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Lieb-Thirring inequalities for radial magnetic
bottles in the disk

Francoise Trut
May 25, 2011

Abstract

We consider a Schrodinger operatlry with a non vanishing radial mag-
netic field B = dA and Dirichlet boundary conditions on the unit disk. We
assume growth conditions d near the boundary which guarantee in particular
the compactness of the resolvent of this operator. Undees@sumptions on an
additional radial potential’ the operatotHz + V' has a discrete negative spec-
trum and we prove a Lieb-Thirring inequality on these negagigenvalues. As
a consequence we get an explicit upperbound of the nuviéf 4, \) of eigen-
values ofH 4 less than any positive value which depends on the minimum of
B and on the integral of the square of any gauge associat&d to

1 Introduction

Let us consider a particle in a domdinin R? in the presence of magnetic fields.
We define the 2-dimensional magnetic Laplacian associattdd particle as follows:

Let A amagnetic potentiahssociated td ; it means thatd is a smooth real one-
form onQ C R?, given by A = 25:1 a;dx;, and that themagnetic fieldB is the
two-form B = dA. We haveB(x) = b(z)dz; A dzy With b(z) = dyas(z) — Daay () .
The magnetic connectiovi = (V) is the differential operator defined by

0

Vj:a—l’j

—mj .

The 2-dimensional magnetic Schrodinger operaigris defined by

2
Hy=-> V3.
j=1

*Institut Fourier, francoise.truc@uijf-grenoble.fr Unitiixte de recherche CNRS-UJF 5582, BP 74,
38402-Saint Martin d’'Heres Cedex (France)




The magnetic Dirichletintegrah s = (H4.|.) is given, foru € C§°(£2), by

ha(u) = [ > |Vul?|dz] . (1.1)
0=

From the previous definitions and the fact that the formabiadjof V, is -V, it is
clear that the operatdt 4 is symmetric orC°(€2).

In [H] we discuss the essential self-adjointness of thisafpe The result in dimension
2 is the following

Theorem 1.1 Assume thadf) is compact and thaB(z) satisfies neadf?
b(z) = (D(x)) ™, (1.2)

then the Schirdinger operatorH 4 is essentially self-adjoint. [{(x) denotes the dis-
tance to the boundary). This still holds true for any gaugsuch that/A’ = dA = B.

We have, using Cauchy-Schwarz inequality,
[(b(a)u, u)| = [{[V1, Valu, u)| < [[Viul* + [[Vaul® u € C3(Q).

This gives the well-known lower bound

Yu € C(Q), halu) >

/ b(z)|ul?|dz|| . (1.3)

Q

In this paper, we do not use the conditiofis](1.2) but we assuewertheless that
b(x) grows to infinity asr approaches the boundary. The operatd{ defined by
Friedrich’s extension of the quadratic forim has a compact resolvent. We call such
an operator a magnetic bottle, by similarity with magnetttles in the whole space
([, (@1, [Z3). We add a suitable negative potential inertbo have a discrete negative
spectrum and we address the question of the existence ofTlhigbng inequalities
([L7], [L3]) in the radially symmetric case.
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2 Inequalities: the main results

We consider a magnetic field = b(x)dz; A dz, and a scalar potenti& on the unit
diskQ = {z = (z1,72) € R?| 2?3 + 25 = r? < 1} so that

e (H)) K =inf,eqb(z) > 0andb(z) - +ooasD(z) — 0
(i.e asz approaches the boundary.)

e (H,) Bisradially symmetric,
e (H3) V e L'(Q),V radial and non negativé, bounded from above .

From assumptioif/;) and from inequality[(T]3) we deduce that for any gaugas-
sociated taB, the operatot{ 4, has a compact resolvent, and assumptidp) entails
that the negative spectrum &f, — V' is discrete, wheréf, — VV denotes the operator
defined by Friedrich’s extension of the quadratic fdrg— V. Using assumptiofifs)
we can write any vector potential as= A(r)d6.

The first theorem deals with the numb€f A, V') of negative eigenvalues of the oper-
ator H4 — V. Noticing that we haveV(A,V) = N(A’,V) for any gauged’ so that
dA" = dA = B, we will prove that

Theorem 2.1 If assumption$H,)(H,)(H;) are verified and if moreover

b(x) < (D()) ", <3 @.1)
then
N(A, V) < m 01 ——1 VA (1) 4V (1)]rdr+2 /0 [1+|log[r\/E]| V(r)rdr

for anya €]0, 1] and any radial gauge!’ such thatlA’ = dA = B.

The second theorem is a consequence of the first one and escadexplicit upper-
bound of the numbeN (H 4, \) of the eigenvalues off 4 less than any positive value
A

Theorem 2.2 If assumption$H,) and (H) are verified and if moreover
3
b(z) < (D(x)) ", B<3
then the number of eigenvalues of the operdiqrless than\ satisfies the following

inequality
A \/1 -«

rA(r (2.2)
2\/1 — Oz [0,1]

N(A, )\) S CK)\+

with



3—log K

° cK:T if K <1
and
1+logK 1 .
° cK:%+? if K > 1,

for anya €]0, 1] and any radial gauge!’ such that/A’ = dA = B.

Remark 2.3 The minimum of the righthandside is obtained by choosingakel

: —61 +VI?2+ 41\ .
gaugeA’ sothatfolA’(r)rdr:O,andthen by takingy, = 0 J; 2; with

= [, rA%(r)dr.

Remark 2.4 The inequality of Theorefn 2.1 is a "magnetic” version of theikzl-
Lieb-Rosenblum inequality][6]T16]138]. CLR inequalitiegpply to Schddinger op-
erators inR< for d > 3 and A = 0 and are a particular case of Lieb-Thirring inequal-
ities. In the case of dim 2 (and # 0), analogues of CLR inequalities can be found in
[B] and [L4] (for a Aharanov-Bohm magnetic field) and moreeady in [12] (for a
large class of magnetic fields, in a weighted version). Letraphasize that the bounds
in [[Z] in the radial case do not depend on the magnetic field are obtained only
for bounded magnetic potentials, assumption which we do not need (exanfplg 2.5,
with 1 < 5 < 3/2). Moreover the constants in our results are explicit. Thipiies
that our theorems can not be derived frgm|[12].

Concerning general magnetic Lieb-Thirring inequalities vefer to [I]] for Lieb-
Thirring inequalities for constant magnetic fields in dimra&de3 which depend on the
field strength, to[[Jr'] and[[8] for magnetic Lieb-Thirring ig@alities related to Pauli
operators, and to[[9] for links between magnetic and non nedigriieb-Thirring in-
equalities.

Example 2.5 Consider a magnetic fiel® as in the definition[(3]1) below, and assume
b(r) =1ands # 1. Thenckx = 2, the optimal gauge isl’ = Ag(r)df with

1 1 1
=125 [ - m=ma=a) 23

and the corresponding minimal value bfs

1
(1-pB)2(3-28)(4—-28)

Iz = /01 A% (ryrdr = (2.4)



3 Proofs

3.1 Proof of Theorem 21
Let us introduce the polar coordinates= (r,6),r € R™,0 € [0, 2x[. Due to assump-
tion ([2.1) the magnetic field we have to consider is of the type

B(r) = %dr Adf , with n[%zﬁcb( r)<Mand f< g (3.1)

We first prove the following

Lemma 3.1 If B satisfies[(3]1), then, for any radial magnetic potentiahssociated
to B, there exists a constaif such thatA writes

oif B£1 A=A@r)do= _alr)

(1 —r)8-1
witha(r) = K(1 —7)°"! +a, I[%%}[{d(r) <C.
oif f=1 A=A(r)dd=a(r)n(l—r)dd
K
ith =———+a a(r) < C.
with a(r) (1= 1) +a, I[ré’&ﬁ(a('r) <C

In particular/ rA*(r)dr < oo .
[0,1]

Proof.—

Let us explain the case # 1. The method for the cage= 1 is the same.
The functiona(r) satisfies the equation

(8= Da(r) = (1 =r)a’(r) = b(r) .

This implies that
a(r) = k(r)(1 =)L, with k(r) = /1b(t)(1—t)—ﬂdt+K. (3.2)

From@)weget
| [ o) (1 =) Pdt] < M [1(1—t)"Pdt < MU= and the result

follows.

U
We come now to the proof of Theorgm]2.1, following the methi@§]. The quadratic
form associated té/} — V' can be rewritten as

hav(u / / [|—|2 >|u2\+r2[[%—m< ) ]QIrdrde (3.3)
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for anyu € C3°([0,1[x[0, 2x[). Changing variables = ¢' and denotingu(t, 6) =
u(e', 0) fort €] — oo, 0[ andé € [0, 27| we transfer the fornh 4 v (u) to

hay (w / / [\ V(t)|w 2\+{[%—if(t)]wr] dtdh (3.4)

with .

V(t)=e*V(e), f(t)=cAl).
By expanding a given function € Cg°([—o0,0[x[0, 27() into a Fourier series we
obtain thathA’\/(w) = @lezh47v(w4) with

)= [ 1% [ s - 7] 1,
andw, = II,(w) wherell, is the projector acting as

27
I, (w)(r, ) = — / 1O (7))
0

2

We write, for anyx €]0, 1] and anyl € Z*

hv 2 [ 15 P 0- D - T0 + - a1 .

Let us denote by, the operator associated via Friedrich’s extension to tlaeldic
form

1 .
wo)= [ 1500t [a- b - o] e
L. andq, depend on/ but we skip the reference @ in notations for the sake of
simplicity. Since
hZ,V Z Ga + (]- - a)EQ )
the numberV (k) of negative eigenvalues 6f  is less than the number of negative

eigenvalues of.,, + (1 — ). So denoting by{ —x} the negative eigenvalues bf,
and by, the set{k € N; —u% + (1 — a)¢* < 0} for any? € Z*, we get

N(A V)<Y D 1+ N(hoy) .

ez kel,

Noticing that the sum in the righthandside is taken over(thé) so that0 < |¢| <
== \/Hi; e write

N(A, V) < \/_Zfﬂv (hov) . (3.5)

keN

6



Let us extend the functionsandV to R by zero and denote respectively fyandV;
these extensions.

SinceCy°([—o0,0]) C C§°(R), the negative eigenvalugs-v;'} of the operator.{
associated via Friedrich’s extension to the quadratic form

i = [ 1o+ [0 Do - ]| v

verify
Y VRS Y A (3.6)

keN keN

Applying the sharp inequality of Hundertmarkt-Lieb-Thasr{d]] (see Appendix) to
the operator.{ we get

Svit<g [ [G-vro o]

o0

<3 [ |¢-vro+vo]w
< %/01 {(é C A 4+ V(T)} rdr | (3.7)

To conclude we need the following

Lemma 3.2 Assume thak = inf,co b(z) > 0. Then for any €]0, 1]

N(hoy) = N(hoo—V) < é/ol 1+ | log( Mrﬂ V(r)yrdr, (3.8)
In particular X
N(hoyv) < 2/ [1 + |log(\/?r)|} V(r)rdr . (3.9)
0
Proof.—

Step 1 :From[(T]3) we get thali4(u) > K [, [ul*|dz| VYu € C5°(Q2),
which implies forh ( (returning to the variable and considering” = 0

),

LT ow
hoo(w) = / {|8_|2 + r_QAQ(r)|w2|} rdr
0 r

1
> K/ lw|*rdr  Yw € C([0,1]) .
0



We write for any= €]0, 1]

l1—-e)K V
N(hoo—V) < N(ehop+(l—e)K-V) <N (h0,0 + % =

(3.10)
where we have used the fact that multiplying an operator bypsatipe
constant does not change the number of its negative eigezsial

Step 2 : We establish the following upperbound :

1
N(hoo+1—=V)=N(hov+1) < / 1+ [logr|]V(r)rdr. (3.11)
0
We have

hov(w) = /0 Daa—t:ﬁ + [7”2142(7’) — V('r’)] |w?|| rdr

> /01 [\g—l:ﬁ — V(r)|w2@ rdr Yw e C([0,1]) .

By the variational principle,
N(hoy +1) < NPy +1-V), (3.12)

wherePF, is the operator generated by the closure, 00, 1], 7dr) of the
guadratic form

L ow 9 -
/o |E‘ rdr, w e C([0,1]) .
Considering the mapping : L?([0,1],rdr) — L*([0, 1],dr) defined by
(Uf)(r) = rY/2f(r) we get that
NPy+1-V)<N(Th+1-V) (3.13)

where the operatof;, = UP,U~! is the Sturm Liouville operator on
L*([0, 1], dr) acting on its domain by

(Tou)(r) = —u"(r) — ulr) u(0) =u(l)=0. (3.14)

4r2”’

The upperbound (3.]11) will follow from the properties @fr,r, 1), the
diagonal element of the integral kernel(@f, + 1)~'. Precisely we have

G(r,r,1) <r(14|logr|), re€][0,1]. (3.15)
The proof of [3.Ip) is given in Appendix B. The Birman-Swingenciple
then yields
1 1
NTy+1-V)< / G(r,r, )V (r)dr < / 1+ |logr|] V(r)rdr .
’ ’ (3.16)



This ends the proof of (3:1L1), together with the inequait(8.12) and
(B.13).

Step 3 : We mimick the previous method to get, for any strigtigitive
numberk

N(hoo +Kk*—-V) < /0 1+ |log(kr)|] V(r)rdr . (3.17)

Due to the Birman-Swinger principle it suffices to prove tHat any
strictly positive numbet:

G(r,r, k*) < r(1+|log(kr)]), re€]0,1]. (3.18)

This is done in Appendix C.

Step 4 :Returning tq{3-1.0) and applyifg(3.17) with= =% and
Y instead ofi” we get, for any: €]0, 1]

N(hoy—V)< N <h0,0 + d-okK K) (3.19)

€

(1—-¢)K

1+ |log(

)| V(r)rdr, (3.20)

and takings = § we obtain Lemm#&3] 2.

]
Theorem[2]1 follows from Lemma 3.2 together with inequadit[3.5), [3]6), and

BD.

3.2 Proof of Theorem 23

Noticing that for any\ > 0 the constant potentidl' (z) = X is in L'(f2), and that
N(A, \) denotes the number of eigenvalues of the o per&tpriess than\, we apply
Theoren{Z]1td’(z) = A. To getthe resultit suffices to comp%é[l + | log(kr)|] rdr.
We get after computation that

1
/ 1+ |log(kr)|] rdr = v, (3.21)
0
with
—21
° ykzw if k<1
14 2logk 1 .
° Vk:%+ﬁ if k>1.



3.3 Proof of Remark 23

The choice ofd’ = A + ¢ is obtained by taking the minimum over the constanié
the functionF'(c) = fol(A + ¢)?(r)rdr . To get the minimum over the values @fwe
study the sign of the expression, for amy|0, 1[, of

(@) A . 1-— a,

) = .

g,\ 21—« «

A direct computation shows that the valug which realizes the minimum af, («) is
the positive solution of

@®?(A—2I)+6al —4I =0 . (3.22)

4 An eigenvalue asymptotic upperbound

From Theorenj 2]2 we get easily an asymptotic estimate forighéhandside of[(2]2)
when\ tends tox :

Corollary 4.1 If assumption$H,) and (H,) are satisfied and if moreover
bx) < (D()) ", <3

then the number of eigenvalues of the operdiqrless than\ satisfies, as\ tends to
oo

N(AN) < (3 + A+ VAVT +0(1) (4.1)
where .
I:/ A% (r)rdr
and :
. T
and
° cK:%+% if K > 1,

This holds for any radial gaugd’ associated td3, and the minimum of the righthand-
side is obtained by choosingf so thatfo1 A'(r)rdr=10.

Example 4.2 Assumé(r) = 1in (B.J) andg # 1. Thenck = % and the minimum is
obtained forl = I3 = fol A%(r)rdr, whereA is defined as in[(23), so that

1

= T prG 2@ —25)

(4.2)

10



Proof.—

We define as previously, for any €]0, 1],

(@) A . 1-— ozI

o) =

I 21—« o'

and we want to determine the asymptotic behaviop dends tooo of
ga(ay), wherea,, is the minimum ofg, (a).

From (3.22) we compute the following asymptotics

VI 1
CY)\—W—FO(X)
\/1—(1)\:1—%4“0(%),

and this gives the result.
The minimal value is obtained as previously by taking theimum over
the constants of the functionF'(c) = fol(A + ¢)*(r)rdr .

O

Remark 4.3 The leading term in the estimafe {4.1) is of the same order tha lead-
ing term in the Weyl formula for the Dirichlet Laplacian (cesponding to the case
A = 0) in the unit disk.

5 Appendix A
We recall the sharp inequality of Hundertmarkt-Lieb-Thema
Theorem 5.1 Let

Lo(t) = —v"(t) = W(t)w(t), W>0 W eL'(R)

be defined in the sense of quadratic form&pmnd assume that the negative spectrum
of L is discrete. Denote by—;, k € N} the negative eigenvalues bf Then

+oo

> V< % W (t)dt .

keN >

11



6 Appendix B

Let us compute the diagonal element for the Green funciipn ', 1) of the operator
T, defined by [[3.34)G(r, ', 1) is the solution of

(To + Du) (r) = 6(r), u(0)=u(l)=0. (6.1)

We have

G(r,r', 1) = Ayuy (r) + Agus(r) <7’

G(r,r',1) = Byuy(r) + Bous(r) 7 >1",
whereu; (1) = /rIo(r) anduy(r) = \/r Ko(r) are independent solutions of the related
homogeneous equatiory@nd K, are the modified Bessel functions).
The coefficients depend of but we omit the indices for the sake of clarity. Due to the
boundary conditions and to the fact that the derivativel{(wéspect to’) of G(r, 7', 1)
has the discontinuity in’ of a Heaviside function, they satisfy :

Alul(O) -+ AQUQ(O) =0 Blul(l) + BQUQ(l) =0

—uy(r") By Ay — uy (1)

W (r') W (r')

wherelV (1) is the value of the Wronskian af; andu, taken at the point’.

The first equation is always satisfied sing¢0) = u»(0) = 0. Let us setd, = 0. We
haveW (') = ), (1" Yus (') — uy (X' )ub(r') = /W (r') whereWW (i) is the Wronskian
of the modified Bessel function and K,. As W (') = 1 (see [R]), we get after
solving the above system, and doing- ' :

Bl—Alz

G(r,r 1) = uy(r) [—ul(T)ZT—Eg + UQ(T)}
= r1(r) [—10(7«)[;0((11)) + Ko(r)} .

Using again the properties of the modified Bessel functioasan write
G(r,r, 1) < rly(r)Ko(r)
and observe (see figufe 1) that the function

_ Lo(r)Ko(r)
1+ |logr|

g(r)
is decreasing of0), co| and has a limit at = 0 equal tol, so we get

G(r,r,1) <r(1+|logr|), re€l0,1].

12
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Figure 1: The functiory

7 Appendix C

We now compute the diagonal element for the Green funciiens’, k?) of the oper-
ator Ty defined by [3:14)G(r, 7', k?) is the solution of

((To + K*)u) (r) = 6,(r), u(0)=u(l)=0. (7.1)

We have, as previously

G(r,r, k) = uy(r) [—ul(r) + uQ(r)}

wherewu;(r) = /rly(kr) andus(r) = /rKy(kr) are independent solutions of the
related homogeneous equation. This leads to

G(r,r, k) = rly(kr) | —Io(kr) [[(00((:)) + Ko(k'r)} < rly(kr)Ko(kr) < r(14|log(kr)|) .
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