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INTERACTING PARTICLES MODELS AND THE PIERI-TYPE

FORMULAS :

THE SYMPLECTIC CASE WITH NON EQUAL WEIGHTS

MANON DEFOSSEUX

Abstract. We have introduced in [4] a particles model with blocking and
pushing interactions which is related to a Pieri type formula for the orthog-
onal group. This model has a symplectic version presented here. It leads in
particular to the particles model with a wall defined in [7].

1. introduction

In [4] an interacting particles model have been introduced which comes to be
related to a Pieri-type formula for the orthogonal group. Particles of the model can
move to the left or to the right and are submitted to blocking and pushing inter-
actions. They are constrained to stay in the right half plane. Such a model is said
to be with a wall. One can find for instance in [1] and [7] examples of models with
a wall. In these two last references models differ only by the behavior of particles
near the wall. Actually the first one is strongly related to representations of the
orthogonal group whereas the second one involves representations of the symplectic
compact group. Following the study of these models in the same way as in [4] we
construct here an interacting particles with a wall depending on parameters. Two
particular values of the parameters lead on one hand to the model studied in [7] on
the other hand to a random matrix model of [2].

The paper is organized as follows. In the second section, definitions of the
symplectic Gelfand-Tsetlin patterns and Schur functions are recalled. In the third
one we describe the interacting particles model studied in the paper. In the fourth
section we recall some properties about tensor product of particular representations
of the symplectic compact group, which leads naturally to some Markov kernels
involved in the interacting particles model. These Markov kernels are defined in
the fifth section. Section six is devoted to a random matrix model related to the
particles model. Results of the paper are stated at section seven. We sketch the
proofs in the last section.

2. Symplectic Gelfand-Tsetlin patterns, symplectic Schur functions

For n ∈ N∗ and x, y ∈ Rn such that xn ≤ · · · ≤ x1 and yn ≤ · · · ≤ y1, we write
x � y if x and y are interlaced, i.e.

xn ≤ yn ≤ xn−1 ≤ · · · ≤ x1 ≤ y1.

When x ∈ Rn and y ∈ Rn+1 we add the relation yn+1 ≤ xn. We denote by |x| the
sum of the coordinates

∑n

i=1 xi.

Definition 2.1. Let k be a positive integer.
1
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(1) We denote by GTk the set of Gelfand-Tsetlin patterns defined by

GTk = {(x1, · · · , xk) : xi ∈ N
[ i+1

2
] and xi−1 � xi, 1 ≤ i ≤ k}.

(2) If x = (x1, . . . , xk) is a Gelfand-Tsetlin pattern, xi is called the ith line of
x for i ∈ {1, . . . , k}.

(3) For λ ∈ N[k+1

2
] the subset of Gelfand-Tsetlin patterns having a kth line equal

to λ is denoted by GTk(λ).

Usually, a Gelfand-Tsetlin pattern is represented by a triangular array as indi-
cated at figure 1 for k = 2r. For x a Gelfand-Tsetlin pattern of GTk and (qi)i≥1 a
sequence of positive real numbers one defines wk

x(q1, . . . , q[ k+1

2
]) by recursion letting

w1
x(q1) = q

|x1|
1 ,

and

w2i
x (q1, . . . , qi) = w2i−1

x (q1, . . . , qi) q
|x2i−1|−|x2i|
i ,

w2i+1
x (q1, . . . , qi, qi+1) = w2i

x (q1, . . . , qi) q
|x2i+1|−|x2i|
i+1 ,

for i ∈ N
∗.

Definition 2.2. For λ ∈ N[ k+1

2
] such that λ1 ≥ · · · ≥ λ[ k+1

2
], we denote by skλ the

symplectic Schur function defined by

skλ(q) =
∑

x∈GTk(λ)

wk
x(q),

for q = (q1, . . . , q[ k+1

2
]) ∈ R

[k+1

2
]

+ .

Notice that the cardinal of GTk(λ) is equal to s
k
λ(1), with 1 = (1, . . . , 1) ∈ R[k+1

2
].

−x2r
1 · · · −x2r

r 0 x2r
r · · · x2r

1

−x2r−1
1 · · · −x2r−1

r x2r−1
r · · · x2r−1

1

· · · · · ·

−x4
1 −x4

2 0 x4
2 x4

1

−x3
1 −x3

2 x3
2 x3

1

−x2
1 0 x2

1

−x1
1 x1

1

0

Figure 1. A Gelfand–Tsetlin pattern of GT2r

3. Interacting particles models

In this section we construct two processes evolving on the set GTk of Gelfand-
Tsetlin patterns. These processes can be viewed as interacting particles models.
For this, we associate to a Gelfand-Tsetlin pattern x = (x1, . . . , xk), a configuration
of particles on the integer lattice Z2 putting one particle labeled by (i, j) at point
(xi

j , k−i) of Z2 for i ∈ {1, . . . , k}, j ∈ {1, . . . , [ i+1
2 ]}. Several particles can be located

at the same point. In the sequel we identify each particles with its corresponding
component.
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3.1. Geometric jumps. Let q = (q1, . . . , qr) ∈ Rr
+, α ∈ R+ such that αqi ∈]0, 1[

and αq−1
i ∈]0, 1[ for i = 1, . . . , r, with r = [k+1

2 ]. Consider two independent families

(ξij(n+
1

2
))i=1,...,k,j=1,...,[ i+1

2
];n≥0, and (ξij(n))i=1,...k,j=1,...,[ i+1

2
];n≥1,

of independent geometric random variables such that

P(ξ2i−1
j (n+

1

2
) = x) = P(ξ2ij (n) = x) = (αq−1

i )x(1− αq−1
i ), x ∈ N,

and

P(ξ2i−1
j (n) = x) = P(ξ2ij (n+

1

2
) = x) = (αqi)

x(1− αqi), x ∈ N.

The evolution of the particles is given by a process (X(t))t≥0 on the set GTk

of Gelfand-Tsetlin patterns. At each time t ≥ 0, a particle labeled by (i, j) is at
point (X i

j(t), k − i) of Z2. Particles evolve as follows. At time 0 all particles are at

zero, i.e. X(0) = 0. All particles try to jump to the left at times n+ 1
2 and to the

right at times n, n ∈ N. Suppose that at time n, after all particles have jumped,
there is one particle at point (X i

j(n), k − i) of Z2, for i = 1, . . . , k, j = 1, . . . , [ i+1
2 ].

Positions of particles are updated recursively as follows.

At time n+ 1/2 : All particles try to jump to the left one after another in the
lexicographic order pushing the other particles in order to stay in the set of Gelfand-
Tsetlin patterns and being blocked by the initial configurationX(n) of the particles:

• Particle X1
1 (n) tries to move to the left being blocked by 0, i.e.

X1
1 (n+

1

2
) = max(X1

1 (n)− ξ11(n+
1

2
), 0).

• Particle X2
1 (n) tries to jump to the left. It is blocked by X1

1 (n). If it is

necessary it pushes X3
2 (n) to an intermediate position denoted by X̃3

2 (n),
i.e.

X2
1 (n+

1

2
) = max

(

X1
1 (n), X

2
1 (n)− ξ21(n+

1

2
)
)

X̃3
2 (n) = min

(

X3
2 (n), X

2
1 (n+

1

2
)
)

• Particle X3
1 (n) tries to move to the left being blocked by X2

1 (n) :

X3
1 (n+

1

2
) = max

(

X2
1 (n), X

3
1 (n)− ξ31(n+

1

2
)
)

.

Particle X̃3
2 (n) tries to move to the left being blocked by 0, i.e

X3
2 (n+

1

2
) = max(X̃3

2 (n)− ξ32(n+
1

2
), 0).

Suppose now that rows 1 through l−1 have been updated for some l > 1. Particles
X l

2(n), . . . , X
l

[ l+1

2
]
(n) of line l are pushed to intermediate positions

X̃ l
i(n) = min

(

X l
i(n), X

l−1
i−1(n+

1

2
)
)

, i ∈ {2, . . . , [
l + 1

2
]}.
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Then particles X l
1(n), X̃

l
2(n), . . . , X̃

l

[ l+1

2
]
(n) try to jump to the left being blocked as

follows by the initial position X(n) of the particles. For i = 1, . . . , [ l+1
2 ],

X l
i(n+

1

2
) = max

(

X l−1
i (n), X̃ l

i(n)− ξli(n+
1

2
)
)

,

with the convention that X l−1
l+1

2

(n) = 0 when l is odd.

At time n+ 1 : All particles try to jump to the right one after another in the
lexicographic order pushing particles in order to stay in the set of Gelfand-Tsetlin
patterns and being blocked by the initial configuration X(n + 1

2 ) of the particles.
The first three lines are updated as follows.

• Particle X1
1 (n+

1
2 ) moves to the right pushing X2

1 (n+
1
2 ) to an intermediate

position X̃2
1 (n+ 1

2 ) :

X1
1 (n+ 1) = X1

1 (n+
1

2
) + ξ11(n+ 1)

X̃2
1 (n+

1

2
) = max

(

X2
1 (n+

1

2
), X1

1 (n+ 1)
)

• Particle X̃2
1 (n+

1
2 ) jumps to the right pushing X3

1 (n+
1
2 ) to an intermediate

position X̃3
1 (n+ 1

2 ), i.e.

X2
1 (n+ 1) = X̃2

1 (n+
1

2
) + ξ21(n+ 1)

X̃3
1 (n+

1

2
) = max

(

X3
1 (n+

1

2
), X2

1 (n+ 1)
)

• Particle X3
2 (n+ 1

2 ) tries to move to the right being blocked by X2
1 (n+ 1

2 ).

Particle X̃3
1 (n+ 1

2 ) moves to the right. That is

X3
2 (n+ 1) = max(X3

2 (n+
1

2
) + ξ32(n+ 1))

∣

∣, X2
1 (n+

1

2
))

X3
1 (n+ 1) = X̃3

1 (n+
1

2
) + ξ31(n+ 1)

Suppose rows 1 through l− 1 have been updated for some l > 1. Then particles of
line l are pushed to intermediate positions

X̃ l
i(n+

1

2
) = max

(

X l−1
i (n+ 1), X l

i(n+
1

2
)
)

, i ∈ {1, . . . , [
l + 1

2
]},

with the convention X l−1
l+1

2

(n + 1) = 0 when l is odd. Then particles X̃ l
1(n +

1
2 ), . . . , X̃

l

[ l+1

2
]
(n + 1

2 ) try to jump to the right being blocked by the initial posi-

tion of the particles as follows. For i = 1, . . . , [ l+1
2 ],

X l
i(n+ 1) = min

(

X l−1
i−1(n+

1

2
), X̃ l

i(n+
1

2
) + ξli(n+ 1)

)

.

3.2. Exponential waiting times. The interacting particles model described now
has been introduced in [7]. In this model particles evolve on Z2 and jump on their
own volition by one rightwards or leftwards after exponentially distributed waiting
times. The evolution of the particles is described by a random process (Y (t))t≥0 on
GTk. As in the previous model, at time t ≥ 0 there is one particle labeled by (i, j)
at point (Y i

j (t), k−i) of the integer lattice, for i = 1, . . . , k, j = 1, . . . , [ i+1
2 ]. Particle

labeled by (2i, j) tries to jump to the left by one after exponentially distributed
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waiting time with mean qi and to the right by one after exponentially distributed
waiting time with mean q−1

i . Particle labeled by (2i− 1, j) tries to jump to the left

by one after exponentially distributed waiting time with mean q−1
i and to the right

by one after exponentially distributed waiting time with mean qi. Waiting times
are all independent. When a particle tries to jump, all particles are pushed and
blocked according to the same rules as previously. That is when particle labeled by
(i, j) wants to jump to the right at time t ≥ 0 then

(1) if i, j ≥ 2 and Y i
j (t

−) = Y i−1
j−1 (t

−) then particles don’t move and Y (t) =

Y (t−).
(2) else particles (i, j), (i+1, j), . . . , (i+ l, j) jump to the right by one for l the

largest integer such that Y i+l
j (t−) = Y i

j (t
−) i.e.

Y i
j (t) = Y i

j (t
−) + 1, . . . , Y i+l

j (t) = Y i+l
j (t−) + 1.

When particle labeled by (i, j) wants to jump to the left at time t ≥ 0 then

(1) if i is odd, j = (i + 1)/2 and Y i
j (t

−) = 0 then particle labeled by (i, j)
doesn’t move.

(2) if i is odd, j = (i+ 1)/2 and Y i
j (t

−) ≥ 1 then Y i
j (t) = X i

j(t
−)− 1.

(3) if i is even or j 6= (i + 1)/2, and Y i
j (t

−) = Y i−1
j (t−) then particles don’t

move.
(4) if i is even or j 6= (i+1)/2, and Y i

j (t
−) > Y i−1

j (t−) then particles (i, j), (i+

1, j + 1), . . . , (i + l, j + l) jump to the left by one for l the largest integer

such that Y i+l
j+l (t

−) = Y i
j (t

−). Thus

Y i
j (t) = Y i

j (t
−)− 1, . . . , Y i+l

j+l (t) = Y i+l
j+l (t

−)− 1.

Actually, process (Y (t), t ≥ 0) is obtained letting α goes to zero in the previous
model. More precisely we get the following proposition.

Proposition 3.1. The process (X([α−1t]), t ≥ 0) converges in distribution towards
the process (Y (t), t ≥ 0) as α goes to zero.

Proof. Proposition is obtained replacing q by α in lemma 8.9 of [4]. �

4. A Pieri type formula for the symplectic group

Let r be a positive integer. One recalls some usual properties of the finite dimen-
sional representations of the compact symplectic group Sp2r (see for instance [5]
for more details). The set of finite dimensional representations of Sp2r is indexed
by the set

W2r = {λ ∈ R
r : λr ∈ N, λi − λi+1 ∈ N, i = 1, . . . , r − 1}.

For λ ∈ W2r, using standard notations, we denote by Vλ the so called irreducible
representation with highest weight λ of Sp2r.

Let m be an integer and λ an element of W2r. Consider the irreducible rep-
resentations Vλ and Vγm

of Sp2r, with γm = (m, 0, · · · , 0). The decomposition of
the tensor product Vλ ⊗ Vγm

into irreducible components is given by a Pieri-type
formula for the symplectic group. It has been recalled in [2]. We have

Vλ ⊗ Vγm
= ⊕βMλ,γm

(β)Vβ ,(1)
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where the direct sum is over all β ∈ W2r such that there exists c ∈ W2r which
satisfies







c � λ, c � β

∑r

i=1(λi − ci + βi − ci) = m.

In addition, the multiplicity Mλ,γm
(β) of the irreducible representation with highest

weight β is the number of c ∈ W2r satisfying these relations.

5. Markov kernels

Since for λ ∈ W2r the Schur function s2rλ is the character of the irreducible
representation Vλ, decomposition (1) implies

s2rλ (q)s2rγm
(q) =

∑

β∈W2r

Mλ,γm
(β)s2rβ (q).

Thus one defines a family (µm)m≥0 of Markov kernels on W2r letting

µm(λ, β) =
s2rβ (q)

s2rλ (q)s2rγm
(q)

Mλ,γm
(β),

for λ, β ∈ W2r and m ≥ 0. Let ξ1, . . . , ξd be independent geometric random vari-
ables with respective parameters αq1, . . . , αq2r. Consider a random variable T on
N defined by

T =

d
∑

i=1

ξi.

Lemma 5.1. The law of T is a measure ν on N defined by

ν(m) = αma(q)sdγm
(q), m ∈ N,

whrere

a(q) =

r
∏

i=1

(1− αqi)(1 − αq−1
i ).

Proof. Lemma follows from straightforward computations. �

Lemma 5.1 implies in particular that the measure ν is a probability measure.
Thus one defines a Markov kernel P2r on W2r letting

P2r(λ, β) =

+∞
∑

m=0

µm(λ, β)ν(m),

for λ, β ∈ W2r.

Proposition 5.2. For λ, β ∈ W2r,

P2r(λ, β) =
∑

c∈Wr:c�λ,β

a(q)
sdβ(q)

sdλ(q)
α
∑

r

i=1
(λi+βi−2ci)(2)

Proof. Proposition follows immediately from the tensor product rules recalled for
the decomposition (1). �
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We let W2r−1 = W2r. For c0, λ, c, β ∈ Wk, we let

Sk((c0, λ), (c, β)) = a(q)
skβ(q)

skλ(q)
α
∑

r

i=1
(λi+βi−2ci)1c�β,(3)

when k = 2r and

Sk((c0, λ), (c, β)) = ã(q)
skβ(q)

skλ(q)
α
∑

r

i=1
(λi+βi−2ci)((1 − αq−1

r )1cr>0 + 1cr=0)1z′�y′ ,

(4)

when k = 2r − 1, with

ã(q) = (1− αqr)
r−1
∏

i=1

(1 − αqi)(1− αq−1
i ).

Notice that proposition 5.2 ensures that S2r defines a Markov kernel on W2r×W2r.
There isn’t such an argue for S2r−1. Nevertheless straightforwards computations
show that it is also a Markov kernel. Anyway as Λk and Qk defined in section 8 are
Markov kernels, proposition 8.1 ensures that Sk is a Markov kernel in both the odd
and the even cases. Thus one defines also a Markov kernel P2r−1 on W2r−1 letting

P2r−1(λ, β) =
∑

c∈Wr:c�λ,β

ã(q)
sdβ(q)

sdλ(q)
α
∑

r

i=1
(λi+βi−2ci)((1 − αq−1

r )1cr>0 + 1cr=0).

(5)

6. Random matrices

We denote by H the set of quaternions. For us, a quaternion is just a 2 × 2
matrix Z with complex entries which can be written as

Z =

(

a b
−b̄ ā

)

,

where a, b ∈ C. Its conjugate Z∗ is the usual adjoint of the complex matrix Z. Let
us denote by Mr,m the real vector space of r ×m matrices with entries in H and
by Pr the set of r × r Hermitian matrices with entries in iH. Since a matrix in Pr

is a 2r× 2r Hermitian complex matrix, it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2r.
Moreover λ2r−i+1 = −λi, for i = 1, · · · , 2r. We put on Mr,m the Euclidean
structure defined by the scalar product,

〈M,N〉 = tr(MN∗), M,N ∈ Mr,m.

Let Cr be the subset of Rr defined by

Cr = {x ∈ R
r : x1 > · · · > xr > 0}.

Theorem 4.5 and proposition 4.8 of [2] imply the following proposition.

Proposition 6.1. Let r be a positive integer and (M(n), n ≥ 0), be a discrete
process on Pr defined by

M(n) =
n
∑

l=1

Yl

(

1 0
0 −1

)

Y ∗
l ,

where the Yl’s are independent standard Gaussian variables in Mr,1. For n ∈ N,
let Λ1(n), · · · ,Λr(n) be the r largest eigenvalue of M(n) such that

Λ1(n) ≥ · · · ≥ Λr(n).
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Then the process (Λ(n), n ≥ 0), is a Markovian process with a transition densities
pr defined by

pr(x, y) =
dr(y)

dr(x)
I(x, y), x, y ∈ Cr,

where

I(x, y) =

∫

R
r

+

1{x,y≻z}e
−

∑
r

i=1
(xi+yi−2zi) dz,

and

dr(x) =
∏

1≤i<j≤r

(x2
i − x2

j )

r
∏

i=1

xi, x, y ∈ Cr.

7. results

Theorem 7.1. The process (Zk(n), n ≥ 0) with Zk(n) = (Xk(n − 1
2 ), X

k(n)),
n ∈ N, is a Markov process on Wk ×Wk with transition kernel Sk.

If Pk is the Markov kernel defined in (2) and (5) then theorem 7.1 implies im-
mediately the following theorem which is our main result.

Theorem 7.2. The process (Xk(n))n≥0 is a Markov process on Wk with transition
kernel Pk.

Let us notice that convergence stated in proposition 3.1, theorem 7.1 and lemma
of [4] lead to theorem 2.3 of [7]. If (Λ(n), n ≥ 0) is the process of eigenvalues
considered at proposition 6.1 then the following corollary holds.

Corollary 7.3. Letting qi = 1 for i = 1, . . . , r, the process ((1 − α)X2r(n), n ≥ 1)
converges in distribution towards the process of eigenvalues (Λ(n), n ≥ 1) as α goes
to one.

Proof. The Weyl dimension formula (see Knapp [5], Thm V.5.84) for the symplectic
groups gives

s2rλ (1) =
∏

1≤i<j≤r

(λi − λj + j − i)(λi + λj + 2n+ 2− j − i)

(j − i)(2n+ 2− j − i)

r
∏

i=1

λi + n+ 1− i

n+ 1− i
.

Thus corollary follows immediately from theorem 7.2 and proposition 6.1. �

8. proofs

Proof of theorem 7.1 rests on the same ingredients as the proof of proposition
8.8 of [4]. It follows from an intertwining property stated at proposition 8.1 and an
application of a Pitman and Rogers criterion established in [6]. Computations are
also quite similar and left to the reader. For λ ∈ Wk we consider the measure Mλ

on GTk(λ) defined by

Mλ =
∑

x∈GTk(λ)

wk(x)

skλ(q)
δx,

and the measure mλ defined as the image of the measure Mλ by the map x ∈
GTk(λ) 7→ xk−1 ∈ Wk−1, i.e

mλ =
∑

β∈Wk−1:β�λ

q|β|−|λ|
r

sk−1
β (q)

skλ(q)
δβ ,
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when k = 2r, and

mλ =
∑

β∈Wk−1:β�λ

q|λ|−|β|
r

sk−1
β (q̃)

skλ(q)
δβ ,

when k = 2r − 1, with q̃ = (q1, . . . , qr−1). One defines a kernel Λk form Wk ×Wk

to Wk−1 ×Wk ×Wk letting

Λk((c, λ), (β, c
′, λ′)) = mλ(β)1c�λ1c=c′,λ=λ′ ,

for c, λ, c′, λ′ ∈ Wk, β ∈ Wk−1. Theorem 7.1 is proved by recursion on k. Suppose
that it is true for an integer k− 1. Let us denote by Qk the transition kernel of the
Markovian process

(Xk−1(n), Zk(n), n ≥ 0).

These Markov kernels satisfy the following intertwining property, which implies,
using the Rogers and Pitman criterion that theorem is true for the integer k (see
section 8 of [4] for more details).

Proposition 8.1.

ΛkQk = SkΛk

Proof. Proposition follows from straightforward computations using identities of
lemma 8.3 of [4]. �
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