)du +
1

π

∫ πm

−πm

n−1

|f∗
ε (u)|2 du.

Applying Lemma 1 yields:

E(‖fm − f̂m‖2) ≤ 2

π

∫ πm

−πm
E(|f̂∗

Y (u) − f∗
Y (u)|2)E(|R(u)|2)du

+
2

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2E(|R(u)|2)du + 2
∆2(m)

n

≤ 2C1

π

∫ πm

−πm
n−1

(
M−1/2

|f∗
ε (u)|4 ∧ M−1

|f∗
ε (u)|6

)
du

+
2C1

π

∫ πm

−πm
|f∗(u)|2|f∗

ε (u)|2
(

M−1/2

|f∗
ε (u)|4 ∧ M−1

|f∗
ε (u)|6

)
du + 2

∆2(m)

n
(17)

By gathering (15) and (17), we obtain the result. �
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