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Lieb-Thirring inequalities for radial magnetic
bottles in the disk

Françoise Truc∗

May 25, 2011

Abstract

We consider a Schrödinger operatorHA with a non vanishing radial mag-
netic fieldB = dA and Dirichlet boundary conditions on the unit disk. We
assume growth conditions onB near the boundary which guarantee in particular
the compactness of the resolvent of this operator. Under some assumptions on an
additional radial potentialV the operatorHB + V has a discrete negative spec-
trum and we prove a Lieb-Thirring inequality on these negative eigenvalues. As
a consequence we get an explicit upperbound of the numberN(HA, λ) of eigen-
values ofHA less than any positive valueλ, which depends on the minimum of
B and on the integral of the square of any gauge associated toB.

1 Introduction

Let us consider a particle in a domainΩ in R
2 in the presence of amagnetic fieldB.

We define the 2-dimensional magnetic Laplacian associated to this particle as follows:
Let A a magnetic potentialassociated toB ; it means thatA is a smooth real one-

form onΩ ⊂ R
2, given byA =

∑2
j=1 ajdxj , and that themagnetic fieldB is the

two-formB = dA. We haveB(x) = b(x)dx1 ∧ dx2 with b(x) = ∂1a2(x)− ∂2a1(x) .
The magnetic connection∇ = (∇j) is the differential operator defined by

∇j =
∂

∂xj

− iaj .

The 2-dimensional magnetic Schrödinger operatorHA is defined by

HA = −
2

∑

j=1

∇2
j .

∗Institut Fourier, francoise.truc@ujf-grenoble.fr Unit´e mixte de recherche CNRS-UJF 5582, BP 74,
38402-Saint Martin d’Hères Cedex (France)
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The magnetic Dirichlet integralhA = 〈HA.|.〉 is given, foru ∈ C∞
0 (Ω), by

hA(u) =

∫

Ω

2
∑

j=1

|∇ju|2|dx| . (1.1)

From the previous definitions and the fact that the formal adjoint of ∇j is −∇j , it is
clear that the operatorHA is symmetric onC∞

0 (Ω).
In [5] we discuss the essential self-adjointness of this operator. The result in dimension
2 is the following

Theorem 1.1 Assume that∂Ω is compact and thatB(x) satisfies near∂Ω

b(x) ≥ (D(x))−2 , (1.2)

then the Schr̈odinger operatorHA is essentially self-adjoint. (D(x) denotes the dis-
tance to the boundary). This still holds true for any gaugeA′ such thatdA′ = dA = B.

We have, using Cauchy-Schwarz inequality,

|〈b(x)u, u〉| = |〈[∇1,∇2]u, u〉| ≤ ‖∇1u‖2 + ‖∇2u‖2 u ∈ C∞
o (Ω).

This gives the well-known lower bound

∀u ∈ C∞
o (Ω), hA(u) ≥

∣

∣

∣

∣

∫

Ω

b(x)|u|2|dx|
∣

∣

∣

∣

. (1.3)

In this paper, we do not use the conditions (1.2) but we assumenevertheless that
b(x) grows to infinity asx approaches the boundary. The operatorHD

A defined by
Friedrich’s extension of the quadratic formhA has a compact resolvent. We call such
an operator a magnetic bottle, by similarity with magnetic bottles in the whole space
([1], [4], [21]). We add a suitable negative potential in order to have a discrete negative
spectrum and we address the question of the existence of Lieb-Thirring inequalities
([17], [15]) in the radially symmetric case.
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2 Inequalities: the main results

We consider a magnetic fieldB = b(x)dx1 ∧ dx2 and a scalar potentialV on the unit
diskΩ = {x = (x1, x2) ∈ R

2| x2
1 + x2

2 = r2 < 1} so that

• (H1) K = infx∈Ω b(x) > 0 andb(x) → +∞ asD(x) → 0

(i.e asx approaches the boundary.)

• (H2) B is radially symmetric,

• (H3) V ∈ L1(Ω), V radial and non negative,V bounded from above .

From assumption(H1) and from inequality (1.3) we deduce that for any gaugeA as-
sociated toB, the operatorHA has a compact resolvent, and assumption(H3) entails
that the negative spectrum ofHA − V is discrete, whereHA − V denotes the operator
defined by Friedrich’s extension of the quadratic formhA−V . Using assumption(H2)
we can write any vector potential asA = A(r)dθ.
The first theorem deals with the numberN(A, V ) of negative eigenvalues of the oper-
atorHA − V . Noticing that we haveN(A, V ) = N(A′, V ) for any gaugeA′ so that
dA′ = dA = B, we will prove that

Theorem 2.1 If assumptions(H1)(H2)(H3) are verified and if moreover

b(x) ≤ (D(x))−β , β <
3

2
(2.1)

then

N(A, V ) ≤ 1√
1− α

∫

[0,1[

[(
1

α
−1)A′2(r)+V (r)]rdr+2

∫ 1

0

[

1 + | log[r
√
K]|

]

V (r)rdr

for anyα ∈]0, 1[ and any radial gaugeA′ such thatdA′ = dA = B.

The second theorem is a consequence of the first one and provides an explicit upper-
bound of the numberN(HA, λ) of the eigenvalues ofHA less than any positive value
λ :

Theorem 2.2 If assumptions(H1) and(H2) are verified and if moreover

b(x) ≤ (D(x))−β , β <
3

2

then the number of eigenvalues of the operatorHA less thanλ satisfies the following
inequality

N(A, λ) ≤ cKλ+
λ

2
√
1− α

+

√
1− α

α

∫

[0,1[

rA′2(r)dr (2.2)

with
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• cK =
3− logK

2
if K ≤ 1

and

• cK =
1 + logK

2
+

1

K
if K > 1,

for anyα ∈]0, 1[ and any radial gaugeA′ such thatdA′ = dA = B.

Remark 2.3 The minimum of the righthandside is obtained by choosing theradial

gaugeA′ so that
∫ 1

0
A′(r)rdr = 0 , and then by takingαλ =

−6I +
√
I2 + 4Iλ

λ− 2I
with

I :=
∫

[0,1[
rA′2(r)dr.

Remark 2.4 The inequality of Theorem 2.1 is a ”magnetic” version of the Cwikel-
Lieb-Rosenblum inequality [6] [16] [18]. CLR inequalitiesapply to Schr̈odinger op-
erators inRd for d ≥ 3 andA ≡ 0 and are a particular case of Lieb-Thirring inequal-
ities. In the case of dim 2 (andA 6= 0), analogues of CLR inequalities can be found in
[3] and [14] (for a Aharanov-Bohm magnetic field) and more recently in [12] (for a
large class of magnetic fields, in a weighted version). Let usemphasize that the bounds
in [12] in the radial case do not depend on the magnetic field and are obtained only
for bounded magnetic potentialsA, assumption which we do not need (example 2.5,
with 1 < β < 3/2). Moreover the constants in our results are explicit. This implies
that our theorems can not be derived from [12].
Concerning general magnetic Lieb-Thirring inequalities we refer to [10] for Lieb-
Thirring inequalities for constant magnetic fields in dim 2 and 3 which depend on the
field strength, to [7] and [8] for magnetic Lieb-Thirring inequalities related to Pauli
operators, and to [9] for links between magnetic and non magnetic Lieb-Thirring in-
equalities.

Example 2.5 Consider a magnetic fieldB as in the definition (3.1) below, and assume
b(r) ≡ 1 andβ 6= 1 . ThencK = 3

2
, the optimal gauge isA′ = Aβ(r)dθ with

Aβ =
1

1− β

[

1

(1− r)β−1
− 1

(2− β)(3− β)

]

, (2.3)

and the corresponding minimal value ofI is

Iβ =

∫ 1

0

A2
β(r)rdr =

1

(1− β)2(3− 2β)(4− 2β)
. (2.4)
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3 Proofs

3.1 Proof of Theorem 2.1

Let us introduce the polar coordinatesx = (r, θ), r ∈ R
+, θ ∈ [0, 2π[. Due to assump-

tion (2.1) the magnetic field we have to consider is of the type

B(r) =
b(r)

(1− r)β
dr ∧ dθ , with max

[0,1[
b(r) ≤ M and β <

3

2
. (3.1)

We first prove the following

Lemma 3.1 If B satisfies (3.1), then, for any radial magnetic potentialA associated
toB, there exists a constantK such thatA writes

• if β 6= 1 A = A(r)dθ =
a(r)

(1− r)β−1
dθ

with a(r) = K(1− r)β−1 + ã, max
[0,1[

ã(r) ≤ C.

• if β = 1 A = A(r)dθ = a(r) ln(1− r)dθ

with a(r) =
K

ln(1− r)
+ ã, max

[0,1[
ã(r) ≤ C.

In particular
∫

[0,1[

rA2(r)dr < ∞ .

Proof.–

Let us explain the caseβ 6= 1. The method for the caseβ = 1 is the same.
The functiona(r) satisfies the equation

(β − 1)a(r)− (1− r)a′(r) = b(r) .

This implies that

a(r) = k(r)(1− r)β−1, with k(r) =

∫ 1

r

b(t)(1− t)−βdt+K . (3.2)

From (3.1) we get
|
∫ 1

r
b(t)(1− t)−βdt| ≤ M

∫ 1

r
(1− t)−βdt ≤ M (1−r)−β+1

1−β
and the result

follows.

�

We come now to the proof of Theorem 2.1, following the method of [13]. The quadratic
form associated toHD

A − V can be rewritten as

hA,V (u) =

∫ 1

0

∫ 2π

0

[

|∂u
∂r

|2 − V (r)|u2|+ r−2

[

[
∂

∂θ
− iA(r)]u

]2
]

rdrdθ (3.3)
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for anyu ∈ C∞
0 ([0, 1[×[0, 2π[). Changing variablesr = et and denotingw(t, θ) =

u(et, θ) for t ∈]−∞, 0[ andθ ∈ [0, 2π[ we transfer the formhA,V (u) to

h̃A,V (w) =

∫ 0

−∞

∫ 2π

0

[

|∂w
∂t

|2 − Ṽ (t)|w2|+
[

[
∂

∂θ
− if(t)]w

]2
]

dtdθ (3.4)

with
Ṽ (t) = e2tV (et), f(t) = etA(et) .

By expanding a given functionw ∈ C∞
0 ([−∞, 0[×[0, 2π[) into a Fourier series we

obtain that̃hA,V (w) = ⊕l∈Zhℓ,V (wℓ) with

hℓ,V (v) =

∫ 0

−∞
|∂v
∂t

|2 +
[

(ℓ− f(t))2 − Ṽ (t)
]

|v2| dt ,

andwℓ = Πℓ(w) whereΠℓ is the projector acting as

Πℓ(w)(r, θ) =
1

2π

∫ 2π

0

eil(θ−θ′)w(r, θ′)dθ′ .

We write, for anyα ∈]0, 1[ and anyℓ ∈ Z
∗

hℓ,V (v) ≥
∫ 0

−∞
|∂v
∂t

|2 +
[

(1− 1

α
)f 2(t)− Ṽ (t) + (1− α)ℓ2

]

|v2| dt .

Let us denote byLα the operator associated via Friedrich’s extension to the quadratic
form

qα(v) =

∫ 0

−∞
|∂v
∂t

|2D2
t +

[

(1− 1

α
)f 2(t)− Ṽ (t)

]

|v2| dt .

Lα andqα depend onV but we skip the reference toV in notations for the sake of
simplicity. Since

hℓ,V ≥ qα + (1− α)ℓ2 ,

the numberN(hℓ,V ) of negative eigenvalues ofhℓ,V is less than the number of negative
eigenvalues ofLα + (1− α)ℓ2. So denoting by{−µα

k} the negative eigenvalues ofLα

and byIℓ the set{k ∈ N;−µα
k + (1− α)ℓ2 < 0} for anyℓ ∈ Z

∗, we get

N(A, V ) ≤
∑

ℓ∈Z∗

∑

k∈Iℓ

1 +N(h0,V ) .

Noticing that the sum in the righthandside is taken over the(ℓ, k) so that0 < |ℓ| ≤
1√
1−α

√
µα
k we write

N(A, V ) ≤ 2√
1− α

∑

k∈N

√

µα
k +N(h0,V ) . (3.5)
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Let us extend the functionsf andṼ toR by zero and denote respectively byf1 andṼ1

these extensions.
SinceC∞

0 ([−∞, 0[) ⊂ C∞
0 (R), the negative eigenvalues{−να

k } of the operatorLα
1

associated via Friedrich’s extension to the quadratic form

qα1 (v) =

∫ 0

−∞
|∂v
∂t

|2D2
t +

[

(1− 1

α
)f 2

1 (t)− Ṽ1(t)

]

|v2| dt

verify
∑

k∈N

√

µα
k ≤

∑

k∈N

√

να
k . (3.6)

Applying the sharp inequality of Hundertmarkt-Lieb-Thomas [11] (see Appendix) to
the operatorLα

1 we get

∑

k∈N

√

να
k ≤ 1

2

∫ +∞

−∞

[

(
1

α
− 1)f 2

1 (t) + Ṽ1(t)

]

dt

≤ 1

2

∫ 0

−∞

[

(
1

α
− 1)f 2(t) + Ṽ (t)

]

dt

≤ 1

2

∫ 1

0

[

(
1

α
− 1)A2(r) + V (r)

]

rdr . (3.7)

To conclude we need the following

Lemma 3.2 Assume thatK = infx∈Ω b(x) > 0. Then for anyε ∈]0, 1[

N(h0,V ) = N(h0,0 − V ) ≤ 1

ε

∫ 1

0

[

1 + | log(
√

(1− ε)K

ε
r)|

]

V (r)rdr , (3.8)

In particular

N(h0,V ) ≤ 2

∫ 1

0

[

1 + | log(
√
Kr)|

]

V (r)rdr . (3.9)

Proof.–

Step 1 :From (1.3) we get thathA(u) ≥ K
∫

Ω
|u|2|dx| ∀u ∈ C∞

0 (Ω),
which implies forh0,0 (returning to the variabler and consideringV ≡ 0
),

h0,0(w) =

∫ 1

0

[

|∂w
∂r

|2 + r−2A2(r)|w2|
]

rdr

≥ K

∫ 1

0

|w|2rdr ∀w ∈ C∞
o ([0, 1]) .
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We write for anyε ∈]0, 1[

N(h0,0−V ) ≤ N(εh0,0+(1−ε)K−V ) ≤ N

(

h0,0 +
(1− ε)K

ε
− V

ε

)

,

(3.10)
where we have used the fact that multiplying an operator by a positive
constant does not change the number of its negative eigenvalues.

Step 2 : We establish the following upperbound :

N(h0,0 + 1− V ) = N(h0,V + 1) ≤
∫ 1

0

[1 + | log r|]V (r)rdr . (3.11)

We have

h0,V (w) =

∫ 1

0

[

|∂w
∂r

|2 +
[

r−2A2(r)− V (r)
]

|w2|
]

rdr

≥
∫ 1

0

[

|∂w
∂r

|2 − V (r)|w2|
]

rdr ∀w ∈ C∞
o ([0, 1]) .

By the variational principle,

N(h0,V + 1) ≤ N(P0 + 1− V ), (3.12)

whereP0 is the operator generated by the closure, inL2([0, 1], rdr) of the
quadratic form

∫ 1

0

|∂w
∂r

|2rdr, w ∈ C∞
o ([0, 1]) .

Considering the mappingU : L2([0, 1], rdr) → L2([0, 1], dr) defined by
(Uf)(r) = r1/2f(r) we get that

N(P0 + 1− V ) ≤ N(T0 + 1− V ) (3.13)

where the operatorT0 = UP0U
−1 is the Sturm Liouville operator on

L2([0, 1], dr) acting on its domain by

(T0u)(r) = −u”(r)− u(r)

4r2
, u(0) = u(1) = 0 . (3.14)

The upperbound (3.11) will follow from the properties ofG(r, r, 1), the
diagonal element of the integral kernel of(T0 + 1)−1. Precisely we have

G(r, r, 1) ≤ r(1 + | log r|), r ∈ [0, 1[ . (3.15)

The proof of (3.15) is given in Appendix B. The Birman-Swinger principle
then yields

N(T0 + 1− V ) ≤
∫ 1

0

G(r, r, 1)V (r)dr ≤
∫ 1

0

[1 + | log r|]V (r)rdr .

(3.16)
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This ends the proof of (3.11), together with the inequalities (3.12) and
(3.13).

Step 3 : We mimick the previous method to get, for any strictlypositive
numberk

N(h0,0 + k2 − V ) ≤
∫ 1

0

[1 + | log(kr)|]V (r)rdr . (3.17)

Due to the Birman-Swinger principle it suffices to prove that, for any
strictly positive numberk

G(r, r, k2) ≤ r(1 + | log(kr)|), r ∈ [0, 1[ . (3.18)

This is done in Appendix C.

Step 4 :Returning to (3.10) and applying (3.17) withk2 = (1−ε)K
ε

and
V
ε

instead ofV we get, for anyε ∈]0, 1[

N(h0,0 − V ) ≤ N

(

h0,0 +
(1− ε)K

ε
− V

ε

)

(3.19)

≤ 1

ε

∫ 1

0

[

1 + | log(
√

(1− ε)K

ε
r)|

]

V (r)rdr , (3.20)

and takingε = 1
2

we obtain Lemma 3.2.

�

Theorem 2.1 follows from Lemma 3.2 together with inequalities (3.5), (3.6), and
(3.7).

3.2 Proof of Theorem 2.2

Noticing that for anyλ > 0 the constant potentialV (x) ≡ λ is in L1(Ω), and that
N(A, λ) denotes the number of eigenvalues of the o peratorHD

A less thanλ, we apply
Theorem 2.1 toV (x) ≡ λ. To get the result it suffices to compute

∫ 1

0
[1 + | log(kr)|] rdr .

We get after computation that
∫ 1

0

[1 + | log(kr)|] rdr = γk, (3.21)

with

• γk =
3− 2 log k

4
if k ≤ 1

• γk =
1 + 2 log k

4
+

1

2k2
if k > 1 .
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3.3 Proof of Remark 2.3

The choice ofA′ = A + c is obtained by taking the minimum over the constantsc of
the functionF (c) =

∫ 1

0
(A + c)2(r)rdr . To get the minimum over the values ofα we

study the sign of the expression, for anyα ∈]0, 1[, of

gλ(α) :=
λ

2
√
1− α

+

√
1− α

α
I .

A direct computation shows that the valueαλ which realizes the minimum ofgλ(α) is
the positive solution of

α2(λ− 2I) + 6αI − 4I = 0 . (3.22)

4 An eigenvalue asymptotic upperbound

From Theorem 2.2 we get easily an asymptotic estimate for therighthandside of (2.2)
whenλ tends to∞ :

Corollary 4.1 If assumptions(H1) and(H2) are satisfied and if moreover

b(x) ≤ (D(x))−β , β <
3

2

then the number of eigenvalues of the operatorHA less thanλ satisfies, asλ tends to
∞

N(A, λ) ≤ (
1

2
+ cK)λ+

√
λ
√
I +O(1) , (4.1)

where

I =

∫ 1

0

A′2(r)rdr ,

and

• cK =
3− logK

2
if K ≤ 1

and

• cK =
1 + logK

2
+

1

K
if K > 1,

This holds for any radial gaugeA′ associated toB, and the minimum of the righthand-
side is obtained by choosingA′ so that

∫ 1

0
A′(r)rdr = 0 .

Example 4.2 Assumeb(r) ≡ 1 in (3.1) andβ 6= 1. ThencK = 3
2

and the minimum is

obtained forI = Iβ =
∫ 1

0
A2

β(r)rdr, whereAβ is defined as in (2.3), so that

Iβ =
1

(1− β)2(3− 2β)(4− 2β)
. (4.2)

10



Proof.–

We define as previously, for anyα ∈]0, 1[,

gλ(α) :=
λ

2
√
1− α

+

√
1− α

α
I

and we want to determine the asymptotic behavior asλ tends to∞ of
gλ(αλ), whereαλ is the minimum ofgλ(α).
From (3.22) we compute the following asymptotics

αλ =
2
√
I√
λ

+O(
1

λ
)

√
1− αλ = 1−

√
I√
λ
+O(

1

λ
) ,

and this gives the result.
The minimal value is obtained as previously by taking the minimum over
the constantsc of the functionF (c) =

∫ 1

0
(A+ c)2(r)rdr .

�

Remark 4.3 The leading term in the estimate (4.1) is of the same order than the lead-
ing term in the Weyl formula for the Dirichlet Laplacian (corresponding to the case
A ≡ 0) in the unit disk.

5 Appendix A

We recall the sharp inequality of Hundertmarkt-Lieb-Thomas

Theorem 5.1 Let

Lv(t) = −v”(t)−W (t)v(t), W ≥ 0 W ∈ L1(R)

be defined in the sense of quadratic forms onR, and assume that the negative spectrum
ofL is discrete. Denote by{−νk, k ∈ N} the negative eigenvalues ofL. Then

∑

k∈N

√
νk ≤ 1

2

∫ +∞

−∞
W (t)dt .

11



6 Appendix B

Let us compute the diagonal element for the Green functionG(r, r′, 1) of the operator
T0 defined by (3.14).G(r, r′, 1) is the solution of

((T0 + 1)u) (r) = δr′(r), u(0) = u(1) = 0 . (6.1)

We have
G(r, r′, 1) = A1u1(r) + A2u2(r) r ≤ r′

G(r, r′, 1) = B1u1(r) +B2u2(r) r > r′ ,
whereu1(r) =

√
rI0(r) andu2(r) =

√
rK0(r) are independent solutions of the related

homogeneous equation, (I0 andK0 are the modified Bessel functions).
The coefficients depend ofr′ but we omit the indices for the sake of clarity. Due to the
boundary conditions and to the fact that the derivative (with respect tor) of G(r, r′, 1)
has the discontinuity inr′ of a Heaviside function, they satisfy :

A1u1(0) + A2u2(0) = 0 B1u1(1) +B2u2(1) = 0

B1 − A1 =
−u2(r

′)

W (r′)
B2 −A2 =

u1(r
′)

W (r′)

whereW (r′) is the value of the Wronskian ofu1 andu2 taken at the pointr′.
The first equation is always satisfied sinceu1(0) = u2(0) = 0. Let us setA2 = 0. We
haveW (r′) = u′

1(r
′)u2(r

′) − u1(r
′)u′

2(r
′) = r′Ŵ (r′) whereŴ (r′) is the Wronskian

of the modified Bessel functionsI0 andK0. As r′Ŵ (r′) = 1 (see [2]), we get after
solving the above system, and doingr = r′ :

G(r, r, 1) = u1(r)

[

−u1(r)
u2(1)

u1(1)
+ u2(r)

]

= rI0(r)

[

−I0(r)
K0(1)

I0(1)
+K0(r)

]

.

Using again the properties of the modified Bessel functions we can write

G(r, r, 1) ≤ rI0(r)K0(r)

and observe (see figure 1) that the function

g(r) =
I0(r)K0(r)

1 + | log r|

is decreasing on]0,∞[ and has a limit atr = 0 equal to1, so we get

G(r, r, 1) ≤ r(1 + | log r|), r ∈ [0, 1[ .
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Figure 1: The functiong

7 Appendix C

We now compute the diagonal element for the Green functionG(r, r′, k2) of the oper-
atorT0 defined by (3.14).G(r, r′, k2) is the solution of

(

(T0 + k2)u
)

(r) = δr′(r), u(0) = u(1) = 0 . (7.1)

We have, as previously

G(r, r, k2) = u1(r)

[

−u1(r)
u2(1)

u1(1)
+ u2(r)

]

whereu1(r) =
√
rI0(kr) andu2(r) =

√
rK0(kr) are independent solutions of the

related homogeneous equation. This leads to

G(r, r, k2) = rI0(kr)

[

−I0(kr)
K0(k)

I0(k)
+K0(kr)

]

≤ rI0(kr)K0(kr) ≤ r(1+| log(kr)|) .
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