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FINITE VOLUME AND PSEUDO-SPECTRAL SCHEMES FOR THE

FULLY NONLINEAR 1D SERRE EQUATIONS

DENYS DUTYKH∗, DIDIER CLAMOND, PAUL MILEWSKI, AND DIMITRIOS MITSOTAKIS

Abstract. After we derive the Serre system of equations of water wave theory from a

generalized variational principle, we present some of its structural properties. We also pro-

pose a robust and accurate finite volume scheme to solve these equations in one horizontal

dimension. The numerical discretization is validated by comparisons with analytical, ex-

perimental data or other numerical solutions obtained by a highly accurate pseudo-spectral

method.
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1. Introduction

The full water wave problem consisting of the Euler equations with a free surface still
is a very difficult to study theoretically and even numerically. Consequently, water wave
theory has always been developed through the derivation, analysis and comprehension of
various approximate models (see the historical review of Craik [24] for more information).
For this reason, a plethora of approximate models have been derived under various physical
assumptions. In this family, the Serre equations have a particular place and they are the
subject of the present study. The Serre equations can be derived from the Euler equations,
contrary to Boussinesq systems or the shallow water system, without the small amplitude
or the hydrostatic assumptions respectively.

The Serre equations are named after François Serre, an engineer at École Nationale
des Ponts et Chaussées, who derived this model for the first time in 1953 in his prominent
paper entitled “Contribution à l’étude des écoulements permanents et variables dans les
canaux” (see [59]). Later, these equations were independently rediscovered by Su and
Gardner [64] and by Green, Laws and Naghdi [38]. The extension of Serre equations
for general uneven bathymetries was derived by Seabra-Santos et al. [58]. In the Soviet
literature these equations were known as the Zheleznyak-Pelinovsky model [75]. For some
generalizations and new results we refer to recent studies by Barthélémy [7], Dias &
Milewski [25] and Carter & Cienfuegos [12].

A variety of numerical methods have been applied to discretize dispersive wave models
and, more specifically, the Serre equations. A pseudo-spectral method was applied in
[25], an implicit finite difference scheme in [53, 7] and a compact higher-order scheme in
[16, 17]. Some Galerkin and Finite Element type methods have been successfully applied
to Boussinesq-type equations [27, 54, 4, 3]. A finite difference discretization based on an
integral formulation was proposed by Bona & Chen [10].

Recently, efficient high-order explicit or implicit-explicit finite volume schemes for dis-
persive wave equations have been developed [15, 33, 33]. The robustness of the proposed
numerical schemes also allowed simulating the run-up of long waves on a beach with high
accuracy [33]. The present study is a further extension of the finite volume method to
the practically important case of the Serre equations. We develop also a pseudo-spectral
Fourier-type method to validate the proposed finite volume scheme. In all cases where the
spectral method is applicable, it outperforms the finite volumes. However, the former is
applicable only to smooth solutions in periodic domains, while the area of applicability of
the latter is much broader including dispersive shocks (or undular bores) [34], non-periodic
domains, etc.

The present paper is organized as follows. In Section 2 we provide a derivation of the
Serre equations from a relaxed Lagrangian principle and discuss some structural properties
of the governing equations. The rationale on the employed finite volume scheme are given
in Section 3. A very accurate pseudo-spectral method for the numerical solution of the
Serre equations is presented in Section 4. In Section 5, we present convergence tests and
numerical experiments validating the model and the numerical schemes. Finally, Section
6 contains the main conclusions.
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2. Mathematical model

Consider an ideal incompressible fluid of constant density ρ. The vertical projection of
the fluid domain Ω is a subset of R2. The horizontal independent variables are denoted
by x = (x1, x2) and the upward vertical one by y. The origin of the Cartesian coordinate
system is chosen such that the surface y = 0 corresponds to the still water level. The fluid
is bounded below by an impermeable bottom at y = −d and above by the free surface
located at y = η(x, t). We assume that the total depth h(x, t) ≡ d + η(x, t) remains
positive h(x, t) > h0 > 0 at all times t. The sketch of the physical domain is shown in
Figure 1.

Remark 1. We make the classical assumption that the free surface is a graph y = η(x, t)
of a single-valued function. This means in practice that we exclude some interesting phe-
nomena, (e.g., wave breaking) which are out of the scope of this modeling paradigm.

Assuming that the flow is incompressible and irrotational, the governing equations of
the classical water wave problem are the following [44, 63, 49, 71]

∇
2φ + ∂ 2

y φ = 0 − d(x, t) 6 y 6 η(x, t), (2.1)

∂tη + (∇φ) · (∇η) − ∂y φ = 0 y = η(x, t), (2.2)

∂tφ + 1
2
|∇φ|2 + 1

2
(∂yφ)

2 + g η = 0 y = η(x, t), (2.3)

dt + (∇d) · (∇φ) + ∂y φ = 0 y = −d(x, t), (2.4)

with φ being the velocity potential (by definition, the irrotational velocity field (u, v) =
(∇φ, ∂yφ), g the acceleration due to the gravity force and ∇ = (∂x1

, ∂x2
) denotes the

gradient operator in horizontal Cartesian coordinates and |∇φ|2 ≡ (∇φ) · (∇φ).
The incompressibility condition leads to the Laplace equation for φ. The main difficulty

of the water wave problem lies on the nonlinear free surface boundary conditions and
that the free surface shape is unknown. Equations (2.2) and (2.4) express the free-surface
kinematic condition and bottom impermeability respectively, while the dynamic condition
(2.3) expresses the free surface isobarity.

The water wave problem possesses several variational structures [55, 70, 47, 73, 11]. In
the present study, we will focus mainly on the Lagrangian variational formalism but not
exclusively. The surface gravity wave equations (2.1)–(2.4) can be derived by minimizing
the following functional proposed by Luke [47]:

L =

ˆ t2

t1

ˆ

Ω

L ρ d2x dt, L = −
ˆ η

−d

[
g y + ∂t φ + 1

2
(∇φ)2 + 1

2
(∂y φ)

2
]
dy. (2.5)

In a recent study, Clamond and Dutykh [20] proposed using Luke’s Lagrangian (2.5) in
the following relaxed form

L = (ηt + µ̃ · ∇η − ν̃) φ̃ + (dt + µ̌ · ∇d+ ν̌) φ̌ − 1
2
g η2

+

ˆ η

−d

[
µ · u− 1

2
u2 + νv − 1

2
v2 + (∇ · µ+ νy)φ

]
dy, (2.6)
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Figure 1. Sketch of the physical domain.

where {u, v,µ, ν} are the horizontal, vertical velocities and associated Lagrange multipliers,
respectively. The additional variables {µ, ν} (Lagrange multipliers) are called pseudo-
velocities. The ‘tildes’ and ‘wedges’ denote, respectively, a quantity computed at the free
surface y = η(x, t) and at the bottom y = −d(x, t). We shall also denote below with ‘bars’
the quantities averaged over the water depth.

While the original Lagrangian (2.5) incorporates only two variables (η and φ), the relaxed
Lagrangian density (2.6) involves six variables {η, φ,u, v,µ, ν}. These additional degrees
of freedom provide us with more flexibility in constructing various approximations. For
more details, explanations and examples we refer to [20].

2.1. Derivation of the Serre equations

Now, we illustrate the practical use of the variational principle (2.6) on an example
borrowed from [20]. First of all, we choose a simple shallow water ansatz, which is a zeroth-
order polynomial in y for φ and for u, and a first-order one for v, i.e., we approximate
flows that are nearly uniform along the vertical direction

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ (y + d) (η + d)−1 ṽ(x, t). (2.7)

We have also to introduce suitable ansatz for the Lagrange multiplier µ and ν

µ ≈ µ̄(x, t), ν ≈ (y + d) (η + d)−1 ν̃(x, t).

In the remainder of this paper, we will assume for simplicity the bottom to be flat d(x, t) =
d = Cst (the application of this method to uneven bottoms can be found in [30, 31], for
example). With this ansatz the Lagrangian density (2.6) becomes

L = (ηt + µ̄ · ∇η) φ̄ − 1
2
g η2

+ (η + d)
[
µ̄ · ū − 1

2
ū2 + 1

3
ν̃ ṽ − 1

6
ṽ2 + φ̄∇ · µ̄

]
. (2.8)

Finally, we impose a constraint of the free surface impermeability, i.e.

ν̃ = ηt + µ̄ · ∇η.
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After substituting the last relation into the Lagrangian density (2.8), the Euler–Lagrange
equations and some algebra lead to the following equations:

ht + ∇ · [ h ū ] = 0, (2.9)

ūt + 1
2
∇|ū|2 + g∇h + 1

3
h−1

∇[ h2 γ̃ ] = (ū · ∇h)∇(h∇ · ū)

− [ ū · ∇(h∇ · ū) ]∇h, (2.10)

where we eliminated φ̄, µ̄ and ṽ and where

γ̃ ≡ ṽt + ū · ∇ṽ = h
{
(∇ · ū)2 − ∇ · ūt − ū · ∇ [∇ · ū ]

}
, (2.11)

is the fluid vertical acceleration at the free surface. The vertical velocity at the free surface
ṽ can be expressed in terms of other variables as well, i.e.,

ṽ =
ηt + (∇φ̄) · (∇η)

1 + 1
3
|∇η|2 .

In two dimensions (one horizontal dimension), the sum of two terms on the right hand
side of (2.10) vanish and the system (2.9), (2.10) reduces to the classical Serre equations
[59].

Remark 2. In [20] it is explained why equations (2.9), (2.10) cannot be obtained from
the classical Luke’s Lagrangian. One of the main reasons is that the horizontal velocity
ū does not derive from the potential φ̄ using a simple gradient operation. Thus, a relaxed
form of the Lagrangian density (2.6) is necessary for the variational derivation of the Serre
equations (2.9), (2.10) (see also [42] & [50]).

Remark 3. In some applications in coastal engineering it is required to estimate the loading
exerted by water waves onto vertical structures [22]. The pressure can be computed in the
framework of the Serre equations as well. For the first time these quantities were computed
in the pioneering paper by M. Zheleznyak (1985) [74]. Here for simplicity we provide the
expressions in two space dimensions which were derived in [74]. The pressure distribution
inside the fluid column being given by

P(x, y, t)

ρgd
=

η − y

d
+

1

2

[(
h

d

)2

−
(

1 +
y

d

)2
]

γ̃ d

g h
,

one can compute the force F exerted on a vertical wall:

F(x, t)

ρgd2
=

ˆ η

−d

P

ρgd2
dy =

(
1

2
+

γ̃

3 g

)(
h

d

)2

.

Finally, the tilting moment M relative to the sea bed is given by the following formula:

M(x, t)

ρgd3
=

ˆ η

−d

P

ρgd3
(y + d) dy =

(
1

6
+

γ̃

8 g

)(
h

d

)3

.
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2.1.1. Generalized Serre equations

A further generalization of the Serre equations can be obtained if we modify slightly the
shallow water ansatz (2.7) following again the ideas from [20]:

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈
[
y + d

η + d

]λ

ṽ(x, t).

In the following we consider for simplicity the two-dimensional case and put µ = u and
ν = v together with the constraint ṽ = ηt + ũηx (free surface impermeability). Thus, the
Lagrangian density (2.6) becomes

L = (ht + [ h ū ]x) φ̃ − 1
2
g η2 + 1

2
h ū2 + 1

2
β h ( ηt + ū ηx )

2 , (2.12)

where β = (2λ + 1)−1. After some algebra, the Euler–Lagrange equations lead to the
following equations

ht + [ h ū ]x = 0, (2.13)

ūt + ū ūx + g hx + β h−1 [ h2 γ̃ ]x = 0, (2.14)

where γ̃ is defined as above (2.11). If β = 1
3
(or, equivalently, λ = 1) the classical Serre

equations (2.9), (2.10) are recovered.
Using equations (2.13) and (2.14) one can show that the following relations hold

[ h ū ]t +
[
h ū2 + 1

2
g h2 + β h2 γ̃

]

x
= 0,

[ ū − β h−1(h3ūx)x ]t +
[

1
2
ū2 + g h − 1

2
h2 ū2x − β ūh−1 (h3ūx)x

]

x
= 0,

[ h ū− β (h3ūx)x ]t +
[
h ū2 + 1

2
g h2 − 2 β h3 ū2x − β h3 ū ūxx − h2 hx ū ūx

]

x
= 0, (2.15)

[
1
2
h ū2 + 1

2
β h3 ū2x + 1

2
g h2

]

t
+

[ (
1
2
ū2 + 1

2
β h2 ū2x + g h + β h γ̃

)
h ū

]

x
= 0.

Physically, these relations represent conservations of the momentum, quantity q̄ = ū −
β h−1(h3ūx)x, its flux q̃ := h ū − β (h3ūx)x and the total energy, respectively. Moreover,
the Serre equations are invariant under the Galilean transformation. This property is
naturally inherited from the full water wave problem since our ansatz does not destroy this
symmetry [8] and the derivation is made according to variational principles.

Equations (2.13)–(2.14) admit a (2π/k)-periodic cnoidal traveling wave solution

ū =
c η

d+ η
, (2.16)

η = a
dn2

(
1
2
κ(x− ct)|m

)
− E/K

1−E/K
= a − H sn2

(
1
2
κ(x− ct)|m

)
, (2.17)

where dn and sn are the Jacobian elliptic functions with parameter m (0 6 m 6 1), and
where K = K(m) and E = E(m) are the complete elliptic integrals of the first and second
kind, respectively [1]. The wave parameters are given by the relations

k =
π κ

2K
, H =

maK

K −E
, (κd)2 =

g H

mβ c2
, (2.18)

m =
g H (d+ a) (d+ a−H)

g (d+ a)2 (d+ a−H) − d2 c2
. (2.19)
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Figure 2. Two exact solutions to the Serre equations. The solitary wave
amplitude is equal to a = 0.05. For the cnoidal wave parameters
m and a are equal to 0.99 and 0.05 respectively. Other cnoidal
wave parameters are deduced from relations (2.18), (2.19).

However, in the present study, we are interested in the classical solitary wave solution
which is recovered in the limiting case m→ 1

η = a sech2 1
2
κ(x− ct), ū =

c η

d+ η
, c2 = g(d+ a), (κd)2 =

a

β(d+ a)
. (2.20)

For illustrative purposes, a solitary wave along with a cnoidal wave of the same amplitude
a = 0.05 are depicted in Figure 2.

Using the exact solitary wave solution (2.20) we can assess the accuracy of the Serre
equations (with β = 1

3
) by making comparisons with corresponding solutions to the original

full Euler equations. The procedure we use to construct traveling wave solutions to Euler
equations is described in [18]. The Matlab script used to generate these profiles (up
to machine precision) can be freely downloaded from the File Exchange server [19]. The
results of comparison for several values of the speed parameter c are presented on Figure 3.
We can see that solitary waves to the Serre equations approximate fairly well the full Euler
solutions approximately up to the amplitude a/d = 1

2
. We note that similar conclusions

were obtained in a previous study by Li et al. (2004) [46].

2.2. Invariants of the Serre equations

Henceforth we consider only the two-dimensional case. As pointed out by Y. Li (2002)
[45], the classical Serre equations possess a non-canonical Hamiltonian structure which can
be easily generalized for the model (2.13), (2.14)

(
ht
q̃t

)

= J ·

(
δH / δq̃
δH / δh

)

,
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Figure 3. Comparison of solitary wave solutions to the Serre and the full
Euler equations.

where the Hamiltonian functional H and the symplectic operator J are defined as

H = 1
2

ˆ

R

[
h ū2 + β h3 ū2x + g η2

]
dx, J = −

[
hx 0

q̃x + q̃∂x h∂x

]

.

The variable q̃ is defined by

q̃ ≡ h ū − β [ h3 ūx ]x.

The conservation of the quantity q̃ was established in equation (2.15).
According to [45], one-parameter symmetry groups of Serre’s equations include the space

translation (x + ε, t, h, u), the time translation (x, t + ε, h, u), the Galilean boost (x +
εt, t, h, u+ ε) and the scaling eε(eεx, t, eεh, u). Using the first three symmetry groups and
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the symplectic operator J, one may recover the following invariants:

Q =

ˆ

R

η q̃

d + η
dx, H,

ˆ

R

[ t q̃ − x η ] dx. (2.21)

Obviously, the equation (2.13) leads to an invariant closely related to the mass conservation
property

´

R
η dx. The scaling does not yield any conserved quantity with respect to the

symplectic operator J. Below, we are going to use extensively the generalized energy H

and the generalized momentum Q conservation to assess the accuracy of the numerical
schemes in addition to the exact analytical solution (2.20).

3. Finite volume scheme and numerical results

In the present study, we propose a finite volume discretization procedure [5, 6] for the
Serre equations (2.13), (2.14) that we rewrite here as

ht + [ h u ]x = 0, (3.1)

ut +
[

1
2
u2 + g h

]

x
= β h−1

[
h3 (uxt + u uxx − u 2

x)
]

x
, (3.2)

where the over-bars have been omitted for brevity. (In this section, over-bars denote
quantities averaged over a cell, as explained below.)

We begin our presentation by a discretization of the hyperbolic part of the equations
(which are simply the classical Saint-Venant equations) and then discuss the treatment of
dispersive terms. The Serre equations can be formally put under the quasilinear form

V t + [F (V ) ]x = S(V ), (3.3)

where V , F (V ) are the conservative variables and the advective flux function, respectively

V ≡
(
h
u

)

, F (V ) ≡
(

h u
1
2
u2 + g h

)

.

The source term S(V ) denotes the right-hand side of (3.1), (3.2) and thus, depends also
on space and time derivatives of V . The Jacobian of the advective flux F (V ) can be easily
computed

A(V ) =
∂ F (V )

∂V
=

[
u h
g u

]

.

The Jacobian A(V ) has two distinctive eigenvalues

λ± = u ± cs, cs ≡
√

gh.

The corresponding right and left eigenvectors are provided here

R =

[
h −h
cs cs

]

, L = R
−1 =

1

2

[
h−1 c−1

s

−h−1 c−1
s

]

.

We consider a partition of the real line R into cells (or finite volumes) Ci = [xi− 1

2

, xi+ 1

2

]

with cell centers xi =
1
2
(xi− 1

2

+ xi+ 1

2

) (i ∈ Z). Let ∆xi denotes the length of the cell Ci. In

the sequel we will consider only uniform partitions with ∆xi = ∆x, ∀i ∈ Z. We would like
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to approximate the solution V (x, t) by discrete values. In order to do so, we introduce the
cell average of V on the cell Ci (denoted with an overbar), i.e.,

V̄ i(t) ≡
(
h̄i(t) , ūi(t)

)
=

1

∆x

ˆ

Ci

V (x, t) dx.

A simple integration of (3.3) over the cell Ci leads the following exact relation:

d V̄

dt
+

1

∆x

[

F (V (xi+ 1

2

, t)) − F (V (xi− 1

2

, t))
]

=
1

∆x

ˆ

Ci

S(V ) dx ≡ S̄i.

Since the discrete solution is discontinuous at cell interfaces xi+ 1

2

(i ∈ Z), we replace the

flux at the cell faces by the so-called numerical flux function

F (V (xi± 1

2

, t)) ≈ Fi± 1

2

(V̄
L

i± 1

2

, V̄
R

i± 1

2

),

where V̄
L,R

i± 1

2

denotes the reconstructions of the conservative variables V̄ from left and right

sides of each cell interface (the reconstruction procedure employed in the present study
will be described below). Consequently, the semi-discrete scheme takes the form

d V̄ i

dt
+

1

∆x

[

Fi+ 1

2

− Fi− 1

2

]

= S̄i. (3.4)

In order to discretize the advective flux F (V ), we use the FVCF scheme [36, 37]:

F(V ,W ) =
F (V ) + F (W )

2
− U(V ,W ) ·

F (W ) − F (V )

2
.

The first part of the numerical flux is centered, the second part is the upwinding introduced
through the Jacobian sign-matrix U(V ,W ) defined as

U(V ,W ) = sign
[
A
(
1
2
(V +W )

)]
, sign(A) = R · diag(s+, s−) · L,

where s± ≡ sign(λ±). After some simple algebraic computations, one can find

U =
1

2

[
s+ + s− (h/cs) (s

+ − s−)
(g/cs) (s

+ − s−) s+ + s−

]

,

the sign-matrix U being evaluated at the average state of left and right values.

3.1. High order reconstruction

In order to obtain a higher-order scheme in space, we need to replace the piecewise
constant data by a piecewise polynomial representation. This goal is achieved by various
so-called reconstruction procedures such as MUSCL TVD [43, 66, 67], UNO [40], ENO [39],
WENO [72] and many others. In our previous study on Boussinesq-type equations [32], the
UNO2 scheme showed a good performance with small dissipation in realistic propagation
and run-up simulations. Consequently, we retain this scheme for the discretization of the
advective flux in Serre equations.

Remark 4. In TVD schemes, the numerical operator is required (by definition) not to
increase the total variation of the numerical solution at each time step. It follows that the
value of an isolated maximum may only decrease in time which is not a good property for
the simulation of coherent structures such as solitary waves. The non-oscillatory UNO2
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scheme, employed in our study, is only required to diminish the number of local extrema in
the numerical solution. Unlike TVD schemes, UNO schemes are not constrained to damp
the values of each local extremum at every time step.

The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic
interpolant Q(x) to a piecewise smooth function V (x) (see [40] for more details). On each
segment containing the face xi+ 1

2

∈ [xi, xi+1], the function Q(x) = qi+ 1

2

(x) is locally a

quadratic polynomial and wherever v(x) is smooth we have

Q(x) − V (x) = 0 + O(∆x3),
dQ

dx
(x± 0) − dV

dx
= 0 + O(∆x2).

Also, Q(x) should be non-oscillatory in the sense that the number of its local extrema does
not exceed that of V (x). Since qi+ 1

2

(xi) = V̄ i and qi+ 1

2

(xi+1) = V̄ i+1, it can be written in

the form

qi+ 1

2

(x) = V̄ i + di+ 1

2

{V } × x− xi
∆x

+ 1
2
Di+ 1

2

{V } × (x− xi)(x− xi+1)

∆x2
,

where di+ 1

2

{V } ≡ V̄ i+1−V̄ i and Di+ 1

2

V is closely related to the second derivative of the in-

terpolant since Di+ 1

2

{V } = ∆x2 q′′

i+ 1

2

(x). The polynomial qi+ 1

2

(x) is chosen to be the least

oscillatory between two candidates interpolating V (x) at (xi−1, xi, xi+1) and (xi, xi+1, xi+2).
This requirement leads to the following choice of Di+ 1

2

{V } ≡ minmod (Di{V },Di+1{V })
with

Di{V } = V̄ i+1 − 2 V̄ i + V̄ i−1, Di+1{V } = V̄ i+2 − 2 V̄ i+1 + V̄ i,

and where minmod(x, y) is the usual minmod function defined as

minmod(x, y) ≡ 1
2
[ sign(x) + sign(y) ]×min(|x|, |y|).

To achieve the second order O(∆x2) accuracy, it is sufficient to consider piecewise linear
reconstructions in each cell. Let L(x) denote this approximately reconstructed function
which can be written in this form

L(x) = V̄ i + Si ×
x− xi
∆x

, x ∈ [xi− 1

2

, xi+ 1

2

].

In order to L(x) be a non-oscillatory approximation, we use the parabolic interpolation
Q(x) constructed below to estimate the slopes Si within each cell

Si = ∆x×minmod

(
dQ

dx
(xi − 0),

dQ

dx
(xi + 0)

)

.

In other words, the solution is reconstructed on the cells while the solution gradient is
estimated on the dual mesh as it is often performed in more modern schemes [5, 6]. A brief
summary of the UNO2 reconstruction can be also found in [32, 33].

3.2. Treatment of the dispersive terms

In this section, we explain how we treat the dispersive terms of Serre equations (3.1),
(3.2). We begin the exposition by discussing the space discretization and then, we propose
a way to remove the intrinsic stiffness of the dispersion by partial implicitation.
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For the sake of simplicity, we split the dispersive terms into three parts:

M(V ) ≡ β h−1
[
h3 uxt

]

x
, D1(V ) ≡ β h−1

[
h3 u uxx

]

x
, D2(V ) ≡ β h−1

[
h3 u 2

x

]

x
.

We propose the following approximations in space (which are all of the second order O(∆x2)
to be consistent with UNO2 advective flux discretization presented above)

Mi(V̄ ) = β h̄
−1
i

h̄
3
i+1 (ūxt)i+1 − h̄

3
i−1 (ūxt)i−1

2∆x

=
β h̄

−1
i

2∆x

[

h̄
3
i+1

(ūt)i+2 − (ūt)i
2∆x

− h̄
3
i−1

(ūt)i − (ūt)i−2

2∆x

]

=
β h̄

−1
i

4∆x2

[

h̄
3
i+1 (ūt)i+2 − (h̄

3
i+1 + h̄

3
i−1) (ūt)i + h̄

3
i−1 (ūt)i−2

]

.

The last relation can be rewritten in a short-hand form if we introduce the matrix M(V̄ )
such that the i-th component of the product M(V̄ )·V̄ t gives exactly the expression Mi(V̄ ).

In a similar way, we discretize the other dispersive terms without giving here the inter-
mediate steps

D1i(V̄ ) =
β h̄

−1
i

2∆x3

[

h̄
3
i+1 ūi+1 (ūi+2 − 2ūi+1 + ūi) − h̄

3
i−1 ūi−1 (ūi − 2ūi−1 + ūi−2)

]

,

D2i(V̄ ) =
βh̄

−1
i

8∆x3

[

h̄
3
i+1 (ūi+2 − ūi)

2 − h̄
3
i−1 (ūi − ūi−2)

2
]

.

In a more general nonperiodic case asymmetric finite differences should be used near the
boundaries. If we denote by I the identity matrix, we can rewrite the semi-discrete scheme
(3.4) by expanding the right-hand side Si

d h̄

dt
+

1

∆x

[

F
(1)
+ (V̄ ) − F

(1)
− (V̄ )

]

= 0, (3.5)

(I−M) · d ū
dt

+
1

∆x

[

F
(2)
+ (V̄ ) − F

(2)
− (V̄ )

]

= D(V̄ ) · ū, (3.6)

where F
(1,2)
± (V̄ ) are the two components of the advective numerical flux vector F at the

right (+) and left (−) faces correspondingly and D(V̄ ) ≡ D1(V̄ )− D2(V̄ ).
Finally, in order to obtain the semidiscrete scheme, one has to solve a linear system to

find explicitly the time derivative dū/dt. A mathematical study of the resulting matrix
I − M is not straightforward to perform. However, in our numerical tests we have never
experienced any difficulties to invert it.

3.3. Temporal scheme

We rewrite the inverted semi-discrete scheme (3.5)–(3.6) as a system of ODEs:

∂t w = L(w, t), w(0) = w0.

In order to solve numerically the last system of equations, we apply the Bogacki–Shampine
method [9]. It is a third-order Runge–Kutta scheme with four stages. It has an embedded
second-order method which is used to estimate the local error and, thus, to adapt the
time step size. Moreover, the Bogacki–Shampine method enjoys the First Same As Last
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(FSAL) property so that it needs three function evaluations per step. This method is also
implemented in the ode23 function in Matlab [60]. A step of the Bogacki–Shampine
method is given by

k1 = L(w(n), tn),

k2 = L(w(n) + 1
2
∆tnk1, tn +

1
2
∆t),

k3 = L(w(n)) + 3
4
∆tnk2, tn +

3
4
∆t),

w(n+1) = w(n) + ∆tn ×
(
2
9
k1 +

1
3
k2 +

4
9
k3
)
,

k4 = L(w(n+1), tn +∆tn),

w
(n+1)
2 = w(n) + ∆tn ×

(
4
24
k1 +

1
4
k2 +

1
3
k3 +

1
8
k4
)
.

Here w(n) ≈ w(tn), ∆t is the time step and w
(n+1)
2 is a second order approximation to the

solution w(tn+1), so the difference between w(n+1) and w
(n+1)
2 gives an estimation of the

local error. The FSAL property consists in the fact that k4 is equal to k1 in the next time
step, thus saving one function evaluation.

If the new time step ∆tn+1 is given by ∆tn+1 = ρn∆tn, then according to H211b digital
filter approach [61, 62], the proportionality factor ρn is given by:

ρn =

(
δ

εn

)β1
(

δ

εn−1

)β2

ρ−α
n−1, (3.7)

where εn is a local error estimation at time step tn, δ is the desired tolerance and the
constants β1, β2 and α are defined as

α =
1

4
, β1 = β2 =

1

4 p
.

The parameter p is the order of the scheme (p = 3 in our case).

Remark 5. The adaptive strategy (3.7) can be further improved if we smooth the factor
ρn before computing the next time step ∆tn+1

∆tn+1 = ρ̂n ∆tn, ρ̂n = ω(ρn).

The function ω(ρ) is called the time step limiter and should be smooth, monotonically
increasing and should satisfy the following conditions

ω(0) < 1, ω(+∞) > 1, ω(1) = 1, ω′(1) = 1.

One possible choice is suggested in [62]:

ω(ρ) = 1 + κ arctan

(
ρ− 1

κ

)

.

In our computations the parameter κ is set to 1.
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4. Pseudo-spectral Fourier-type method for the Serre

equations

In this Section we describe a pseudo-spectral solver to integrate numerically the Serre
equations in periodic domains. In spectral methods, it is more convenient to take as
variables the free surface elevation η(x, t) and the conserved quantity q(x, t)

ηt + [ (d+ η) ū ]x = 0, (4.1)

qt +
[
q u − 1

2
ū2 + g η − 1

2
(d+ η)2 ū2x

]

x
= 0, (4.2)

q − ū + 1
3
(d+ η)2ūxx + (d+ η)ηxūx = 0. (4.3)

The first two equations (4.1), (4.2) are of evolution type, while the third one (4.3) relates
the conserved variable q to the primitive variables: the free surface elevation η and the
velocity ū. In order to solve relation (4.3) with respect to the velocity ū, we extract the
linear part as

ū − 1
3
d2 ūxx − q = 1

3
(2dη + η2) ūxx + (d+ η) ηx ūx

︸ ︷︷ ︸

N(η,ū)

.

Then, we apply to the last relation the following fixed point type iteration in Fourier space

ˆ̄uj+1 =
q̂

1 + 1
3
(kd)2

+
F {N(η, ūj)}
1 + 1

3
(kd)2

j = 0, 1, 2, · · · , (4.4)

where ψ̂ ≡ F{ψ} denotes the Fourier transform of a quantity ψ. The last iteration is
repeated until the desired convergence. For example, for moderate amplitude solitary waves
(≈ 0.2), the accuracy 10−16 is attained in approximatively 20 iterations if the velocity ū0 is
initialized from the previous time step. We note that the usual 3/2 rule is applied to the
nonlinear terms for anti-aliasing [65, 21, 35].

Remark 6. One can improve the fixed point iteration (4.4) by employing the so-called
relaxation approach [41]. The relaxed scheme takes the following form

ˆ̄uj+1 =

(
q̂

1 + 1
3
(kd)2

+
F {N(η, ūj)}
1 + 1

3
(kd)2

)

θ + (1− θ)ˆ̄uj j = 0, 1, 2, · · · ,

where θ ∈ [0, 1] is a free parameter. We obtained the best convergence rate for θ = 1
2
.

In order to improve the numerical stability of the time stepping method, we will integrate
exactly the linear terms in evolution equations

ηt + d ūx = −[ η ū ]x,

qt + g ηx =
[

1
2
ū2 + 1

2
(d+ η)2 ū2x − q u

]

x
.

Taking the Fourier transform and using the relation (4.3) between ū and q, we obtain the
following system of ODEs:

η̂t +
ikd

1 + 1
3
(kd)2

q̂ = −ik F{ηū} − ikdF {N(η, ūj)}
1 + 1

3
(kd)2

,

q̂t + ikg η̂ = ik F
{

1
2
ū2 + 1

2
(d+ η)2ū2x − qu

}
.
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The next step consists in introducing the vector of dimensionless variables in Fourier space
V̂ ≡ (ikη̂, iωq̂/g), where ω2 = gk2d/[1 + 1

3
(kd)2] is the dispersion relation of the linearized

Serre equations. With unscaled variables in vectorial form, the last system becomes

V̂ t + L · V̂ = N(V̂ ), L ≡
[
0 iω
iω 0

]

.

On the right-hand side, we put all the nonlinear terms

N(V̂ ) =

(
k2 F{ηū} + dk2 F {N(η, ūj)} /(1 + 1

3
(kd)2)

−(kω/g)F
{

1
2
ū2 + 1

2
(d+ η)2ū2x − qu

}

)

.

In order to integrate the linear terms, we make a last change of variables [51, 35]:

Ŵ t = e(t−t0)L ·N

{

e−(t−t0)L · Ŵ
}

, Ŵ (t) ≡ e(t−t0)L · V̂ (t), Ŵ (t0) = V̂ (t0).

Finally, the last system of ODEs is discretized in time by Verner’s embedded adaptive
9(8) Runge–Kutta scheme [68]. The time step is chosen adaptively using the so-called
H211b digital filter [61, 62] to meet some prescribed error tolerance (generally of the same
order of the fixed point iteration (4.4) precision). Since the numerical scheme is implicit
in the velocity variable ū, the resulting time step ∆t is generally of the order of the spatial
discretization O(∆x).

5. Numerical results

In this section we present some numerical results using the finite volume scheme described
hereinabove. First, we validate the discretization and check the convergence of the scheme
using an analytical solution. Then we demonstrate the ability of the scheme to simulate
the practically important solitary wave interaction problem. Throughout this section we
consider the initial value problem with periodic boundary conditions unless a special remark
is made.

5.1. Convergence test and invariants preservation

Consider the Serre equations (3.1), (3.2) posed in the periodic domain [−40, 40]. We
solve numerically the initial-periodic boundary value problem with an exact solitary wave
solution (2.20) posed as an initial condition. Then, this specific initial disturbance will be
translated in space with known celerity under the system dynamics. This particular class
of solutions plays an important role in water wave theory [29, 28] and it will allow us to
assess the accuracy of the proposed scheme. The values of the various physical parameters
used in the simulation are given in Table 1.

The error is measured using the discrete L∞ norm for various successively refined dis-
cretizations. The result is shown on Figure 4. As anticipated, the finite volume scheme
(black solid line with circles) shows a fairly good second order convergence (with estimated
slope ≈ 1.99). During all the numerical tests, the mass conservation was satisfied with
accuracy of the order ≈ 10−14. This impressive result is due to excellent local conservative
properties of the finite volume method. We also investigate the numerical behavior of
the scheme with respect to the less obvious invariants H and Q defined in (2.21). These
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Undisturbed water depth: d 1
Gravity acceleration: g 1
Solitary wave amplitude: a 0.05
Final simulation time: T 2
Free parameter: β 1/3

Table 1. Values of various parameters used in convergence tests.

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

L
∞

e
r
r
o
r

 

 

FV UNO2

N
−2

N
−1

Figure 4. Convergence of the numerical solution in the L∞ norm computed
using the finite volume method.

invariants can be computed exactly for solitary waves. However, we do not provide them
to avoid cumbersome expressions. For the solitary wave with parameters given in Table 1,
the generalized energy and momentum are given by the following expressions:

H0 =
21
√
7

100
+

7
√
3

10
log

√
21− 1√
21 + 1

≈ 0.0178098463,

Q0 =
62
√
15

225
+

2
√
35

5
log

√
21− 1√
21 + 1

≈ 0.017548002.

These values are used to measure the error on these quantities at the end of the simulation.
Convergence of this error under the mesh refinement is shown on Figure 5. One can observe
a slight super-convergence phenomenon of the finite volume scheme. This effect is due to
the special nature of the solution we use to measure the convergence. This solution is only
translated under the system dynamics. For more general initial conditions we expect a
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Figure 5. Hamiltonian and generalized momentum conservation conver-
gence computed using the finite volume and spectral methods un-
der the mesh refinement. The conserved quantities are measured
at the final simulation time.

fair theoretical 2 nd order convergence for the finite volume scheme. As anticipated, the
pseudo-spectral scheme shows the exponential error decay.

5.2. Solitary wave interaction

Solitary wave interactions are an important phenomenon in nonlinear dispersive waves
which have been studied by numerical and analytical methods and results have been com-
pared to experimental evidence. They also often serve as one of the most robust nonlinear
benchmark test cases for numerical methods. We mention only a few works among the
existing literature. For example, in [48, 56, 23] solitary wave interactions were studied
experimentally. The head-on collision of solitary waves was studied in the framework of
full Euler equations in [23, 14]. Studies of solitary waves in various approximate models
can be found in [46, 26, 2, 32, 33]. To our knowledge, solitary wave collisions for the Serre
equations were studied numerically for the first time in the PhD thesis of Seabra-Santos
[57]. Finally, there are also a few studies devoted to simulations with full Euler equations
[46, 35, 23].

5.2.1. Head-on collision

Consider the Serre equations posed in the domain [−40, 40] with periodic boundary
conditions. In the present section, we study the head-on collision (weak interaction) of
two solitary waves of equal amplitude moving in opposite directions. Initially, two solitary
waves of amplitude a = 0.15 are located at x0 = ±20 (other parameters can be found in
Table 1). The computational domain is divided into N = 1000 intervals (finite volumes
in 1D) of the uniform length ∆x = 0.08. The time step is chosen to be ∆t ≈ 10−3. The
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Figure 6. Head-on collision of two equal solitary waves simulated with the
finite volume scheme.

process is simulated up to time T = 36. The numerical results are presented in Figure 6. As
expected, the solitary waves collide quasi-elastically and continue to propagate in opposite
directions after the interaction. The value of importance is the maximum amplitude during
the interaction process, sometimes referred to as the run-up. Usually, it is larger than the
sum of the amplitudes of the two initial solitary waves. In this case, we obtain a run-up of
0.3130 > 2a = 0.3.

In order to validate the finite volume simulation, we performed the same computation
with the pseudo-spectral method presented briefly in Section 4. We used a fine grid of 1024
nodes and adaptive time stepping. The overall interaction process is visually identical to
the finite volume result shown in Figure 6. The run-up value according to the spectral
method is 0.3127439 showing again the accuracy of our simulation. The small inelasticity is
evident from the small dispersive wave train emerging after the interaction (for an example
in a slightly different setting described below, see Figure 16, as first found numerically and
experimentally by Seabra-Santos [57].

5.2.2. Overtaking collision

A second type of solitary wave interaction is the overtaking collision (or strong interac-
tion) of two solitary waves of different amplitudes moving in the same direction. Sometimes
this situation is also referred to as the following collision or strong interaction. For this case
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Undisturbed water depth: d 1
Gravity acceleration: g 1
Large solitary wave amplitude: a1 0.6
Initial position: x1 -60
Small solitary wave amplitude: a2 0.1
Initial position: x2 -45
Final simulation time: T 96
Free parameter: β 1/3

Table 2. Values of various parameters used to simulate the overtaking collision.
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Figure 7. Overtaking (or following) collision of two solitary waves simu-
lated with the finite volume scheme.

we consider a physical domain [−75, 75] divided into N = 1000 equal control volumes.The
initial data consists of two separated solitary waves of different amplitudes moving in the
same direction. The solitary wave with larger amplitude moves faster and will overtake the
smaller wave. This situation was simulated with the finite volume scheme and the numer-
ical results are presented in Figure 7. The parameters used in this simulation are given in
Table 2. The strong interaction is also inelastic with a small dispersive tail emerging after
the over-taking (see Figure 15 for a zoom).
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(a) t = 18.5 s
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(b) t = 18.6 s

Figure 8. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23].
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(a) t = 18.7 s
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(b) t = 18.8 s

Figure 9. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23].

5.3. Experimental validation

In this Section we present a comparison between the classical Serre model solved with
our finite volume scheme and one head-on collision experiment from [23]. This specific
experiment was already considered in the context of Boussinesq-type systems [32].

We simulate a portion of the wave tank [−0.9, 2.7] (divided into N = 1000 equal control
volumes) where the interaction process takes place. The initial data consists of two solitary
waves (of different amplitudes in this case) moving in opposite directions. The exact
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(a) t = 18.92 s
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(b) t = 19.0 s

Figure 10. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23]. Note the difference in
vertical scales on the left and right images.
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Figure 11. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23].

parameters are given in Table 3. Simulation snapshots are presented in Figures 8–16.
The general agreement is very good, validating the Serre equations in water wave theory,
along with our numerical developments. Figure 16 shows visible dispersive oscillations
after the interaction process, numerical evidence of the inelastic character of solitary waves
interactions in the framework of the Serre equations.
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(b) t = 19.19 s

Figure 12. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23].
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(a) t = 19.33 s
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(b) t = 19.5 s

Figure 13. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23].
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(b) t = 20.0 s

Figure 14. Head-on collision of two solitary waves of different amplitudes.
Comparison with experimental data [23].
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Figure 15. Dispersive tail after overtaking collision of two solitary waves
(strong interaction) at T = 120.0.
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Undisturbed water depth: d [cm] 5
Gravity acceleration: g [ms

−2] 9.81
Right-going SW amplitude: a1 [cm] 1.077
Initial position of the SW-1: x1 [m] 0.247
Left-going SW amplitude: a1 [cm] 1.195
Initial position of the SW-2: x2 [m] 1.348
Final simulation time: T [s] 20.5

Table 3. Values of various parameters used to simulate the head-on collision.
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Figure 16. Dispersive tail after head-on collision of two solitary waves
(weak interaction). Small wavelets between two solitary waves
clearly indicate that the collision is inelastic.
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6. Conclusions

The current study is devoted to the Serre equations stemming from water wave modeling
[59, 7, 25]. First, we presented a derivation of this model using a relaxed variational
principle [20]. We then described an Implicit-Explicit finite volume scheme to discretize
the equations. The overall theoretical accuracy of the discretization scheme is of second-
order. This conclusion is confirmed by comparisons with an exact solitary wave solution.
The energy conservation properties of our scheme are also discussed and quantified. In
order to validate further our numerical scheme, we present a Fourier-type pseudo-spectral
method. Both numerical methods are compared on solitary wave interaction problems.
The proposed discretization procedure was successfully validated with several numerical
tests along with experimental data. In contrast with the highly accurate spectral method,
the finite volume method has the advantage of being robust and generalizable to realistic
complex situations with variable bathymetry, very steep fronts, dry areas, etc. The present
study should be considered as the first step to further generalisations to 2D cartesian meshes
[52, 13, 69].
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