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Lieb-Thirring inequalities for radial magnetic

bottles in the disk

Françoise Truc∗

April 22, 2011

Abstract

We consider a Schrödinger operatorH with a magnetic field and Dirich-
let boundary conditions on the unit disk. We assume growth conditions
on the magnetic field near the boundary which guarantee compactness of
the resolvent of this operator. Under some assumptions on an additional
potential V the operator H + V has a discrete negative spectrum and we
prove a Lieb-Thirring inequality on these negative eigenvalues if moreover
the magnetic field and the potential are assumed to be radially symmetric.

1 Introduction

Let us consider a particle in a domain Ω in R
2 in the presence of a magnetic field

B. We define the 2-dimensional magnetic Laplacian associated to this particle as
follows:

Let A a magnetic potential associated to B ; it means that A is a smooth
real one-form on Ω ⊂ R

2, given by A =
∑2

j=1 ajdxj, and that the magnetic
field B is the two-form B = dA. We have B(x) = b(x)dx1 ∧ dx2 with b(x) =
∂1a2(x)−∂2a1(x) . The magnetic connection ∇ = (∇j) is the differential operator
defined by

∇j =
∂

∂xj

− iaj .

The 2-dimensional magnetic Schrödinger operator HA is defined by

HA = −
2

∑

j=1

∇2
j .
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The magnetic Dirichlet integral hA = 〈HA.|.〉 is given, for u ∈ C∞
0 (Ω), by

hA(u) =

∫

Ω

2
∑

j=1

|∇ju|2|dx| . (1.1)

From the previous definitions and the fact that the formal adjoint of ∇j is −∇j ,
it is clear that the operator HA is symmetric on C∞

0 (Ω).
In [4] we discuss the essential self-adjointness of this operator. The result in

dimension 2 is the following

Theorem 1.1 Assume that ∂Ω is compact and that B(x) satisfies near ∂Ω

b(x) ≥ (D(x))−2 , (1.2)

then the Schrödinger operator HA is essentially self-adjoint. (D(x) denotes the
distance to the boundary) .This still holds true for any gauge A′ such that dA′ =
dA = B.

We have, using Cauchy-Schwarz inequality,

|〈b(x)u, u〉| = |〈[∇1,∇2]u, u〉| ≤ ‖∇1u‖2 + ‖∇2u‖2 u ∈ C∞
o (Ω).

This gives the well-known lower bound

∀u ∈ C∞
o (Ω), hA(u) ≥

∣

∣

∣

∣

∫

Ω

b(x)|u|2|dx|
∣

∣

∣

∣

. (1.3)

In this paper, we do not use the conditions (1.2) but we assume nevertheless
that b(x) grows to infinity as x approaches the boundary. The operator HD

A

defined by Friedrich’s extension of the quadratic form hA has a compact resolvent.
We call such an operator a magnetic bottle, by similarity with magnetic bottles
in the whole space ([1], [3], [20]). We add a suitable negative potential in order to
have a discrete negative spectrum and we address the question of the existence
of Lieb-Thirring inequalities ([16], [14]) in the radially symmetric case.
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2 Inequalities: the main results

Consider a magnetic field B = b(x)dx1 ∧ dx2 on the unit disk Ω = {x =
(x1, x2) ∈ R

2| x2
1 + x2

2 = r2 < 1} so that

• (H1) b(x) > 0 ∀x ∈ Ω and b(x) → +∞ as D(x) → 0

(i.e as x approaches the boundary.)

Then we deduce from inequality (1.3) that for any gauge A associated to
B, the operator HD

A has a compact resolvent. Consider a potential V so
that

• (H2) V ∈ L1(Ω), V radial and non negative, and such that the negative
spectrum of HD

A − V is discrete (for example V bounded from above),

where HD
A − V denotes the operator defined by Friedrich’s extension of

the quadratic form hA − V . We are interested in the number N(A, V ) of
negative eigenvalues of the operator HD

A − V . Then, with the additional
assumption that

• (H3) B is radially symmetric,

we prove the following

Theorem 2.1 If assumptions (H1)(H2)(H3) are verified and if moreover

b(x) ≤ (D(x))−β , β <
3

2
(2.1)

then

N(A, V ) ≤ 1

2
√
1− α

∫

[0,1[

[(
1

α
− 1)A2(r) + V (r)]rdr

for any α ∈]0, 1[ and any radial gauge A associated to B.

Noticing that for any λ > 0 the constant potential V (x) = λ is in L1(Ω), and
that N(A, λ) denotes the number of eigenvalues of the operator HD

A less than λ,
we get the

Corollary 2.2 If assumptions (H1) and (H3) are verified and if moreover

b(x) ≤ (D(x))−β , β <
3

2
(2.2)

then the number of eigenvalues of the operator HD
A less than λ satisfies the fol-

lowing inequality

N(A, λ) ≤ λ

4
√
1− α

+

√
1− α

2α

∫

[0,1[

rA2(r)dr (2.3)

for any α ∈]0, 1[ and any radial gauge A associated to B.
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Remark 2.3 The minimum of the righthandside is obtained by choosing the ra-
dial gauge Aβ so that

∫ 1

0
Aβ(r)rdr = 0 , and then by taking αλ = −6I+

√
I2+4Iλ

λ−2I

with I :=
∫

[0,1[
rA2

β(r)dr.

Remark 2.4 The inequality of Theorem 2.1 is a ”magnetic” version of the Cwikel-
Lieb-Rosenblum inequality [5] [15] [17]. CLR inequalities apply to Schrödinger
operators in R

d for d ≥ 3 and A ≡ 0 and are a particular case of Lieb-Thirring
inequalities . In the case of dim 2 (and A 6= 0), analogues of CLR inequalities can
be found in [2] and [13] (for a Aharanov-Bohm magnetic field) and more recently
in [11] (for a large class of magnetic fields, in a weighted version). Our result
can not be derived from [11]. Lieb-Thirring inequalities for constant magnetic
fields in dim 2 and 3 are proved in [9]. In [6] and [7] magnetic Lieb-Thirring
inequalities are proved for Pauli operators. For links between magnetic and non
magnetic Lieb-Thirring inequalities see [8].

Example 2.5 Assume b(r) ≡ 1 in (3.1) and β 6= 1. Then the optimal gauge is
A = Aβ(r)dθ with

Aβ =
1

1− β

[

1

(1− r)β−1
− 2

(2− β)(3− β)

]

, (2.4)

and the corresponding minimal value of I =
∫ 1

0
A2(r)rdr is

Iβ =
P (β)

2(1− β)2(3− 2β)(2− β)2(3− β)2
, (2.5)

where
P (β) = 6− 13β + 8β2 − β3 (2.6)

is a polynomial function positive for the values of β considered in Corollary 2.2.

3 Proof of Theorem 2.1

Proof.–

Let us introduce the polar coordinates x = (r, θ), r ∈ R
+, θ ∈ [0, 2π[.

Due to assumption (2.1) the magnetic field we have to consider is of
the type

B(r) =
b(r)

(1− r)β
dr ∧ dθ , with max

[0,1[
b(r) ≤ M and β <

3

2
. (3.1)

We first prove the following
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Lemma 3.1 If A is a radial magnetic potential associated to B, then
there exists a constant K such that A writes

if β 6= 1 A = A(r)dθ =
a(r)

(1− r)β−1
dθ

with
a(r) = K(1− r)β−1 + ã, max

[0,1[
ã(r) ≤ C.

if β = 1 A = A(r)dθ = a(r) ln(1− r)dθ

with

a(r) =
K

ln(1− r)
+ ã, max

[0,1[
ã(r) ≤ C.

In particular
∫

[0,1[

rA2(r)dr < ∞ .

Proof.–

Let us explain the case β 6= 1. The method for the case
β = 1 is the same.

a satisfies the equation

(β − 1)a(r)− (1− r)a′(r) = b(r) .

This implies that

a(r) = k(r)(1−r)β−1, with k(r) =

∫ 1

r

b(t)(1−t)−βdt+K .

(3.2)
From (3.1) we get

|
∫ 1

r
b(t)(1 − t)−βdt| ≤ M

∫ 1

r
(1 − t)−βdt ≤ M

(1−r)−β+1

1−β

and the result follows.

�

We come now to the proof of Theorem 2.1, following the method
of [12].

The quadratic form associated to HD
A − V can be rewritten as

hA,V (u) =

∫ 1

0

∫ 2π

0

[

|∂u
∂r

|2 − V (r)|u2|+ r−2

[

[
∂

∂θ
− iA(r)]u

]2
]

rdrdθ

(3.3)
for

u ∈ C∞
0 ([0, 1[×[0, 2π[).
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Changing variables r = et and denoting w(t, θ) = u(et, θ) for t ∈
]−∞, 0[ and θ ∈ [0, 2π[ we transfer the form hA,V (u) to

h̃A,V (w) =

∫ 0

−∞

∫ 2π

0

[

|∂w
∂t

|2 − Ṽ (t)|w2|+
[

[
∂

∂θ
− if(t)]w

]2
]

dtdθ

(3.4)
with

Ṽ (t) = e2tV (et), f(t) = etA(et) .

By expanding a given function w ∈ C∞
0 ([−∞, 0[×[0, 2π[) into a

Fourier series we obtain that h̃A,V (w) = ⊕hℓ(wℓ) with

hℓ(v) =

∫ 0

−∞
|∂v
∂t

|2 +
[

(ℓ− f(t))2 − Ṽ (t)
]

|v2| dt ,

and wℓ = Πℓ(w) where Πℓ is the projector acting as

Πℓ(w)(r, θ) =
1

2π

∫ 2π

0

eil(θ−θ′)w(r, θ′)dθ′ .

We have, for any α ∈]0, 1[

hℓ(v) ≥
∫ 0

−∞
|∂v
∂t

|2 +
[

(1− 1

α
)f 2(t)− Ṽ (t) + (1− α)ℓ2

]

|v2| dt .

Let us denote by Lα the operator associated via Friedrich’s extension
to the quadratic form

qα(v) =

∫ 0

−∞
|∂v
∂t

|2D2
t +

[

(1− 1

α
)f 2(t)− Ṽ (t)

]

|v2| dt .

Since
hℓ ≥ qα + (1− α)ℓ2 ,

the number of negative eigenvalues of hℓ is less than the number of
negative eigenvalues of Lα + (1 − α)ℓ2. So denoting by {−µα

k} the
negative eigenvalues of Lα and by Iℓ the set {k ∈ N;−µα

k +(1−α)ℓ2 <
0} we get

N(A, V ) ≤
∑

ℓ

∑

k∈Iℓ

1 .

Noticing that the sum in the righthandside is taken over the (ℓ, k)
so that ℓ ≤ 1√

1−α

√
µα
k we write

N(A, V ) ≤ 1√
1− α

∑

k∈N

√

µα
k . (3.5)
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Let us extend the functions f and Ṽ to R by zero and denote
respectively by f1 and Ṽ1 these extensions.

Since C∞
0 ([−∞, 0[) ⊂ C∞

0 (R), the negative eigenvalues {−να
k } of

the operator Lα
1 associated via Friedrich’s extension to the quadratic

form

qα1 (v) =

∫ 0

−∞
|∂v
∂t

|2D2
t +

[

(1− 1

α
)f 2

1 (t)− Ṽ1(t)

]

|v2| dt

verify
∑

k∈N

√

µα
k ≤

∑

k∈N

√

να
k . (3.6)

Applying the sharp inequality of Hundertmarkt-Lieb-Thomas [10] (see
Appendix) to the operator Lα

1 we get

∑

k∈N

√

να
k ≤ 1

2

∫ +∞

−∞

[

(
1

α
− 1)f 2

1 (t) + Ṽ1(t)

]

dt

≤ 1

2

∫ 0

−∞

[

(
1

α
− 1)f 2(t) + Ṽ (t)

]

dt

≤ 1

2

∫ 1

0

[

(
1

α
− 1)A2(r) + V (r)

]

rdr

In view of (3.5) and (3.6) we get the result.

�

Proof of Remark 2.3

The choice of A is obtained by taking the minimum over the constants c of
the function F (c) =

∫ 1

0
(A+ c)2(r)rdr . To get the minimum over the values of α

we study the sign of the expression, for any α ∈]0, 1[, of gλ(α) := λ

2
√
1−α

+
√
1−α

α
I.

A direct computation shows that the value αλ which realizes the minimum of
gλ(α) is the positive solution of

α2(λ− 2I) + 6αI − 4I = 0 . (3.7)

4 An eigenvalue asymptotic upperbound

From Corollary 2.2 we get easily an asymptotic estimate for the righthandside of
(2.3) when λ tends to ∞ :

Corollary 4.1 If assumptions (H1) and (H3) are verified and if moreover

b(x) ≤ (D(x))−β , β <
3

2
(4.1)
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then, for any radial gauge A associated to B, the number of eigenvalues of the
operator HD

A less than λ satisfies, as λ tends to ∞

N(A, λ) ≤ λ

4
+

√
λ
√
I

2
+O(1) , (4.2)

where

I =

∫ 1

0

A2(r)rdr .

Remark: the minimum of the righthandside is obtained by choosing the gauge so
that

∫ 1

0
A(r)rdr = 0 .

Example 4.2 Assume b(r) ≡ 1 in (3.1) and β 6= 1. Then the minimum is

obtained for I = Iβ =
∫ 1

0
A2

β(r)rdr, where Aβ is defined as in (2.4), so that

Iβ =
P (β)

2(1− β)2(3− 2β)(2− β)2(3− β)2
, (4.3)

where P (β) is defined by (2.6).

Proof.–

We define as previously, for any α ∈]0, 1[,

gλ(α) :=
λ

2
√
1− α

+

√
1− α

α
I

and we want to determine the asymptotic behavior as λ tends to ∞
of gλ(αλ), where αλ is the minimum of gλ(α).

From (3.7) we compute the following asymptotics

αλ =
2
√
I√
λ

+O(
1

λ
)

√
1− αλ = 1−

√
I√
λ
+O(

1

λ
) ,

and this gives the result.
The minimal value is obtained as previously by taking the mini-

mum over the constants c of the function F (c) =
∫ 1

0
(A + c)2(r)rdr .

�

Remark 4.3 The leading term in the estimate (4.2) is also the leading term in
the Weyl formula for the Dirichlet Laplacian (corresponding to the case A = 0)
in the unit disk.
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5 Appendix

We recall the sharp inequality of H undertmarkt-Lieb-Thomas

Theorem 5.1 Let

Lv(t) = −v”(t)−W (t)v(t), W ≥ 0 W ∈ L1(R)

be defined in the sense of quadratic forms on R, and assume that the negative
spectrum of Lv(t) is discrete. Denote by {−νk, k ∈ N} the negative eigenvalues
of L. Then

∑

k∈N

√
νk ≤ 1

2

∫ +∞

−∞
W (t)dt .
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