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Eigenvalue bounds for radial magnetic bottles on
the disk

Francoise Trut
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Abstract

We consider a Schrodinger operatly with a non-vanishing radial mag-
netic field B = dA and Dirichlet boundary conditions on the unit disk. We
assume growth conditions d& near the boundary which guarantee in particular
the compactness of the resolvent of this operator. Undee smsumptions on an
additional radial potential’ the operato/? — V' has a discrete negative spec-
trum and we obtain an upper bound of the number of negatieneijues. As a
consequence we get an upper bound of the number of eiges\vafiiE; smaller
than any positive valug, which involves the minimum oB and the square of
the L2-norm of A(r)/r, where A(r) is the specific magnetic potential defined as
the flux of the magnetic field through the disk of radiusentered in the origin.

1 Introduction

Let us consider a particle in a domdinin R? in the presence of a magnetic fieli
We define the 2-dimensional magnetic Laplacian associattdd particle as follows:
Let A be a magnetic potential associatediq it means thatd is a smooth real one-
form onQ C R?, given by A = 25:1 a;dx;, and that the magnetic fiel& is the
two-form B = dA. We haveB(x) = b(z)dzy A dzy With b(z) = dyas(z) — daay () .
The magnetic connectiovi = (V) is the differential operator defined by

0

V= —1a;.

(9%—

The 2-dimensional magnetic Schrodinger operaigris defined by

2
Hy=-> V.
j=1
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The magnetic Dirichlet integrd, = (H 4.|.) is given, foru € C3°(Q2), by

ha(u) = [ > |Vul?|dz] . (1.1)
0=

From the previous definitions and the fact that the formabiadjof V; is —V;, it is
clear that the operatdt 4 is symmetric orCg°(€2).

In [5] we discuss the essential self-adjointness of thisatpe The result in dimension
2 is the following

Theorem 1.1 Assume thadf) is compact and thaB(z) satisfies neadf?

b(z) > (D(x))*, (1.2)

then the Schirdinger operatorH 4 is essentially self-adjoint. [{(x) denotes the dis-
tance to the boundary). This still holds true for any gaugsuch that/A’ = dA = B.

We have, using Cauchy-Schwarz inequality,
[(b(z)u, u)| = ([V1, VoJu, )| < [ Viul* + | Voul]*  u € C5°(Q).

This gives the well-known lower bound

Vu € C5°(Q), ha(u) > : (1.3)

| pllupias

In this paper, we do not use the conditions (1.2) but we assiewertheless thai(x)
grows to infinity as: approaches the boundary. The operat§rdefined by Friedrichs
extension of the quadratic forf, has a compact resolvent. By analogy with magnetic
bottles on the whole space (see [1, 4, 19]), such an opestatled a magnetic bottle
on the disk.

We will deal with spectral estimates for the operaféf, using a perturbative
method: introducing an additional non-negative boundediradial potential”, we
obtain an upper bound of the numb€é(f A, V') of negative eigenvalues of the operator
HY — V (Theorem 2.1) and deduce, for ahy> 0, an upper bound of the number
N(H?, \) of eigenvalues of the operatéi? smaller than\ (Theorem 2.2). Theo-
rem 2.1 can be seen as a magnetic version of the Cwikel-Lad®iiblum inequality
(see [6, 16, 18]). The CLR inequality provides a bound on thenler of negative
eigenvalues of Schrodinger operator®ihfor d > 3 (without magnetic field) and is a
particular case of Lieb-Thirring inequalities (see [15])17

Eigenvalue bounds were recently studied for magnetic Hamédns onR?, for
constant magnetic fields (see [10]), for Aharonov-Bohm netigrfields (see [3, 14])
and for a large class of magnetic fields (see [12]). Howend(,2], the total magnetic
flux ¢ = 5= [ b(z)dx has to be finite and the dependence on the magnetic field is
not explicit even in the radial case. In our result, the ttad is not necessarily finite
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(see example 2.4) and the upper bound involves explicidystijuare of the magnetic
potential.

Magnetic Lieb-Thirring inequalities were also obtained Rauli operators (see [7,
8]), and links between magnetic and non-magnetic Liebsiftgrinequalities were

discussed in [9].
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2 Main results

We consider a smooth magnetic figkdl= b(z)dx; A dxs and a scalar potentidf on
the unit disk2 = {z = (21, z2) € R?| 22 + 23 = r? < 1} so that
e (H)) K =inf,eqb(z) > 0andb(z) - +ooasD(z) — 0
(i.e asz approaches the boundary.)

e (Hy) Bisradially symmetric ( consequently we writé¢r) instead ofb(z))

e (H;) V e L'(Q),V radial and non-negativ&; bounded from above .

From assumptiorf ;) and from inequality (1.3) we deduce that for any gauge
associated td, the operatof!  has a compact resolvent, and assumptidg) entails
that the negative spectrum &f? — V' is discrete, wheré/ ¥ — V denotes the operator
defined by Friedrichs extension of the quadratic férm— V.

Using assumptiorif{,) we introduce polar coordinatés, §), (r € R*,0 € [0, 27])
and consider the following magnetic potential :

A = —a(r)sinfdz, + a(r) cosOdxy, a(r) = —/ b(t)tdt . (2.1)
0
We havedA = B and
A= A)d with A(r) = ra(r) = / b(t)tdt | (2.2)
0

A(r) is the flux of the magnetic field through the disk of radiusentered in the ori-
gin. The functiona(r) = A(r)/r is well-defined (and smooth) at the origin and it is
the amplitude of the magnetic potentiain cartesian coordinates .
The first theorem provides an upper bound of the numbet, ) of negative eigen-

values of the operatdif ¥ — V whereA is the magnetic potential defined by (2.2).
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From now on,A denotes this specific potential.
Noticing that we haveV(A', V') = N(A, V) for any gauged’ so thatiA’ = dA = B,
we will prove the following

Theorem 2.1 If assumption$H,)(H,)(H;) are verified and if moreover

b(z) < M(D(z))™, 0<p< g (2.3)

for someM > 0, then

N(A,V) < \/11__a /0 [(é—nATyHV(m]rdwz /0 |1+ Noglrv/K]|| V(r)rdr

for anya €]0, 1[.
This inequality still holds when we replace in the left-haide N (A, V) by N(A", V),
where A’ is any gauge verifyingA’ = dA = B.

The second theorem is a consequence of the first one and esanexplicit upper
bound of the numbeN(HZ% . \) of the eigenvalues of/ 7 smaller than any positive
value :

Theorem 2.2 If assumption$H,) and(H) are verified and if moreover
b(z) < M(D(@) ™, 0<§<>

for someM > 0, then the number of eigenvalues of the operdfdt smaller than\
satisfies, for anyr €]0, 1], the following inequality

N(HD ) < exed 4 — 2 ”1&_0‘/1 (AS")) rdr (2.4)
0

2v/1 — «
with
—log K
. cK:?’% if 0<K<1

2 K

Inequality (2.4) still holds when we replace in the left-dadeN (HY, \) by N(HE, \),
where A’ is any gauge verifyingA’ = dA = B.

Remark 2.3 The minimum of the right-hand side is obtained by taking

31+ V2 F4Ix
o= N— 2]




Example 2.4 Consider a magnetic fiel® as in the definition (3.2) below, and assume
b(r) = 1and = 1. Thencx = 3, the chosen gauge id(r) = [ b(t)tdt =
—In(1 — r) — r and the corresponding value ofis

T =r) 3
[= /O . dr=2(3) -5 . (2.5)

3 Proofs

3.1 Proof of Theorem 2.1

Let us introduce the polar coordinates= (r,0),r € R*,6 € [0,2n[. We have
denoted byA the following vector potential :

A= A(r)dd with A(r) =ra(r) = / b(t)tdt . (3.1)
0
Due to assumption (2.3) the magnetic field we consider isefyhe
b(r) , 3
= < . .
b(r) TSR with I{I(lfﬁ( b(r) < M and [ < 5 (3.2)

We first prove the following

Lemma3.1 If B satisfies (3.2), then we can find some constarso thatA writes
A= A(r)df = ra(r)df where

o if f<1 maxa(r)<C.
[0,1]

oif =1 a(r)=a(r)In(l—r), with maxa(r) <C.

[0,1]
oif >1 a(r) = _a) with  maxa(r) < C
(=) oar T
1 A 2
In particular/ ( (T>) rdr < oo .
0 T
Proof.—

Let us explain the case > 1. The method for the cage= 1 is the same.
From (3.2) we get

1 T 1 T s
0 < ;/ b(t)tdt < ;/ b(t)t(1 — t)Pdt < M/ (1—t)Pdat <
0 0 0
M(l — ) At
8—1
The case’ < 1 is straightforward.

and the result follows.



O
We come now to the proof of Theorem 2.1, following the methidd 8]. The quadratic
form associated té/ — V can be rewritten as

vt = [ [ [| Vo 15 A

for anyu € C5°([0,1[x[0, 2x[). Changing variables = ¢’ and denotingu(¢,0) =
u(e’, ) fort €] — oo, 0] andd € [0, 2x[ we transfer the fornk 4 v (u) to

e / / [\ VOl + i - Ol H ddy  (3.4)

V(t)=e*V(eh), f(t)=A(e).

By expanding a given function € Cg°([—o0,0[x[0, 27() into a Fourier series we
obtain thath 4 v (w) = @ezh’y \ (w;) with

rdrdd  (3.3)

with

)= [ 158 [0 r0p - 7] e

andw, = I1,(w) wherell, is the projector acting as

1 2r ,
Iy (w)(r,0) = 27?/ et~y (r, 0o’ .

We write, for anya €]0, 1] and anyl € Z*

o= [ 15p e Ja - D - v+ 0 - e

Let us denote by., the operator associated via Friedrichs extension to thdrgtia
form

1olv) = / G+ 0= Do - 7o .

L., andq, depend o/ andA but we skip the reference % and A in notations for
the sake of simplicity. Since

héA,V Z qu _'_ (1 - Oé)£2 )

the numberN (14 /) of negative eigenvalues df, |, is smaller than the number of
negative eigenvalues @f, + (1 — «)¢*. Hence denoting by—¢ } the negative eigen-
values ofL,, and by, the set{k € N;—u2 + (1 — a)f* < 0} for any ¢ € Z*, we

get
V) < ZZlJrN(thV).

ez kel,
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Noticing that the sum in the right-hand side is taken over(th&) so that0 < |¢| <
==V we write
2 — 0

keN

Let us extend the functionsandV to R by zero and denote respectively fyandV;
these extensions.

SinceC§e([—o0,0]) € Cg°(R), the negative eigenvaluds-v¢} of the operator.§
associated via Friedrichs extension to the quadratic form

i = [ %R0 - o) 1 a

o
verify

SV <Y Vi (3.6)

keN keN

Applying the sharp inequality of Hundertmarkt-Lieb-Thasfal] (see Appendix ) to
the operator.{ we get

Sty [ |G -vsw+n)a

-
<5 [ [&-vrw+vo]a

< 1/01 {(l _p A V(r)} rdr . 3.7)

-2 «Q r2

To conclude we need the following

Lemma 3.2 Assume thak( = inf,cq b(z) > 0.Then for any €]0, 1|

N(hOAy) = N(h?&o -V)< é/o 1+ |log( Mrﬂ V(r)rdr . (3.8)
In particular X
N(HY ) <2 / [1 + 1og(\/?r)\] V(r)rdr . (3.9)
0
Proof.—



Step 1 : From (1.3) we get thaba(u) > K [, |ul?|dz| Vu €
C§°(2), which implies forh! , (returning to the variable and con-
sideringV’ = 0),

o) = / G2 a2 | ra

1
> K/ lw*rdr  Yw € C§°([0,1]) .
0

We write for any= €]0, 1]

l—e)K V
N(h%o—V) < N(ehlo+(1—e) K=V) < N (hﬂw + % -2,
(3.10)

where we have used the fact that multiplying an operator bysi p
tive constant does not change the number of its negativevagjees.

Step 2 : We establish the following upper bound :

1
N(h2170+1—V) N(hAV+) /[1+|logr|]V(7’)rdr.
0

(3.11)
We have

o) = [ (1528 + 220 = Vo) ol

> /01 Daa—t:\Q — V('r’)\wﬂ rdr Yw e C§([0,1]) .

By the variational principle,
N(hy +1) < NPy +1-V), (3.12)

where P, is the operator generated by the closurel [0, 1], rdr)
of the quadratic form

/0 |— |2rdr, w € Ce([0,1]) .

Considering the mapping : L*([0,1],rdr) — L*([0,1],dr) de-
fined by (U f)(r) = r'/2f(r) we get that

N(Py+1-V)< N(Ty+1-V) (3.13)

where the operatdfy, = UP,U~! is the Sturm-Liouville operator on
L*(]0, 1], dr) acting on its domain by

(Tou)(r) = —u’(r) — u(r) u(0) =u(1)=0. (3.14)



The upper bound (3.11) will follow from the properties@fr, r, 1),
the diagonal element of the integral kernel(@f + 1)~'. Precisely
we have

G(r,r,1) <r(1+|logr|), re€]|0,1]. (3.15)

The proof of (3.15) is given in Appendix . The Birman-Schweng
principle then yields

N(Ty+1-V) < /01 G(r,r, 1)V (r)dr < /01 1+ |logr|] V(r)rdr.

(3.16)
This ends the proof of (3.11), together with the inequai(g.12)
and (3.13).

Step 3 : We mimick the previous method to get, for any striptig-
itive numberk

N(ho+ kK —V) < /O [1+ [log(kr)|] V (r)rdr . (3.17)

Due to the Birman-Schwinger principle it suffices to provatttior
any strictly positive number

G(r,r, k*) < r(1+|log(kr)]), r€]0,1]. (3.18)

This is done in Appendix .

Step 4 : Returning to (3.10) and applying (3.17) with= (=X
and¥ instead ofi” we get, for any: €]0, 1|

N(h%Yo—V) <N (h‘}w + @ — g) (3.19)
I (1-e)K
< g/o 1+ |log(y/ ————nr)|| V(r)rdr,

(3.20)
and taking: = ; we obtain Lemma 3.2.

t

Theorem 2.1 follows from Lemma 3.2 together with inequedit(3.5), (3.6), and

3.2 Proof of Theorem 2.2

Noticing that for any\ > 0 the constant potentidl' (z) = X is in L'(f2), and that
N(A, )\) denotes the number of eigenvalues of the oper&tpress tham\, we apply
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Theorem 2.1td/(x) = \. To getthe result it suffices to comp%é[l + | log(kr)|] rdr .
We get after computation that

1
/ 1+ |log(kr)|] rdr = v, (3.21)
0
with
—21
° ykzw if k<1
1+ 2logk 1 .
° ’)/k:fg+2—k2 if k>1.

3.3 Proof of Remark 2.3

To get the minimum over the values @fwe study the sign of the expression, for any
a €]0, 1], of
A 11—«
o) = + 1.
@) = 5= a
A direct computation shows that the valug which realizes the minimum af, («) is
the positive solution of

a®?(A—21)+6al —4I =0 . (3.22)

4 An asymptotic eigenvalue upper bound

From Theorem 2.2 we get easily an asymptotic estimate faigh&hand side of (2.4)
when )\ tends toxo :

Corollary 4.1 If assumption$H,) and(H,) are satisfied and if moreover

b(x) < M(D@) ™, 0<p<

for someM > 0, then the number of eigenvalues of the operdfdt smaller than\
satisfies, as\ — oo

1
N(HP ) < (5 + e )N+ VAT +0(1), (4.1)
where . )
1= / (A(T)) rdr,
0 r
and
- % if 0<K<1

10



1+log K 1 .
o [EEELL  e
Inequality (4.1) still holds when we replace in the left-Haside N (H%, \) by

N(HT ., )), whereA’ is any gauge verifyingA’ = dA = B.
Proof.—
We define as previously, for any €]0, 1],

(@) A . 1-— ozI

o) =

I 21—« o'

and we want to determine the asymptotic behavion dends toco of
ga(ay), wherea,, is the minimum ofg, («).

From (3.22) we compute the following asymptotics

VI 1
CY)\—W—FO(X)
\/1—(1)\:1—%4“0(%),

and this gives the result.

t

Remark 4.2 The leading term in the estimate (4.1) is of the same order tha lead-
ing term in the Weyl formula for the Dirichlet Laplacian (¢esponding to the case
A = 0) in the unit disk.

5 Appendix

5.1 Theinequality of Hundertmarkt-Lieb-Thomas
We recall the sharp inequality of Hundertmarkt-Lieb-ThaerfiHl ]
Theorem 5.1 Let

Lo(t) = —v"(t) = W(tw(t), W>0 W e L'(R)

be defined in the sense of quadratic form&pand assume that the negative spectrum
of L is discrete. Denote by—, k € N} the negative eigenvalues bf Then

+oo

> V< % W (t)dt .

keN -
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52 TheGreen function G(r,r’, 1) of the operator 7.

Let us compute the diagonal element for the Green funciipn ', 1) of the operator
Ty defined by (3.14)G(r, 7', 1) is the solution of

((To + Du) (r) = 6 (r),  u(0) = u(l) =0. (5.1)

We have

G(r,r', 1) = Ayuy(r) + Agug(r) r <7’

G(r,r",1) = Byuy(r) + Bous(r) 7 >1",
whereu, (r) = /rly(r) andus(r) = /7 Ky(r) are independent solutions of the related
homogeneous equatiorn,(@nd K, are the modified Bessel functions).
The coefficients depend of but we omit the indices for the sake of clarity. Due to the
boundary conditions and to the fact that the derivativel(wéspect to') of G(r, 7', 1)
has the discontinuity in’ of a Heaviside function, they satisfy :

Alul(O) -+ AQUQ(O) =0 Blul(l) + BQUQ(l) =0
—us (1) uy (1)

By — Ay =
W (r') 2T W
wherelV (1) is the value of the Wronskian af; andu, taken at the point’.
The first equation is always satisfied singg0) = uy(0) = 0. Let us setd, = 0. We
haveW (r') = u} (1) us(r') — ur (1" )us(r’) = r'W(r') wherelW (1) is the Wronskian
of the modified Bessel function and Ky. As W (r’) = 1 (see [2]), we get after
solving the above system, and doing- ' :

G(r,r,1) = uy (r) [—ul(r)

Bl—Alz

()
ul(l)

= rlo(r) [_10(7«)[20((11)) + Ko(r)} .

Using again the properties of the modified Bessel functieas (2]) we can write
G(r,r, 1) <rly(r)Ko(r) .

o)

The function LK
g<7,) _ 0(T> 0<T)
1+ |logr|
has a limit at- = 0 equal tol (see [2]), so
Iy(r) K,
Co = max M (5.2)
01 1+ |logr|
exists and
G(r,r, 1) < cor(l+|logr|), rel0,1].
Numerics suggest thatis decreasing oft), 1], so that one should havg = 1. In next
subsection, we give the proof of this result, which can nofidloed to our knowledge
in the literature, and has been communicated to the authdfbyruc [20] :
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Io(r) Ko(r) <1

Proposition 5.2 Vr €]0,1] : -
— logr

5.3 Proof of Proposition 5.2

The modified Bessel functiof can be written as

+OO (ﬁ)k 2
Io(r) = 2‘!2 =1+—+
k=0
Therefore we have
S
1< Iy(r) < 2' —eT
k=0 ’

and :
Vr€]0,1] : 1< Iy(r) <es.

According to the expression of the modified Bessel functign

wi=-{osom e SN

J

where~ denotes the Euler constant, we compute that
Ko(r)Io(r) — (1 —logr) = 6(r) —

wherej(r) denotes the following function :

5(r) = (1 — Iy(r)*) logr — ( —log2 + 7)[0(7’)2 + Io(r) +ZOO (i 1) (gzk

— N\

Proposition 5.2 is then a straightforward consequencesofafiowing Lemma

Lemmabs.3
Vr€]0,1] : o(r) < 1.

Proof.—

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

The functiond(r) splits into 3 positive parts, which we study separately .

e An upper bound fof1 — Iy(r)?) log r.
From (5.4) we deduce — Io(r)> > 1 —e7,and:

vr €]0,1] : 0 < (1 —Io(r)*)logr < (eé - 1)(—logr) <0,11.

13



e An upper bound fon( —log2 + 7) Io(r).

A straightforward computation givesy+log 2 < 0.12 so using that
Iy(r) < er we get

( “log2 + 7> Io(r)? < 0.16.
+o00 k 1 (ﬁ)k
e An upper bound foi,(r) (Z <> ;‘2 .

k=1  j=1 J

k
1
For k € N*, we sets, = Z—_. We haves, = 1. Fork > 2,
— J
J=1
according to the inequality

we get that:

and for any integek , s, < 1+ log k. Thus

+ k 2 +
= IO

2 (ZE> <2 (1 +kl;?gk) (%k;!)k'

k=1 j=1 k=1
Noticing that, for any integer > 1
- 1+ logk - 1+ logk -

0 1
- k! - k -
we can writeyr €0, 1] :
+oo k r2\k +oo r2\k
1 (I) (I) r2 1
Z(ZE> e S 2y Cer s
k=1  j=1 k=1

Finally we have, for any €]0, 1]

In(r) f (i 1) (gzk <ei (ei — 1) ~ 0.364 .

k=1 = j=1 J

Summing the 3 previous estimates one gets £]0,1] : 6(r) < 0.11 +
016 +037<1.

The optimality of the value, = 1 is due to the fact that
Ko(r)Io(r)

lim ——~ =1
r—0+ 1 —1Inr

14



5.4 TheGreen function G(r,r’, k*) of the operator T;

We now compute the diagonal element for the Green funeiiens’, k?) of the oper-
atorT, defined by (3.14)G(r,r’, k?) is the solution of

((To + k*)u) (r) = 6,(r), u(0)=u(l)=0. (5.8)
We have, as previously

Ug(l)
Ul(l)

wherewu;(r) = /rly(kr) andus(r) = /rKy(kr) are independent solutions of the
related homogeneous equation. This leads to

G(r,r, k) = uy(r) [—ul(r) + uQ(r)}

G(r,r, k) = rly(kr) —]O(k:r)[[(oo((:)) + Ko(krr)} < rly(kr)Ko(kr) < r(1+4|log(kr)]) .
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