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Eigenvalue bounds for radial magnetic bottles on
the disk

Françoise Truc∗

September 9, 2011

Abstract

We consider a Schrödinger operatorHD
A with a non-vanishing radial mag-

netic fieldB = dA and Dirichlet boundary conditions on the unit disk. We
assume growth conditions onB near the boundary which guarantee in particular
the compactness of the resolvent of this operator. Under some assumptions on an
additional radial potentialV the operatorHD

A − V has a discrete negative spec-
trum and we obtain an upper bound of the number of negative eigenvalues. As a
consequence we get an upper bound of the number of eigenvalues ofHD

A smaller
than any positive valueλ, which involves the minimum ofB and the square of
theL2-norm ofA(r)/r, whereA(r) is the specific magnetic potential defined as
the flux of the magnetic field through the disk of radiusr centered in the origin.

1 Introduction

Let us consider a particle in a domainΩ in R
2 in the presence of a magnetic fieldB.

We define the 2-dimensional magnetic Laplacian associated to this particle as follows:
Let A be a magnetic potential associated toB ; it means thatA is a smooth real one-
form onΩ ⊂ R

2, given byA =
∑2

j=1 ajdxj , and that the magnetic fieldB is the
two-formB = dA. We haveB(x) = b(x)dx1 ∧ dx2 with b(x) = ∂1a2(x)− ∂2a1(x) .
The magnetic connection∇ = (∇j) is the differential operator defined by

∇j =
∂

∂xj
− iaj .

The 2-dimensional magnetic Schrödinger operatorHA is defined by

HA = −
2

∑

j=1

∇2
j .

∗Institut Fourier, francoise.truc@ujf-grenoble.fr Unit´e mixte de recherche CNRS-UJF 5582, BP 74,
38402-Saint Martin d’Hères Cedex (France)
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The magnetic Dirichlet integralhA = 〈HA.|.〉 is given, foru ∈ C∞
0 (Ω), by

hA(u) =

∫

Ω

2
∑

j=1

|∇ju|2|dx| . (1.1)

From the previous definitions and the fact that the formal adjoint of ∇j is −∇j , it is
clear that the operatorHA is symmetric onC∞

0 (Ω).
In [5] we discuss the essential self-adjointness of this operator. The result in dimension
2 is the following

Theorem 1.1 Assume that∂Ω is compact and thatB(x) satisfies near∂Ω

b(x) ≥ (D(x))−2 , (1.2)

then the Schr̈odinger operatorHA is essentially self-adjoint. (D(x) denotes the dis-
tance to the boundary). This still holds true for any gaugeA′ such thatdA′ = dA = B.

We have, using Cauchy-Schwarz inequality,

|〈b(x)u, u〉| = |〈[∇1,∇2]u, u〉| ≤ ‖∇1u‖2 + ‖∇2u‖2 u ∈ C∞
0 (Ω).

This gives the well-known lower bound

∀u ∈ C∞
0 (Ω), hA(u) ≥

∣

∣

∣

∣

∫

Ω

b(x)|u|2|dx|
∣

∣

∣

∣

. (1.3)

In this paper, we do not use the conditions (1.2) but we assumenevertheless thatb(x)
grows to infinity asx approaches the boundary. The operatorHD

A defined by Friedrichs
extension of the quadratic formhA has a compact resolvent. By analogy with magnetic
bottles on the whole space (see [1, 4, 19]), such an operator is called a magnetic bottle
on the disk.

We will deal with spectral estimates for the operatorHD
A , using a perturbative

method: introducing an additional non-negative bounded and radial potentialV , we
obtain an upper bound of the numberN(A, V ) of negative eigenvalues of the operator
HD

A − V (Theorem 2.1) and deduce, for anyλ > 0, an upper bound of the number
N(HD

A , λ) of eigenvalues of the operatorHD
A smaller thanλ (Theorem 2.2). Theo-

rem 2.1 can be seen as a magnetic version of the Cwikel-Lieb-Rosenblum inequality
(see [6, 16, 18]). The CLR inequality provides a bound on the number of negative
eigenvalues of Schrödinger operators inR

d for d ≥ 3 (without magnetic field) and is a
particular case of Lieb-Thirring inequalities (see [15, 17]).

Eigenvalue bounds were recently studied for magnetic Hamiltonians onR2, for
constant magnetic fields (see [10]), for Aharonov-Bohm magnetic fields (see [3, 14])
and for a large class of magnetic fields (see [12]). However, in [12], the total magnetic
flux φ = 1

2π

∫

R2 b(x)dx has to be finite and the dependence on the magnetic field is
not explicit even in the radial case. In our result, the totalflux is not necessarily finite
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(see example 2.4) and the upper bound involves explicitly the square of the magnetic
potential.
Magnetic Lieb-Thirring inequalities were also obtained for Pauli operators (see [7,
8]), and links between magnetic and non-magnetic Lieb-Thirring inequalities were
discussed in [9].

Aknowledgements

The author would like to thank A. Laptev for fruitful discussions, Y. Colin de Verdière
for useful comments, J.P. Truc for the communication about Proposition 5.2 and the
referee for careful reading and helpful suggestions.

2 Main results

We consider a smooth magnetic fieldB = b(x)dx1 ∧ dx2 and a scalar potentialV on
the unit diskΩ = {x = (x1, x2) ∈ R

2| x2
1 + x2

2 = r2 < 1} so that

• (H1) K = infx∈Ω b(x) > 0 andb(x) → +∞ asD(x) → 0

(i.e asx approaches the boundary.)

• (H2) B is radially symmetric ( consequently we writeb(r) instead ofb(x))

• (H3) V ∈ L1(Ω), V radial and non-negative,V bounded from above .

From assumption(H1) and from inequality (1.3) we deduce that for any gaugeA
associated toB, the operatorHD

A has a compact resolvent, and assumption(H3) entails
that the negative spectrum ofHD

A −V is discrete, whereHD
A −V denotes the operator

defined by Friedrichs extension of the quadratic formhA − V .
Using assumption(H2) we introduce polar coordinates(r, θ), (r ∈ R

+, θ ∈ [0, 2π[)
and consider the following magnetic potential :

A = −a(r) sin θdx1 + a(r) cos θdx2, a(r) =
1

r

∫ r

0

b(t)tdt . (2.1)

We havedA = B and

A = A(r)dθ with A(r) = ra(r) =

∫ r

0

b(t)tdt . (2.2)

A(r) is the flux of the magnetic field through the disk of radiusr centered in the ori-
gin. The functiona(r) = A(r)/r is well-defined (and smooth) at the origin and it is
the amplitude of the magnetic potentialA in cartesian coordinates .
The first theorem provides an upper bound of the numberN(A, V ) of negative eigen-
values of the operatorHD

A − V whereA is the magnetic potential defined by (2.2).
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From now on,A denotes this specific potential.
Noticing that we haveN(A′, V ) = N(A, V ) for any gaugeA′ so thatdA′ = dA = B,
we will prove the following

Theorem 2.1 If assumptions(H1)(H2)(H3) are verified and if moreover

b(x) ≤ M(D(x))−β , 0 < β <
3

2
(2.3)

for someM > 0, then

N(A, V ) ≤ 1√
1− α

∫ 1

0

[(
1

α
−1)

A2(r)

r2
+V (r)]rdr+2

∫ 1

0

[

1 + | log[r
√
K]|

]

V (r)rdr

for anyα ∈]0, 1[.
This inequality still holds when we replace in the left-handsideN(A, V ) byN(A′, V ),
whereA′ is any gauge verifyingdA′ = dA = B.

The second theorem is a consequence of the first one and provides an explicit upper
bound of the numberN(HD

A , λ) of the eigenvalues ofHD
A smaller than any positive

valueλ :

Theorem 2.2 If assumptions(H1) and(H2) are verified and if moreover

b(x) ≤ M(D(x))−β , 0 < β <
3

2

for someM > 0, then the number of eigenvalues of the operatorHD
A smaller thanλ

satisfies, for anyα ∈]0, 1[, the following inequality

N(HD
A , λ) ≤ cKλ+

λ

2
√
1− α

+

√
1− α

α

∫ 1

0

(

A(r)

r

)2

rdr (2.4)

with

• cK =
3− logK

2
if 0 < K ≤ 1

• cK =

[

1 + logK

2
+

1

K

]

if K > 1,

Inequality (2.4) still holds when we replace in the left-hand sideN(HD
A , λ) byN(HD

A′, λ),
whereA′ is any gauge verifyingdA′ = dA = B.

Remark 2.3 The minimum of the right-hand side is obtained by taking

αλ =
−3I +

√
I2 + 4Iλ

λ− 2I

with I :=

∫ 1

0

(

A(r)

r

)2

rdr.
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Example 2.4 Consider a magnetic fieldB as in the definition (3.2) below, and assume
b(r) ≡ 1 and β = 1 . ThencK = 3

2
, the chosen gauge isA(r) =

∫ r

0
b(t)tdt =

− ln(1− r)− r and the corresponding value ofI is

I =

∫ 1

0

[ln(1− r) + r]2

r
dr = 2ζ(3)− 3

2
. (2.5)

3 Proofs

3.1 Proof of Theorem 2.1

Let us introduce the polar coordinatesx = (r, θ), r ∈ R
+, θ ∈ [0, 2π[. We have

denoted byA the following vector potential :

A = A(r)dθ with A(r) = ra(r) =

∫ r

0

b(t)tdt . (3.1)

Due to assumption (2.3) the magnetic field we consider is of the type

b(r) =
b(r)

(1− r)β
, with max

[0,1[
b(r) ≤ M and β <

3

2
. (3.2)

We first prove the following

Lemma 3.1 If B satisfies (3.2), then we can find some constantC so thatA writes
A = A(r)dθ = ra(r)dθ where

• if β < 1 max
[0,1[

a(r) ≤ C.

• if β = 1 a(r) = ã(r) ln(1− r), with max
[0,1[

ã(r) ≤ C .

• if β > 1 a(r) =
ã(r)

(1− r)β−1
, with max

[0,1[
ã(r) ≤ C.

In particular
∫ 1

0

(

A(r)

r

)2

rdr < ∞ .

Proof.–

Let us explain the caseβ > 1. The method for the caseβ = 1 is the same.
From (3.2) we get

0 ≤ 1

r

∫ r

0

b(t)tdt ≤ 1

r

∫ r

0

b(t)t(1 − t)−βdt ≤ M

∫ r

0

(1 − t)−βdt ≤

M
(1− r)−β+1

β − 1
and the result follows.

The caseβ < 1 is straightforward.
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We come now to the proof of Theorem 2.1, following the method of [13]. The quadratic
form associated toHD

A − V can be rewritten as

hA,V (u) =

∫ 1

0

∫ 2π

0

[

|∂u
∂r

|2 − V (r)|u2|+ r−2

[

[
∂

∂θ
− iA(r)]u

]2
]

rdrdθ (3.3)

for anyu ∈ C∞
0 ([0, 1[×[0, 2π[). Changing variablesr = et and denotingw(t, θ) =

u(et, θ) for t ∈]−∞, 0[ andθ ∈ [0, 2π[ we transfer the formhA,V (u) to

h̃A,V (w) =

∫ 0

−∞

∫ 2π

0

[

|∂w
∂t

|2 − Ṽ (t)|w2|+
[

[
∂

∂θ
− if(t)]w

]2
]

dtdθ (3.4)

with
Ṽ (t) = e2tV (et), f(t) = A(et) .

By expanding a given functionw ∈ C∞
0 ([−∞, 0[×[0, 2π[) into a Fourier series we

obtain that̃hA,V (w) = ⊕l∈Zh
ℓ
A,V (wℓ) with

hℓ
A,V (v) =

∫ 0

−∞
|∂v
∂t

|2 +
[

(ℓ− f(t))2 − Ṽ (t)
]

|v2| dt ,

andwℓ = Πℓ(w) whereΠℓ is the projector acting as

Πℓ(w)(r, θ) =
1

2π

∫ 2π

0

eil(θ−θ′)w(r, θ′)dθ′ .

We write, for anyα ∈]0, 1[ and anyℓ ∈ Z
∗

hℓ
A,V (v) ≥

∫ 0

−∞
|∂v
∂t

|2 +
[

(1− 1

α
)f 2(t)− Ṽ (t) + (1− α)ℓ2

]

|v2| dt .

Let us denote byLα the operator associated via Friedrichs extension to the quadratic
form

qα(v) =

∫ 0

−∞
|∂v
∂t

|2 +
[

(1− 1

α
)f 2(t)− Ṽ (t)

]

|v2| dt .

Lα andqα depend onV andA but we skip the reference toV andA in notations for
the sake of simplicity. Since

hℓ
A,V ≥ qα + (1− α)ℓ2 ,

the numberN(hℓ
A,V ) of negative eigenvalues ofhℓ

A,V is smaller than the number of
negative eigenvalues ofLα+(1−α)ℓ2. Hence denoting by{−µα

k} the negative eigen-
values ofLα and byIℓ the set{k ∈ N;−µα

k + (1 − α)ℓ2 < 0} for any ℓ ∈ Z
∗, we

get
N(A, V ) ≤

∑

ℓ∈Z∗

∑

k∈Iℓ

1 +N(h0
A,V ) .
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Noticing that the sum in the right-hand side is taken over the(ℓ, k) so that0 < |ℓ| ≤
1√
1−α

√
µα
k we write

N(A, V ) ≤ 2√
1− α

∑

k∈N

√

µα
k +N(h0

A,V ) . (3.5)

Let us extend the functionsf andṼ toR by zero and denote respectively byf1 andṼ1

these extensions.
SinceC∞

0 ([−∞, 0[) ⊂ C∞
0 (R), the negative eigenvalues{−να

k } of the operatorLα
1

associated via Friedrichs extension to the quadratic form

qα1 (v) =

∫ +∞

−∞
|∂v
∂t

|2 +
[

(1− 1

α
)f 2

1 (t)− Ṽ1(t)

]

|v2| dt

verify
∑

k∈N

√

µα
k ≤

∑

k∈N

√

να
k . (3.6)

Applying the sharp inequality of Hundertmarkt-Lieb-Thomas [11] (see Appendix ) to
the operatorLα

1 we get

∑

k∈N

√

να
k ≤ 1

2

∫ +∞

−∞

[

(
1

α
− 1)f 2

1 (t) + Ṽ1(t)

]

dt

≤ 1

2

∫ 0

−∞

[

(
1

α
− 1)f 2(t) + Ṽ (t)

]

dt

≤ 1

2

∫ 1

0

[

(
1

α
− 1)

A2(r)

r2
+ V (r)

]

rdr . (3.7)

To conclude we need the following

Lemma 3.2 Assume thatK = infx∈Ω b(x) > 0.Then for anyε ∈]0, 1[

N(h0
A,V ) = N(h0

A,0 − V ) ≤ 1

ε

∫ 1

0

[

1 + | log(
√

(1− ε)K

ε
r)|

]

V (r)rdr . (3.8)

In particular

N(h0
A,V ) ≤ 2

∫ 1

0

[

1 + | log(
√
Kr)|

]

V (r)rdr . (3.9)

Proof.–
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• Step 1 : From (1.3) we get thathA(u) ≥ K
∫

Ω
|u|2|dx| ∀u ∈

C∞
0 (Ω), which implies forh0

A,0 (returning to the variabler and con-
sideringV ≡ 0),

h0
A,0(w) =

∫ 1

0

[

|∂w
∂r

|2 + r−2A2(r)|w2|
]

rdr

≥ K

∫ 1

0

|w|2rdr ∀w ∈ C∞
0 ([0, 1]) .

We write for anyε ∈]0, 1[

N(h0
A,0−V ) ≤ N(εh0

A,0+(1−ε)K−V ) ≤ N

(

h0
A,0 +

(1− ε)K

ε
− V

ε

)

,

(3.10)
where we have used the fact that multiplying an operator by a posi-
tive constant does not change the number of its negative eigenvalues.

• Step 2 : We establish the following upper bound :

N(h0
A,0 + 1− V ) = N(h0

A,V + 1) ≤
∫ 1

0

[1 + | log r|]V (r)rdr .

(3.11)
We have

h0
A,V (w) =

∫ 1

0

[

|∂w
∂r

|2 +
[

r−2A2(r)− V (r)
]

|w2|
]

rdr

≥
∫ 1

0

[

|∂w
∂r

|2 − V (r)|w2|
]

rdr ∀w ∈ C∞
0 ([0, 1]) .

By the variational principle,

N(h0
A,V + 1) ≤ N(P0 + 1− V ), (3.12)

whereP0 is the operator generated by the closure, inL2([0, 1], rdr)
of the quadratic form

∫ 1

0

|∂w
∂r

|2rdr, w ∈ C∞
0 ([0, 1]) .

Considering the mappingU : L2([0, 1], rdr) → L2([0, 1], dr) de-
fined by(Uf)(r) = r1/2f(r) we get that

N(P0 + 1− V ) ≤ N(T0 + 1− V ) (3.13)

where the operatorT0 = UP0U
−1 is the Sturm-Liouville operator on

L2([0, 1], dr) acting on its domain by

(T0u)(r) = −u”(r)− u(r)

4r2
, u(0) = u(1) = 0 . (3.14)
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The upper bound (3.11) will follow from the properties ofG(r, r, 1),
the diagonal element of the integral kernel of(T0 + 1)−1. Precisely
we have

G(r, r, 1) ≤ r(1 + | log r|), r ∈ [0, 1[ . (3.15)

The proof of (3.15) is given in Appendix . The Birman-Schwinger
principle then yields

N(T0+1−V ) ≤
∫ 1

0

G(r, r, 1)V (r)dr ≤
∫ 1

0

[1 + | log r|]V (r)rdr .

(3.16)
This ends the proof of (3.11), together with the inequalities (3.12)
and (3.13).

• Step 3 : We mimick the previous method to get, for any strictlypos-
itive numberk

N(h0
A,0 + k2 − V ) ≤

∫ 1

0

[1 + | log(kr)|]V (r)rdr . (3.17)

Due to the Birman-Schwinger principle it suffices to prove that, for
any strictly positive numberk

G(r, r, k2) ≤ r(1 + | log(kr)|), r ∈ [0, 1[ . (3.18)

This is done in Appendix .

• Step 4 : Returning to (3.10) and applying (3.17) withk2 = (1−ε)K
ε

and V
ε

instead ofV we get, for anyε ∈]0, 1[

N(h0
A,0 − V ) ≤ N

(

h0
A,0 +

(1− ε)K

ε
− V

ε

)

(3.19)

≤ 1

ε

∫ 1

0

[

1 + | log(
√

(1− ε)K

ε
r)|

]

V (r)rdr ,

(3.20)
and takingε = 1

2
we obtain Lemma 3.2.

�

Theorem 2.1 follows from Lemma 3.2 together with inequalities (3.5), (3.6), and
(3.7).

3.2 Proof of Theorem 2.2

Noticing that for anyλ > 0 the constant potentialV (x) ≡ λ is in L1(Ω), and that
N(A, λ) denotes the number of eigenvalues of the operatorHD

A less thanλ, we apply

9



Theorem 2.1 toV (x) ≡ λ. To get the result it suffices to compute
∫ 1

0
[1 + | log(kr)|] rdr .

We get after computation that
∫ 1

0

[1 + | log(kr)|] rdr = γk, (3.21)

with

• γk =
3− 2 log k

4
if k ≤ 1

• γk =
1 + 2 log k

4
+

1

2k2
if k > 1 .

3.3 Proof of Remark 2.3

To get the minimum over the values ofα we study the sign of the expression, for any
α ∈]0, 1[, of

gλ(α) :=
λ

2
√
1− α

+

√
1− α

α
I .

A direct computation shows that the valueαλ which realizes the minimum ofgλ(α) is
the positive solution of

α2(λ− 2I) + 6αI − 4I = 0 . (3.22)

4 An asymptotic eigenvalue upper bound

From Theorem 2.2 we get easily an asymptotic estimate for theright-hand side of (2.4)
whenλ tends to∞ :

Corollary 4.1 If assumptions(H1) and(H2) are satisfied and if moreover

b(x) ≤ M(D(x))−β , 0 < β <
3

2

for someM > 0, then the number of eigenvalues of the operatorHD
A smaller thanλ

satisfies, asλ → ∞

N(HD
A , λ) ≤ (

1

2
+ cK)λ+

√
λ
√
I +O(1) , (4.1)

where

I =

∫ 1

0

(

A(r)

r

)2

rdr ,

and

• cK =
3− logK

2
if 0 < K ≤ 1

10



• cK =

[

1 + logK

2
+

1

K

]

if K > 1 .

Inequality (4.1) still holds when we replace in the left-hand sideN(HD
A , λ) by

N(HD
A′ , λ), whereA′ is any gauge verifyingdA′ = dA = B.

Proof.–

We define as previously, for anyα ∈]0, 1[,

gλ(α) :=
λ

2
√
1− α

+

√
1− α

α
I

and we want to determine the asymptotic behavior asλ tends to∞ of
gλ(αλ), whereαλ is the minimum ofgλ(α).
From (3.22) we compute the following asymptotics

αλ =
2
√
I√
λ

+O(
1

λ
)

√
1− αλ = 1−

√
I√
λ
+O(

1

λ
) ,

and this gives the result.

�

Remark 4.2 The leading term in the estimate (4.1) is of the same order than the lead-
ing term in the Weyl formula for the Dirichlet Laplacian (corresponding to the case
A ≡ 0) in the unit disk.

5 Appendix

5.1 The inequality of Hundertmarkt-Lieb-Thomas

We recall the sharp inequality of Hundertmarkt-Lieb-Thomas [11]

Theorem 5.1 Let

Lv(t) = −v”(t)−W (t)v(t), W ≥ 0 W ∈ L1(R)

be defined in the sense of quadratic forms onR, and assume that the negative spectrum
ofL is discrete. Denote by{−νk, k ∈ N} the negative eigenvalues ofL. Then

∑

k∈N

√
νk ≤ 1

2

∫ +∞

−∞
W (t)dt .
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5.2 The Green function G(r, r′, 1) of the operator T0.

Let us compute the diagonal element for the Green functionG(r, r′, 1) of the operator
T0 defined by (3.14).G(r, r′, 1) is the solution of

((T0 + 1)u) (r) = δr′(r), u(0) = u(1) = 0 . (5.1)

We have
G(r, r′, 1) = A1u1(r) + A2u2(r) r ≤ r′

G(r, r′, 1) = B1u1(r) +B2u2(r) r > r′ ,
whereu1(r) =

√
rI0(r) andu2(r) =

√
rK0(r) are independent solutions of the related

homogeneous equation, (I0 andK0 are the modified Bessel functions).
The coefficients depend ofr′ but we omit the indices for the sake of clarity. Due to the
boundary conditions and to the fact that the derivative (with respect tor) of G(r, r′, 1)
has the discontinuity inr′ of a Heaviside function, they satisfy :

A1u1(0) + A2u2(0) = 0 B1u1(1) +B2u2(1) = 0

B1 − A1 =
−u2(r

′)

W (r′)
B2 −A2 =

u1(r
′)

W (r′)

whereW (r′) is the value of the Wronskian ofu1 andu2 taken at the pointr′.
The first equation is always satisfied sinceu1(0) = u2(0) = 0. Let us setA2 = 0. We
haveW (r′) = u′

1(r
′)u2(r

′) − u1(r
′)u′

2(r
′) = r′Ŵ (r′) whereŴ (r′) is the Wronskian

of the modified Bessel functionsI0 andK0. As r′Ŵ (r′) = 1 (see [2]), we get after
solving the above system, and doingr = r′ :

G(r, r, 1) = u1(r)

[

−u1(r)
u2(1)

u1(1)
+ u2(r)

]

= rI0(r)

[

−I0(r)
K0(1)

I0(1)
+K0(r)

]

.

Using again the properties of the modified Bessel functions (see [2]) we can write

G(r, r, 1) ≤ rI0(r)K0(r) .

The function

g(r) =
I0(r)K0(r)

1 + | log r|
has a limit atr = 0 equal to1 (see [2]), so

c0 = max
[0,1[

I0(r)K0(r)

1 + | log r| (5.2)

exists and
G(r, r, 1) ≤ c0r(1 + | log r|), r ∈ [0, 1[ .

Numerics suggest thatg is decreasing on[0, 1], so that one should havec0 = 1. In next
subsection, we give the proof of this result, which can not befound to our knowledge
in the literature, and has been communicated to the author byJ.P. Truc [20] :
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Proposition 5.2 ∀r ∈]0, 1] : I0(r)K0(r)

1− log r
≤ 1.

5.3 Proof of Proposition 5.2

The modified Bessel functionI0 can be written as

I0(r) =

+∞
∑

k=0

( r
2

4
)k

k!2
= 1 +

r2

4
+ ... (5.3)

Therefore we have

1 ≤ I0(r) ≤
+∞
∑

k=0

( r
2

4
)k

k!
= e

r
2

4

and
∀r ∈]0, 1] : 1 ≤ I0(r) ≤ e

1

4 . (5.4)

According to the expression of the modified Bessel functionK0

K0(r) = −
(

log(r/2) + γ
)

I0(r) +

+∞
∑

k=1

(

k
∑

j=1

1

j

)( r
2

4
)k

k!2
(5.5)

whereγ denotes the Euler constant, we compute that

K0(r)I0(r)− (1− log r) = δ(r)− 1 , (5.6)

whereδ(r) denotes the following function :

δ(r) = (1− I0(r)
2) log r −

(

− log 2 + γ
)

I0(r)
2 + I0(r)

+∞
∑

k=1

(

k
∑

j=1

1

j

)( r
2

4
)k

k!2
. (5.7)

Proposition 5.2 is then a straightforward consequence of the following Lemma

Lemma 5.3
∀r ∈]0, 1] : δ(r) ≤ 1.

Proof.–

The functionδ(r) splits into 3 positive parts, which we study separately .

• An upper bound for(1− I0(r)
2) log r.

From (5.4) we deduce1− I0(r)
2 ≥ 1− e

r
2

2 , and :

∀r ∈]0, 1] : 0 ≤ (1− I0(r)
2) log r ≤

(

e
r
2

2 − 1
)

(− log r) ≤ 0, 11.

13



• An upper bound for
(

− log 2 + γ
)

I0(r)
2.

A straightforward computation gives−γ+log 2 ≤ 0.12 so using that
I0(r) ≤ e

1

4 we get
(

− log 2 + γ
)

I0(r)
2 ≤ 0.16.

• An upper bound forI0(r)
+∞
∑

k=1

(

k
∑

j=1

1

j

)( r
2

4
)k

k!2
.

For k ∈ N
∗, we setsk =

k
∑

j=1

1

j
. We haves1 = 1 . For k ≥ 2,

according to the inequality

1

k
≤

∫ k

k−1

dt

t
= log k − log(k − 1).

we get that:
k

∑

j=2

1

j
≤ log k

and for any integerk , sk ≤ 1 + log k. Thus

+∞
∑

k=1

(

k
∑

j=1

1

j

)( r
2

4
)k

k!2
≤

+∞
∑

k=1

(1 + log k

k!

)( r
2

4
)k

k!
.

Noticing that, for any integerk ≥ 1

0 ≤ 1 + log k

k!
≤ 1 + log k

k
≤ 1,

we can write,∀r ∈]0, 1] :

+∞
∑

k=1

(

k
∑

j=1

1

j

)( r
2

4
)k

k!2
≤

+∞
∑

k=1

( r
2

4
)k

k!
= e

r
2

4 − 1 ≤ e
1

4 − 1.

Finally we have, for anyr ∈]0, 1]

I0(r)

+∞
∑

k=1

(

k
∑

j=1

1

j

)( r
2

4
)k

k!2
≤ e

1

4

(

e
1

4 − 1
)

≃ 0.364 .

Summing the 3 previous estimates one gets :∀r ∈]0, 1] : δ(r) ≤ 0.11 +
0.16 + 0.37 ≤ 1 .

�

The optimality of the valuec0 = 1 is due to the fact that

lim
r→0+

K0(r)I0(r)

1− ln r
= 1.
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5.4 The Green function G(r, r′, k2) of the operator T0

We now compute the diagonal element for the Green functionG(r, r′, k2) of the oper-
atorT0 defined by (3.14).G(r, r′, k2) is the solution of

(

(T0 + k2)u
)

(r) = δr′(r), u(0) = u(1) = 0 . (5.8)

We have, as previously

G(r, r, k2) = u1(r)

[

−u1(r)
u2(1)

u1(1)
+ u2(r)

]

whereu1(r) =
√
rI0(kr) andu2(r) =

√
rK0(kr) are independent solutions of the

related homogeneous equation. This leads to

G(r, r, k2) = rI0(kr)

[

−I0(kr)
K0(k)

I0(k)
+K0(kr)

]

≤ rI0(kr)K0(kr) ≤ r(1+| log(kr)|) .

References

[1] J. Avron, I. Herbst & B. Simon. Schr̈odinger operators with magnetic fields,
Duke. Math. J.45 (1978), 847-883.

[2] M. Abramovitz, I. Stegun.Handbook of mathematical functions,National Bu-
reau of Standards (1964)

[3] A.Balinski, W.Evans & R.Lewis. On the number of negative eigenvalues of
Schr̈odinger operators with an Aharonov-Bohm magnetic field,R. Soc. Lon.
Proc. Ser. A Math. Phys. Eng. Sci.457 (2001), 2481-2489.

[4] Y. Colin de Verdière.L’asymptotique de Weyl pour les bouteilles magnétiques,
Commun. Math. Phys.105 (1986), 327-335.

[5] Y. Colin de Verdière & F. Truc.Confining particles in a purely magnetic field,
Ann Inst Fourier (to appear).

[6] M. Cwickel. Weak type estimates for singular values and the number of bound
states of Schr̈odinger operators,Ann. of Math.106 (1977), 93-100.

[7] L. Erdoes & J.P. Solovej.Magnetic Lieb-Thirring inequalities with optimal de-
pendence on the field strength,Journ. Stat. Phys.116 (2004), 475-506.

[8] L. Erdoes & J.P. Solovej. Magnetic Lieb-Thirring inequalities for the 3-
dimensional Pauli operator with a strong nonhomogeneous magnetic fields,Ann.
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