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ABSTRACT

In this paper, we propose an optimization of the lifted Butterfly
scheme for semi-regular meshes. This optimization consists in
adapting the predict and update steps at each level of resolution for
a given semi-regular mesh. The motivation is the improvement of
the multiresolution analysis in order to increase the compression
performances of the subsequent geometry coder. We first compute
an optimized prediction scheme that minimizes the L1-norm of the
wavelet coefficients for each level of resolution, independently. We
then compute the update scheme in order to preserve the data av-
erage (0th moment) at the lower resolution. Experimental results
shows that our technique globally reduces the entropy of the wavelet
coefficients of any semi-regular mesh. Consequently our contribu-
tion also improves the compression performances of the zerotree
coder PGC.

Index Terms— Wavelets, Butterfly scheme, Compression,
Semi-regular mesh

1. INTRODUCTION

Today triangular meshes can be defined by several millions of ver-
tices, and more. A simple representation of these densely sampled
meshes is consequently huge. Compression is one relevant tool to al-
low compact storage and/or fast transmission in bandwidth-limited
applications of such massive data, and many techniques have been
already proposed [1]. To our knowledge, wavelet-based coders that
take semi-regular meshes as input are the most efficient [2, 3, 4].

Many works have been done to improve the wavelet construction
for surface meshes. Dahlke et al. first introduced the construction
of wavelets on the sphere, by using a tensor product basis where
one factor is an exponential spline [5]. Then, a continuous wavelet
transform on the sphere and its semi-discretization were proposed
in [6]. In 1995, Schröder et al. proposed the lifting scheme, a sim-
ple technique for constructing biorthogonal wavelets on the sphere
with customized properties [7]. In 1997, Lounsbery et al. proposed
new wavelets for surface meshes, based on subdivision surfaces [8].
In 2000, Kovacevic et al. proposed a wavelet transform for meshes
that relies on the lifting scheme and interpolating scaling functions
[9]. In 2004, Bertram proposed a biorthogonal wavelet construction
based on loop [10], whereas Li et al. proposed an unlifted Loop-
based scheme [11]. In the same time, Valette et al. developed spe-
cific wavelets for irregular meshes unlike all other methods [12]. The
interpolating Butterfly scheme [13] has been also used for devel-
oping wavelets implemented in lifting scheme. The interest of this
scheme in multiresolution analysis has been particularly highlighted
in compression [3, 4, 14].

In this paper, we propose an optimized construction of the
Butterfly-based lifting scheme [7, 15]. The idea is to adapt the
two main stages of the lifting scheme (prediction and update) to

the geometrical characteristics of the input semi-regular mesh. Our
motivation is to maximize the sparsity of the wavelet coefficients,
and consequently the compression performances of the subsequent
geometry coders.

The rest of this paper is organized as follows. Section 2 briefly
introduces the lifting scheme for semi-regular meshes. Section 3
presents our optimization technique for the Butterfly-based lifting
scheme. Section 4 shows some experimental results and we finally
conclude in section 5.

2. LIFTING SCHEME FOR SEMI-REGULAR MESHES

Wavelet transform consists in decomposing a given mesh into a base
mesh (low frequency signal) and several sets of wavelet coefficients
(high frequency details). Here we only focus on wavelets for semi-
regular meshes. A semi-regular mesh is based on a mesh hierarchy
that represents a given surface at different levels of resolution. The
hierarchy exploits the subdivision connectivity to get the different
resolutions. Figure 1 shows an example.

Let us note MN a semi-regular mesh defined by N levels of
resolution. The geometry of MN is defined by a set of V N vertices
{vNk , k = 1..V N}, where vNk is defined by its position in the Eu-
clidean space (three coordinates x, y and z). Applying a wavelet
transform to MN results in one mesh MN−1 of lower resolution,
and a set of wavelet coefficients CN = {cNk }, with cNk a three-
dimensional coefficient expressed in a local frame. Figure 2 illus-
trates this wavelet decomposition.

Wavelet transforms are often implemented in lifting scheme [7,
15], which is reversible and faster than implementation based on fil-
ter banks.

Fig. 1. Up: a semi-regular mesh, from the lowest to the highest
resolution. Bottom: the connectivity subdivision.

In our context, this scheme (Figure 3) is characterized by:

• a splitting step that divides the vertices of M j in two subsets
M j

0 and M j
1 (the green and red dots on the figure 2);



Fig. 2. Wavelet decomposition of a semi-regular mesh. M j is trans-
formed into the ”low frequency” mesh M j−1 and a set of coeffi-
cients Cj (associated to the red vertices removed during the decom-
position).

Fig. 3. Lifting scheme for semi-regular meshes.

• a predict step P that takes as input M j
0 (green dots) and pre-

dict the positions of the vertices belonging to M j
1 (red dots).

The prediction errors corresponds to the wavelet coefficients
{cjk};

• an update operator U that takes as input Cj and modifies
the positions of vertices belonging M j

0 . A gain (x2) is finally
applied on M j

0 to finally obtain the ”low frequency” mesh
M j−1.

3. PROPOSED OPTIMIZATION

The objective of our works is to optimize the predict (P ) and up-
date (U ) steps of the Butterfly-based wavelets, in order to improve
the efficiency of the subsequent quantizer. Our optimization consists
in computing new weights for the stencils of P and U . This opti-
mization is done at each level of decomposition during the analysis,
producing P and U optimized for each level of resolution.

3.1. Optimization of the prediction scheme

For the predict step, we start from the modified Butterfly stencils
given by Figure 4 [13]. We apply those stencils on the vertices
of M j

1 to predict their position from the neighbor vertices of M j
1 .

Those stencils are given by figure 4. There are two stencils, a regu-
lar and an irregular. The regular stencil (Figure 4(a)) is used when
a given vertex has two neighbors (belonging to the lower resolution)
having a valence 6. The irregular stencil is for the other case, i.e.
at least one neighbor is irregular (Figure 4(b)). Note that we do not
optimize the irregular case, because there are a lot of different con-
figurations for this stencil, since it depends on the valence of the
neighbor vertices. Finally, optimizing the different irregular stencils
should lead to the computation and the transmission of a too large
quantity of side information (to reconstruct the meshes during com-
pression). Instead, we prefer optimizing only the regular case, and
using the usual weights given in [13] for the irregular case.

(a) Regular stencil. (b) Irregular stencil.

Fig. 4. Stencils of the Butterfly-based prediction P .

Considering the resolution j, the set of wavelet coefficients Cj

is computed by using the equation

Cj = M j
1 − P ∗M j

0 . (1)

As the majority of wavelet-based coders for semi-regular meshes, we
consider separately the tangential components (corresponding to the
coordinates x and y of the coefficients) and the normal components
(corresponding to the coordinates z). Hence, we propose to compute
i two optimized prediction schemes P j

xy and P j
z independently, ac-

cording to the tangential and the normal components, respectively.
The same algorithm is currently developed for those two prediction
schemes. For clarity, we use P j hereinafter for both P j

xy and P j
z .

In order to maximize the coding performances, we want Cj to
become as sparse as possible. For this, we choose to minimize the
L1-norm of the sets of coefficients Cj at each resolution [16]. Fi-
nally, maximizing the sparsity of the coefficients amounts to solve
the following minimization problem

min
{αj

i}
||M j

1 − P j({αj
i} ∗M

j
0 ||1, (2)

where {αj
i} represents the weights relative to the prediction scheme

P j (see Figure 4(a)).
We resolve this system by using a sequential quadratic program-

ming method and under the constraint:
∑

αj
i = 1 (in order to obtain

a predictor with a unitary gain).

3.2. Computation of the new update scheme

If the prediction P is based on a subdivision scheme, the update U
has to be chosen such as to preserve higher order moments [17].
Since we have modified the weights of the prediction scheme P
with our optimization technique, we have to compute a new update
scheme. For the update step, we still start from the stencils proposed
in [13], and given by Figure 5. The coefficient β of this stencil de-
pends on the valence K of the given vertex v:

β =
γ

K
, (3)

where γ is usually equal to 3/4.
Considering a given resolution j, the low frequency signal

M j−1 is computed according to

M j−1 = 2× (M j
0 + U j ∗ Cj). (4)

So for a given vertex vj−1
k of M j−1, we can write

vj−1
k = 2× (vjk +

∑
i=1..K

j
k

γj

Kj
k

cj
S
j
k
(i)
), (5)



where Kj
k is the number of neighbors of vjk, and Sj

k(i) is the set of
neighbor vertices of vjk.

we propose to compute γ in order to preserve the average (0th

moment) between M j and M j−1 [17]:

1

V j−1

∑
k=1..V j−1

vj−1
k =

1

V j

∑
l=1..V j

vjl , (6)

By combining equations (5) and (6), we obtain

2

V j−1

∑
k=1..V j−1

(vjk +
∑

i=1..K
j
k

γj

Kj
k

cj
S
j
k
(i)
) =

1

V j

∑
l=1..V j

vjl , (7)

that can be rewritten in∑
k=1..V j−1

vjk + γj
∑

k=1..V j−1

1

Kj
k

∑
i=1..K

j
k

cj
S
j
k
(i)

∼=
1

4

∑
l=1..V j

vjl ,

(8)
We finally obtain the optimal γj for each resolution j:

γ ∼=
1
4

∑
l=1..V j v

j
l −

∑
k=1..V j−1 v

j
k∑

k=1..V j−1
1

K
j
k

∑
i=1..K

j
k
cj
S
j
k
(i)

, (9)

Fig. 5. Stencil of the Butterfly-based update step U .

4. EXPERIMENTAL RESULTS

To prove the interest of our optimization technique in terms of com-
pression, we compare our optimized lifted Butterfly scheme with
the classical one. We apply both schemes to three models: VASE
LION, BIMBA and JOAN OF ARC. As coding scheme, we use the
zerotree-based coder developed by Khodakovsky et al. for semi-
regular meshes in [2]. Figures 6, 7 and 8 show the PSNR (based
on the Haussdorff distance [18] between a semi-regular mesh and its
coded version) curves for those models when using the optimized
and the classical lifted Butterfly scheme. We observe that we obtain
a gain up to 2 dB when using our optimized scheme.

Table 1, 2 and 3 show the entropy of the obtained wavelet co-
efficients when using the optimized and the classical lifted Butterfly
scheme. We observe that our optimization allows a significant re-
duction of the entropy of the sets of coefficients. As expected, this
leads to better compression performances as explained previously.

5. CONCLUSION AND FUTURE WORKS

We described in this paper, a new method to optimize the butterfly-
based lifting scheme for semi-regular meshes. Our optimization con-
sists in computing new weights for the stencils of the predictor (P )
and update (U ) operators. This optimization is done at each level
of decomposition during the analysis, producing P and U optimized

Fig. 6. PSNR curves for VASE LION.

Fig. 7. PSNR curves for BIMBA.

Fig. 8. PSNR curves for JOAN OF ARC.

for each level of resolution. Experimental results show that we ob-
tain better compression performance (a gain up to 2dB) when using
our optimized lifted Butterfly scheme compared to the classical one.
Future works will concern:

• computing a new update operator in order to preserve higher
order moments;

• a region-based approach that will partition the input mesh in
function of the geometrical details, and then computing at
each level of resolution different predictor operators for each
partition.

This should further improve the compression performances of our
approach.
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Classical Optimized
res x y z x y z
1 3.9882 4.1804 4.3975 3.9050 3.9372 4.4277
2 2.8992 2.8880 3.5541 2.8034 2.9219 3.4010
3 1.6817 1.6671 2.6004 1.6364 1.6211 2.5024
4 0.5673 0.5344 1.1387 0.5240 0.4893 1.1324
5 0.0784 0.0726 0.2216 0.0664 0.0640 0.2231
6 0.0016 0.0010 0.0132 0.0012 0.0008 0.0138

Table 1. Comparison between the entropy of the wavelet coefficients
obtained with a classical lifted Butterfly scheme and the entropy of
the wavelet coefficients obtained with the optimized lifted Butterfly
scheme for the VASE LION. The value res represents the different
levels of resolution.

Classical Optimized
res x y z x y z
1 4.0197 4.2339 4.1841 3.7708 4.0243 4.0230
2 3.2305 3.2851 4.0592 3.0672 3.3452 3.7501
3 1.9456 1.9339 3.1158 1.8110 1.9287 2.9047
4 0.7015 0.6197 1.4781 0.6829 0.5922 1.3781
5 0.1270 0.0938 0.3712 0.1178 0.0812 0.3320
6 0.0047 0.0033 0.0385 0.0029 0.0025 0.0330
7 0.0000 0.0000 0.0008 0.0000 0.0000 0.0007

Table 2. Comparison between the entropy of the wavelet coefficients
obtained with a classical lifted Butterfly scheme and the entropy of
the wavelet coefficients obtained with the optimized lifted Butterfly
scheme for the BIMBA. The value res represents the different levels
of resolution.

Classical Optimized
res x y z x y z
1 2.2310 2.6347 2.3789 2.3276 2.7351 2.3788
2 4.3037 4.6194 4.7379 3.9109 4.3034 4.2994
3 3.4381 3.6332 4.0224 3.3984 3.6322 3.4908
4 2.1756 2.1331 2.3627 2.1461 2.1493 2.2297
5 0.8379 0.8122 0.9690 0.8358 0.8145 0.9546

Table 3. Comparison between the entropy of the wavelet coefficients
obtained with a classical lifted Butterfly scheme and the entropy of
the wavelet coefficients obtained with the optimized lifted Butterfly
scheme for the JOAN OF ARC. The value res represents the different
levels of resolution.
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