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Abstract The aim of this paper is to point out some new results concerning the ripple

instability in the closed loop control system using pulse width modulators (PWM),

with natural sampling, as power amplifier. The presented analysis, based on dual-

input describing function method and theoretical framework of the Kepler’s problem,

shows an equivalence between the computation of switching instants of the PWM and

the eccentric anomaly of the planet orbit around the sun, giving a simple stability

criterion and a sufficient condition for the absence of solutions of the harmonic balance

equation and, therefore, the probable absence of limit cycles of period multiple of that

characteristic of the modulator. The derived stability criterion, by using the describing

function method, is successively compared with the local stability of the closed-loop

PWM system for first and second order plants. In the first case it has been formally

proved that the proposed criterion ensures the local stability of an equilibrium point,

while in the second one a Monte-Carlo simulation has confirmed that the selection

of the modulator parameters, according to the proposed criterion, gives an effective

method to avoid limit cycles and to ensure the local stability.

Keywords Pulse width modulation · describing function · Kapteyn series · Bessel

functions

1 Introduction

Pulse width modulated (PWM) switching converters are widely used in industry and

in consumer products and an extensive literature exists on this topic (see [1] and the

references therein). PWM systems constitute a class of systems with discontinuous

controls in which the control actions are determined on the basis of the error signal:

in each sampling period, characteristic of the modulator, the control signal is enabled

only for a fraction of time proportional to the error magnitude. The main advantages

of this particular control mode are related to the power amplifier efficiency, since it

essentially operates as an on-off device, and to the low cost for the engineering real-

ization. Its relay-type electronic switching leads to amplifiers with reduced size, weight
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and power dissipation [2]. However, the analysis of the PWM feedback control system

can be extremely difficult, since the modulating device creates an effect equivalent

to a non-linear non-instantaneous block [3]. The discontinuity control analysis can be

approached by working with an approximate model obtained by the state-space av-

eraging method which leads to a greater understanding of the dynamic performance

of PWM converters although it is valid only for high frequency switching [4,5]. In

the relevant literature, local and global stability problems have been considered for

PWM feedback control systems with different regulators [6]. On the other hand, the

describing function method has widely been used to determine the limit cycle and the

dynamical behavior for the nonlinear systems [7–12]. As it is well known, finding con-

ditions to predict and to eliminate limit cycles, the so-called ripple instability, for these

control systems, is an important task. Many authors have detailed various approaches

for the exact determination of limit cycles in PWM systems [13–16]. The use of de-

scribing function theory analysis of PWM systems without a reference input is well

documented in [7]. The existing approaches substantially use the same logic: the shape

of limit cycle mode, which defines the form of the nonlinearity output, is postulated;

this nonlinearity output signal is processed through the linear part of the system to the

nonlinearity input, finally, conditions which will produce the postulated output of the

nonlinearity are sought. The system is then analyzed as a linear block interconnected

with a nonlinear block described by its amplitude dependent transfer function. The re-

sulting equations, for the amplitude and frequency, of presumed limit cycles are solved

directly by a graphical procedure through the intersections of the frequency-response

of the linear device and the critical locus (i.e, the inverse of the describing function)

of the nonlinear ones in the Nyquist plane, otherwise by solving the nonlinear equa-

tions or a parameter optimization problem [7,17,18]. The advantage of the describing

function method is that it can be viewed as a kind of harmonic balance method [5].

On the other hand, the fundamental limitation is that the form of the signal in input

to the nonlinearity must be guessed in advance. Another difficulty is related to the

possibility to have multiple solutions since the formulation of the problem, using the

describing function, leads to a simultaneous set of nonlinear algebraic relations to be

solved. Moreover, since the method is approximate, another limitation is that it is only

able to indicate where probably a limit cycle can occur. Finally, the plant should be

low-pass to attenuate higher harmonics that is to say the analysis with this method has

to be cautious. Several types of describing functions have been derived. For instance,

the case of multiple input nonlinearities was discussed in [7], while the case of random

inputs describing functions can be found in [8,19].

1.1 The aim and the organization of the paper

The aim of this paper is twofold. First, an interesting relation between the switching

instants in the PWM modulator and the eccentric anomaly of the planet orbit around

the sun is pointed out. Second, a sufficient condition to avoid limit cycles predicted by

the dual-input describing function in a class of PWM feedback control systems is given.

The method used herein reconsiders the dual-input describing function approach on the

basis of an exact spectral analysis of the PWM output, and extends the results in [7]

introducing a constant reference input. Moreover, in order to avoid probable limit cycles

of period multiple of that characteristic of the modulator, a simple stability criterion is

proposed. Finally, some simulation results, which confirm the validity of the proposed
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criterion, are shown. In particular, for a first order plant it will be formally proved that

the describing function stability criterion ensures the local stability of an equilibrium

point, while for a second order plant a Monte-Carlo simulation has confirmed that

the selection of the modulator parameters, according to the proposed criterion, gives

an effective method to avoid limit cycles and to ensure the local stability. The idea

behind the proposed approach is that the implicit equation of the unknown PWM

switching instants, when the input to the modulator is a biased sinusoidal signal due

to the presence of a limit cycle, can be related to the Kepler’s equation governing the

trajectory of a planet around the sun [20]. The solution of the Kepler’s problem allows

to obtain the switching instants of the PWM output in terms of Kapteyn series as

well as its Fourier coefficients and then to find an explicit expression of the describing

function. The paper is organized as follows. Section 2 describes the main aspects of

the Kepler’s problem with a solution in terms of Kapteyn series; Sections 3 and 4

introduce the model of the PWM closed-loop system and an analysis for the local

stability, respectively. In Section 5 an overview of dual-input describing function and

main results are given. In order to corroborate the theoretical analysis, simulation

results are reported in Section 6. Finally Section 7 is devoted to conclusions. Proofs of

some results are reported in the Appendix.

2 Kepler’s equation

Many problems in Celestial Mechanics require a solution to Kepler’s equation. The

Kepler transcendental equation

E − ǫ sin(E) = M, (1)

which links the eccentric anomaly of elliptic motion E, mean anomaly M and ec-

centricity ǫ, is of critical importance in gravitational mechanics. The basic physical

meaning of this equation is better explained by Fig. 1 in which is depicted an ellipse,

with eccentricity ǫ, that is the orbit of a body moving about the stationary gravitating

center placed in focus of the ellipse S. Denote by C and A the center and pericenter

of the ellipse, respectively. Construct also a circle with its center at point C and with

a radius equal to the major semiaxis of the ellipse. At some time let the position of

the rotating body be determined by point P . From P we drop a perpendicular to the

major axis of the ellipse and denote the foot of the perpendicular by letter R. Extend

this perpendicular to intersect the circle at point Q. Then the angle ∠ACQ is just the

eccentric anomaly E. Suppose that the planet P , having passed through perihelion A,

is at position P after elapsed time t, it is possible to express the polar coordinates of

P , (r, v), relative to the sun in terms of t. Kepler’s equation relates E to time t by

means of a quantity

M =
2πt

Ξ
, (2)

where Ξ is the time required for the planet to complete one trip in its orbit around the

sun. The quantity M represents the average angular speed of the radius vector SP .

Classical formulas to find r and v are

r = a (1 − ǫ cos(E)) , (3)
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and

tan
(

v

2

)

=

√

1 + ǫ

1 − ǫ
tan
(

E

2

)

. (4)

Therefore, if Ξ and M are known, it is possible to solve the Kepler’s equation for

E and to determine position (r, v) at time t by using eqs. (3) and (4).

C

Q

A
RS

E

P

v

r

a

Fig. 1 Graphical representation of orbital elements.

Although there exists a unique solution of the Kepler’s problem, there are many

methods to describe or approximate it [21–24]. The history of the search for exact and

approximate solutions of the Kepler’s equation, along with the analytical and numerical

methods used for this purpose, is well covered in [20]. A solution in terms of Bessel

functions of the first kind:

Jn(x) =
1

π

∫ π

0

cos(x sin(θ) − nθ)dθ, (5)

was investigated by Kapteyn in his memoir in 1893 [25], where he studied the possibility

of representing functions by series of the form

f(x) =

∞
∑

n=0

hn(f)Jn(nx), (6)

where hn(f) are coefficients depending on the function f(x). Series in Eq. (6) are now

called Kapteyn series.

Let E = g(M) be the solution of the Kepler’s equation and express the quantity

g(M) − M in the Fourier sine-series

g(M) − M = ǫ sin(E) =

∞
∑

n=1

An sin(nM), (7)
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where

An =
2

π

∫ π

0

[g(M) − M ] sin(nM)dM

= −
2

nπ

∫ π

0

[g(M) − M ] d (cos(nM))

= −
2

nπ
{[g(M) − M ] cos(nM)}π

0 +
2

nπ

∫ π

0

cos(nM)
[

g
′

(M) − 1
]

dM (8)

=
2

nπ

∫ π

0

cos(nM)g
′

(M)dM

=
2

nπ

∫ π

0

cos(nM)d(g(M)).

Since M = E − ǫ sin(E) = g(M) − ǫ sin(g(M)), then

An =
2

nπ

∫ 2π

0

cos [ng(M) − nǫ sin(g(M))]d(g(M))

=
2

n

{

1

π

∫ π

0

cos (nE − nǫ sin(E)) dE

}

(9)

=
2

n
Jn(nǫ).

Hence the solution of (1) in terms of Kapteyn series gives

E = M +

∞
∑

n=1

2

n
Jn(nǫ) sin(nM). (10)

The series on the right side rapidly converges when ǫ < 1, and it is still convergent

when ǫ = 1 [26].

3 System modeling

The system which will be analyzed is depicted in Fig. 2. The plant is assumed to be

linear, time-invariant with low-pass characteristic. The modulator output consists of a

piecewise constant function in two subintervals, [kT, kT + τk) and (kT + τk, kT + T ),

where τk ∈ [0, T ] represents the switching instant in the interval [kT, kT + T ) and T is

the constant sampling period.

m PWM PLANT ---

6

-
r(t) σ(t) u(t) y(t)+

Fig. 2 PWM feedback control system.
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Fig. 3 shows the unipolar lead-type modulator output which is characterized by val-

ues equal to +M or −M in the first subinterval (according to the sign of the modulator

input σ(t) valued for t = kT ) and equal to zero in the second subinterval:

u(t) =

{

M sgn[σ(kT )], kT ≤ t ≤ kT + τk,

0, kT + τk < t < kT + T.
(11)

6

-

Ep

kT kT + TkT + τk

σ(kT )

-

6

M

u(t)

Fig. 3 Lead-type PWM modulator.

More general modulation strategies are described in [27].

As far as the evaluation of τk is concerned, its value is uniquely determined by a

logic comparison between the input σ(t) and a sawtooth carrier c(t), of period T , which

has the following expression:

c(t) = sgn[σ(kT )]
Ep

T
(t − kT ), kT ≤ t ≤ kT + T, (12)

where Ep > 0 is the sawtooth amplitude. For the natural sampling modulator, the

relationship enabling τk to be determined is:

σ(kT + τk) = sgn[σ(kT )]Ep
τk

T
(13)

where it is evident that τk is implicitly determined by the input behavior in the interval

[kT, kT + τk), and it is assumed that there is a unique solution τk (see Remark 1 for

details about this assumption).
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4 Local stability and assumptions

The equations describing the dynamical behavior of the control system are:






ẋ(t) = Ax(t) + bu(t),

y(t) = cT x(t),

σ(t) = r − y(t)

(14)

where x ∈ R
n is the state, y ∈ R and u ∈ R (described by Eq. (11)) are respectively the

output and the input of the plant, r ∈ R is the constant reference input, A ∈ R
n×n,

b, c ∈ R
n×1. Moreover it will be assumed that A is a full-rank matrix.

Remark 1 It has been assumed that Eq. (13) has a unique solution τk belonging to

[0, T ]. Obviously, this hypothesis is not sustainable from a mathematical point of view,

unless a set of input functions, which guarantees this hypothesis, is considered. How-

ever, such assumption does not represent a limitation if the sampling period is suitably

chosen taking into account the time constants of the controlled process, in such a way

to guarantee the uniqueness of the solution. In addition we can consider a set of input

functions such that the unique solution of Eq. (13) belongs to [0, T ] (no modulation

saturation), with the only implication that a small signal analysis of the control loop

needs to be performed. In the implementation of the PWM modulator logic, the value

of τk is assumed equal to T if no solution exists in the interval [kT, kT + T ].

For t ∈ [kT, kT + τk] one has:

x(t) = eA(t−kT )x(kT ) +

∫ t

kT

eA(t−ξ)bu(ξ)dξ. (15)

By substituting the expression of u(t) given in Eq. (11) and by using standard

algebraic manipulation, it follows:

x(t) = eA(t−kT )x(kT ) + M sgn [σ(kT )]A−1
[

eA(t−kT ) − I
]

b, (16)

where I is the identity matrix of dimension n.

In the second subinterval t ∈ [kT + τk, kT + T ), the state system is described as:

x(t) = eA(t−kT−τk)x(kT + τk). (17)

Therefore from Eq. (16) it is possible to get the state value in the switching instant

kT + τk:

x(kT + τk) = eAτkx(kT ) + M sgn [σ(kT )]A−1
[

eAτk − I
]

b, (18)

which can be substituted in Eq. (17):

x(kT + T ) = eAT x(kT ) + M sgn [σ(kT )]A−1
[

eAT − eA(T−τk)
]

b. (19)

Since

σ(t) = r − cT x(t), (20)

then Eq. (13) can be rewritten as:

cT x(kT + τk) +
Ep

T
τk sgn [σ(kT + τk)] − r = 0. (21)



NODY9712_source.tex; 8/04/2010; 8:26 p. 8

8

Note that, by the hypothesis of a unique switching instant in the interval [kT, kT +

T ), it must be that sgn [σ(kT + τk)] = sgn [σ(kT )], therefore Eq. (21) becomes:

cT eAτkx(kT ) + M sgn[σ(kT )]cT A−1
[

eAτk − I
]

b +
Ep

T
τk sgn[σ(kT )]− r = 0. (22)

Eqs. (19) and (22) describe the dynamic of the PWM feedback control system.

Let us suppose that an equilibrium point exists. This means that, after a transient,

the state at the beginning of the period is equal to the state at the end of the period.

Moreover, if r is a constant reference input, then the value of τk, the value of the error

function at the beginning of the period, i.e. σ(kT ), and consequently sgn[σ(kT )], must

be constant for each period k. Indicating with (x∞, τ∞) the equilibrium point, it will

be

x(kT + T ) = x(kT ) = x∞,

τk = τ∞, ∀k

sgn[σ(kT )] = sgn
∞

.

(23)

Eqs. (19) and (22) with (23) become respectively

x∞ = M sgn
∞

A−1
[

I − eAT
]

−1

(eAT − eA(T−τ∞))b, (24)

and

McT A−1
[

I − eAT
]

−1

(eAτ∞ − I)b +
Ep

T
τ∞ − r sgn

∞
= 0. (25)

Remark 2 Note that solutions of Eqs. (24) and (25) give formal conditions to the

existence of equilibrium points. In [6] sufficient conditions for the uniform asymptotic

stability in the large of the trivial solution x∞ = 0 (r = 0) are investigated.

In order to obtain the necessary and sufficient condition for local stability, we

consider the linearized discrete model in the neighborhood of the equilibrium point

(x∞, τ∞) [28]:
{

dx(kT + T ) = Fdx(kT ),

F = eAT − 1
LeAT bcT ,

(26)

where

L = cT
[

I − eAT
]

−1

(eAτ∞ − eAT )b +
Ep

TM
. (27)

For the sake of the reader, Eqs. (26) and (27) are derived in the Appendix A.

Hence, the equilibrium point is locally asymptotically stable if and only if the

eigenvalues of the matrix F belong to the unit circle. Therefore, by Eqs. (26)-(27), it

is possible to obtain the critical value of Ep as a function of T and τ∞ ∈ [0, T ]. Note

however that our interest is in a value of Ep which ensures the local stability, for all

values of τk in [0, T ]. Such value will be compared with that one given by the dual-input

describing function method, which is valid for all values of τk in [0, T ] and for every

constant reference input r.
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5 Overview of dual-input describing function and main results

Suppose that a limit cycle takes place in the PWM closed-loop depicted in Fig. 2.

On the basis of the well known peculiarities of the subharmonic modulation technique

applied to the inverters, the PWM input σ(t) and output u(t) are periodic of period NT

with N positive integer [7,29]. Therefore the switching process generates a sinusoidal

input to the PWM modulator of amplitude µEp and frequency ωc = 2π
NT with a DC

offset µ0Ep:

σ(t) = µ0Ep + µEp sin (ωct + φ) . (28)

In Eq. (28) we consider µ < µ0 < 1 − µ so that the modulation saturation is

avoided.

Remark 3 We assume that the system is operating in a condition of limit cycle in

the neighborhood of an equilibrium point and that such oscillation does not involve

a change of sign in the logic modulator. Therefore sgn[σ(kT )] is assumed equal to 1

in the sequel. Although such assumption should seem restrictive, however, as it will

be evident in the simulation results, it does not affect the prediction capability of the

method. Moreover it allows to simplify the expression of the describing function of the

PWM modulator, giving the possibility of further theoretical investigations.

By using Fourier series, this periodic function u(t) can be expanded as

u(t) = b0 +

∞
∑

n=1

[bn cos (nωct) + an sin (nωct)] (29)

where the Fourier coefficients are determined by

b0 = 1
NT

NT
∫

0

u(t)dt, bn = 2
NT

NT
∫

0

u(t) cos (nωct) dt,

an = 2
NT

NT
∫

0

u(t) sin (nωct) dt.

(30)

The fundamental component of u(t) is described by

u(t) ≈ b0 + b1 cos(ωct) + a1 sin(ωct) = b0 + U1 sin(ωct + φ1) (31)

where U1 =
√

a2
1 + b21 and φ1 = tan−1(b1/a1).

The dual-input describing function of the nonlinear element is the complex ratio

between the fundamental component of the non linear elements and the input [30], i.e.
{

D0 = b0
µ0Ep

,

D1 = U1ejφ1

µEpejφ = a1+jb1
µEpejφ .

(32)

Eq. (13), particularized to the input σ(t) of Eq. (28), gives the following expression

of the switching instant τk in the generic interval [kT, kT + T ):

τk

T
= µ0 + µ sin

(

2π

N
k +

2π

N

τk

T
+ φ
)

. (33)

Eq. (33) can be rewritten as:

Ek − ǫ sin(Ek) = Mk (34)
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where

Ek =
2π

N
k +

2π

N

τk

T
+ φ, (35)

ǫ =
2π

N
µ (36)

and

Mk =
2π

N
µ0 +

2π

N
k + φ. (37)

Remark 4 From Eq. (36) it is necessary that µ ≤ min
{

1, N
2π

}

to guarantee ǫ ≤ 1.

Such an assumption does not affect the validity of the proposed approach because, as

it will be clear afterwards, the sufficient conditions, provided by the method, refer to

the onset of the limit cycle, i.e. µ ≈ 0.

Remark 5 It is important to observe that Eq. (34) is related to the problem of find-

ing the abscissa corresponding to the intersection of the function sin(Ek) with the

line Ek−Mk
ǫk

(see Fig. 4). Therefore, any given problem conforming this geometrical

structure, can be expressed through an expansion in terms of Kapteyn series.

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

E
k

 

 
sin(Ek)
Ek−Mk

ǫk

E
k
*

Fig. 4 Graphic solution of the Kepler’s equation.

Eq. (34) is formally equivalent to the Kepler’s equation (1). Hence the solution of

(34) in terms of Kapteyn series gives:

Ek = Mk + 2

∞
∑

n=1

1

n
Jn(nǫ) sin(nMk). (38)
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From Eq. (38), an explicit relation of τk/T in terms of Kapteyn series can be

obtained:

τk

T
= µ0 +

N

π

∞
∑

n=1

1

n
Jn(nǫ) sin(nMk). (39)

Taking into account the expression of u(t) which can be compactly rewritten as

u(t) = M

N−1
∑

k=0

(δ−1(t − kT ) − δ−1(t − kT − τk)) ,

with δ−1(t) =

{

1, t ≥ 0,

0, otherwise
, the mean value b0 and the first coefficients b1 and a1 of

u(t) become:

b0 =
M

N

N−1
∑

k=0

τk

T
= Mµ0 +

M

π

∞
∑

p=1

1

p
JpN (pNǫ) sin [p(Nφ + 2µ0π)] , (40)

b1 =
2M

NT

N−1
∑

k=0

kT+τk
∫

kT

cos
(

2π

NT
t
)

dt =
2M

π

N−1
∑

k=0

sin
(

πτk

NT

)

cos
(

π

NT
(2kT + τk)

)

,

(41)

a1 =
2M

NT

N−1
∑

k=0

kT+τk
∫

kT

sin
(

2π

NT
t
)

dt =
2M

π

N−1
∑

k=0

sin
(

πτk

NT

)

sin
(

π

NT
(2kT + τk)

)

.

(42)

Let us consider the complex variable c1 = a1 + jb1 which can be rewritten as:

c1 = −
M

π
ejφ

N−1
∑

k=0

[cos(Ek) − j sin(Ek)] . (43)

Considering the following expressions associated with the Kepler-Bessel expansions

[26]:

cos(Ek) = −
ǫ

2
+

∞
∑

n=1

1

n
[Jn−1(nǫ) − Jn+1(nǫ)] cos(nMk), (44)

sin(Ek) =

∞
∑

n=1

1

n
[Jn−1(nǫ) + Jn+1(nǫ)] sin(nMk), (45)

the Eq. (43) becomes:

c1 = −
Nǫ

2
+

N−1
∑

k=0

∞
∑

n=1

{

1

n
[Jn−1(nǫ) − Jn+1(nǫ)] cos(nMk) − j [Jn−1(nǫ) + Jn+1(nǫ)] sin(nMk)

}

.

(46)

By using the following relations, (see Lemma 1 in Appendix 7 for a sketch of proof):

N−1
∑

k=0

cos(nMk) = N cos(p(Nφ + 2µ0π)), n = pN, p ∈ N,

N−1
∑

k=0

sin(nMk) = N sin(p(Nφ + 2µ0π)), n = pN, p ∈ N,

(47)
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the Eq. (46) is simplified as:

c1 =
M

π
ejφ

{

N

2
ǫ +

∞
∑

p=1

1

p
JpN+1(pNǫ)ejp(2µ0π+Nφ) −

∞
∑

p=1

1

p
JpN−1(pNǫ)e−jp(2µ0π+Nφ)

}

.

(48)

Finally, by using Eq. (48) and the property of Bessel functions [26]

Jn(z)

z
=

1

2n
(Jn−1(z) + Jn+1(z)) , (49)

an expression of D1 is obtained:

D1 = 2M
Ep

{

1
2 +

∞
∑

p=1

1
2pN+2

(

JpN (2πµp) + JpN+2(2πµp)
)

ejp(2µ0π+Nφ)+

−
∞
∑

p=1

1
2pN−2

(

JpN−2(2πµp) + JpN (2πµp)
)

e−jp(2µ0π+Nφ)

}

.

(50)

The next theorem gives a sufficient condition for the ripple stability of a PWM

closed-loop control system.

Theorem 1 A sufficient condition which guarantees the absence of solution of the

harmonic balance equation and, therefore, the absence of oscillations, predicted by the

dual-input describing function, of period NT with N ≥ 2, for the PWM feedback control

system, is
∣

∣

∣
G
(

j
π

T

)∣

∣

∣
<

Ep

2M
. (51)

Proof Let us consider the auxiliary variables α = 2πµ and β = 2µ0π + Nφ. The

function D1 can be rewritten as

D1 = u(α, β) + jv(α, β), (52)

where

u(α, β) =
2M

Ep

{

1

2
+

∞
∑

p=1

cos(pβ)

[

JpN (pα) + JpN+2(pα)

2pN + 2
−

JpN−2(pα) + JpN (pα)

2pN − 2

]

}

,

(53)

and

v(α, β) =
2M

Ep

{

∞
∑

p=1

sin(pβ)

[

JpN (pα) + JpN+2(pα)

2pN + 2
+

JpN−2(pα) + JpN (pα)

2pN − 2

]

}

.

(54)

If |D1|max denotes the maximum absolute value of D1, then a sufficient condition

for the PWM feedback control system to be free of oscillations with period NT is
∣

∣

∣
G
(

j
2π

NT

)∣

∣

∣
<

1

|D1|max
. (55)

Since |D1| =
√

u(α, β)2 + v(α, β)2, then the values of α and β which maximize

|D1| are obtained by seeking the values that satisfy the following two equations:

u
∂u(α, β)

∂α
+ v

∂v(α, β)

∂α
= 0,
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u
∂u(α, β)

∂β
+ v

∂v(α, β)

∂β
= 0.

By simple computations, the following non trivial solutions are obtained:























































































N = 2 : (α, β) = (0, π), H = M
Ep

(

− 1
3 0

0 − 1
2

)

, |D1| = 2M
Ep

,

N = 3 : (α, β)1 = (0, π
2 ), H = M

Ep

(

1
16

1
4

1
4 0

)

,

(α, β)2 = (0, 3π
2 ), H = M

Ep

(

1
16 − 1

4
− 1

4 0

)

,

N = 4 : (α, β) = (0,−), H = M
Ep

(

−
cos(β)

12 0

0 0

)

,

N ≥ 5 : (α, β) = (0,−), H =

(

0 0

0 0

)

.

(56)

In Eq. (56), H is the Hessian matrix obtained for each stationary point after stan-

dard but tedious manipulations by using the property of the Bessel functions [26]

∂Jn(pα)

∂α
=

p

2
[Jn−1(pα) − Jn+1(pα)] , (57)

and by evaluating the second-order partial derivatives of |D1| respect to α and β in

the stationary point.

On the basis of the above considerations, since the unique maximum of |D1| is for

N = 2, then one can state that the following condition

∣

∣

∣
G
(

j
π

T

)∣

∣

∣
<

Ep

2M

is sufficient to ensure the absence of limit cycles of period NT , N ≥ 2 for the considered

control system.

Remark 6 Note that the expression of D0 in Eq. (32) for N = 2, α = 0 and β = π

gives the value of µ0:

µ0 =
r

Ep + G(0)M
(58)

where G(0) = −cT A−1b is the static gain of the process.

6 Simulation results

In this section the effectiveness of the proposed stability criterion is investigated through

comparisons with local stability conditions. In the following, without loss of generality,

we consider M = 1; moreover the process time constants will be normalized in the

interval [0, 1].
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6.1 Example 1.

The describing function is tested for a first order controlled plant

G(s) =
1

sγ + 1
.

The inequality in Eq. (51), solved for Ep, gives the critical value of Ep, namely

Epdf :

Epdf =
2

√

π2 γ2

T 2 + 1

. (59)

By Eqs. (26) and (27) the expressions of N and F are respectively

L =
1 − e

T−τ∞
γ

γ
(

1 − e
T
γ

) +
Ep

T
, (60)

F = e−
T
γ









1 −
1

1−e
T−τ∞

γ

1−e
T
γ

+
Epγ
T









. (61)

Note that the derivative of F respect to τ∞:

∂F

∂τ∞
= −

T 2

γ

e
τ∞
γ

(

e
T
γ − 1

)

(

Epγe
T+τ∞

γ + Te
T
γ − (Epγ + T )e

τ∞
γ

)2
(62)

is less than zero for each τ∞ ∈ [0, T ].

Therefore the equilibrium point is locally stable if and only if the two following

inequality are satisfied:

lim
τ∞→0

F =
Epγ

Epγ + T
e−

T
γ < 1, (63)

lim
τ∞→T

F =
Epγ − T

Epγ
e−

T
γ > −1. (64)

Since Eq. (63) is satisfied ∀γ > 0, then from Eq. (64) the critical value of Ep,

namely Epls which assures the local stability of the equilibrium point is:

Epls =
T

γ
(

1 + e
T
γ

) . (65)

The ratio between Epls and Epdf can be rewritten as:

Epls

Epdf

=
x

√

1 + π2

x2

2 (1 + ex)
(66)

with x = T
γ , and it is easy to show that Epls < Epdf for all x ≥ 0. Therefore the

proposed criterion ensures the local stability of the equilibrium point for each ratio
τ∞

T ∈ [0, 1].
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6.2 Example 2.

A second order plant characterized by the following transfer function

G(s) =
sξ3 + 1

(sξ1 + 1)(sξ2 + 1)

with ξ1, ξ2, ξ3 ∈ [0, 1] and ξ1 > ξ2, is considered. The value of the modulator sampling

period T is randomly chosen in [0, min(ξ2, ξ3)/2] in view of the fact that PWM systems

are usually designed with a sampling period short compared with the response time of

the linear part of the system, so the ripple at sampling frequency is well attenuated at

the output of the system [7]. 10 Monte-Carlo simulations with 103 plants have been

conducted. In each simulation a value of Ep = ρEpdf with ρ ∈ [0.1, 1] was chosen

and the number of trials in which the proposed criterion ensures the local stability

is stored. Table 1 shows, for each simulation, the probability to have a local stable

PWM closed-loop process, for each ratio τ∞

T , when Ep = ρEpdf . The obtained results

show that the proposed criterion, even if approximate in nature due to the describing

function approach, gives an effective method to avoid limit cycles and to ensure the

local stability.

ρ 0.1 0.2 0.3 0.4 0.5
Prob. 0.5806 0.6325 0.7119 0.7764 0.8467

ρ 0.6 0.7 0.8 0.9 1.0
Prob. 0.9064 0.9652 0.9936 0.9997 1.0000

Table 1 Probability to have a local stable process for different values of ρ.

7 Concluding remarks

The first contribution of this paper is represented by an expression of the dual-input

describing function, in terms of Bessel functions, for a class of PWM modulator. The

second important result is a sufficient condition to ensure the absence of limit cycles

predicted by the dual-input describing function of period multiple of that characteristic

of the modulator. All the results proposed are related to an equivalence between the

switching instants of the modulator and the eccentricity of a planet orbit around the

sun, described by Kepler’s equation. Numerical simulations have shown the effective-

ness of the condition in the case of a first and second order plant.
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12. Zhang, T., Tadé, M.O., Tian, Y.C.: Linear estimate of the number of limit cycles for a
class of non-linear systems, Chaos, Solitons & Fractals, 31, 804–810, 2007.

13. Delfeld, F.R., Murphy, G.J.: Analysis of pulse-width-modulated control systems, IRE
Trans. Aut. Control, 283–292, 1961.

14. Peterchev, A.V., Sanders, S.R.: Quantization resolution and limit cycling in digitally con-
trolled PWM converters, IEEE Trans. Power Electron., 18, 301–308, 2003.

15. Abdelnour, G., Cheung, J., Chang, C., Tinetti, G.: Application of describing function in
the transient response analysis of a three term fuzzy controller, IEEE Trans. Syst. Man
Cybern., 23, 2, 607–610, 1993.

16. Heyns, L.J., Kruger, J.J.: Describing function based analysis of a nonlinear hydraulic
transmission line, IEEE Trans. Contr. Syst. Technology, 2, 1, 31–35, 1994.

17. Soto, J.C., De La Sen, M.: Non-linear oscillations in nonperiodic sampling systems, Elec-
tronics Letters, 20, 20, 816–818, 1984.

18. Williamson, D.: Describing function analysis and oscillations in non-linear networks, Int.
J. of Control, 24, 2, 283–296, 1976.

19. Lim, Y.: Quasi-linear analysis of oscillating servo-systems with random inputs, IEEE
Trans. Aut. Control, 10, 2, 164–171, 1965.

20. Colwell, P.: Solving Kepler’s equation, Willmann-Bell, Inc., 1993.
21. Boyd, J.P.: Rootfinding for a transcendental equation without a first guess: Polynomial-

ization of Kepler’s equation through Chebyshev polynomial expansion of the sine, Appl.
Numer. Math., 57, 12–18, 2007.

22. Dubinov, A.E., Galidakis, I.N.: Explicit Solution of the Kepler Equation, Physics of Par-
ticles and Nuclei Letters, 4, 3, 213–216, 2007.

23. Feinstein, S.A., McLaughlin, C.A.: Dynamic discretization method for solving Kepler’s
equation, Celestial Mech. Dyn. Astr., 96, 49–62, 2006.

24. Mortari, D., Clocchiatti, A.: Solving Kepler’s Equation using Bézier curves, Celestial Mech.
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Appendix A

To obtain the linearized model on the equilibrium point (x∞, τ∞) (see Eqs. (26) and (27))
let us consider the first-term truncated Taylor series of the function f(x(kT ), τk):

df(kT + T ) =
∂f(kT + T )

∂x(kT )

∣

∣

∣

(x∞,τ∞)

dx(kT ) +
∂f(kT + T )

∂τk

∣

∣

∣

(x∞,τ∞)

dτk . (67)
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Therefore, Eq. (26) becomes

dx(kT + T ) = eAT dx(kT ) + M sgn
∞

eA(T−τ∞)b dτk. (68)

Moreover, applying the implicit functions theorem to Eq. (27), one has

cT eAτ∞dx(kT ) +

[

cT AeAτ∞x∞ + M sgn
∞

cT eAτ∞b +
Ep

T
sgn

∞

]

dτk = 0. (69)

From Eq. (69), it is possible to find the value of dτk as function of dx(kT ):

dτk = −
cT eAτ∞

cT AeAτ∞x∞ + M sgn
∞

cT eAτ∞b +
Ep

T
sgn

∞

dx(kT ). (70)

By substituting (70) in (68)

dx(kT + T ) = eAT dx(kT ) −
eAT bcT

cT AeAτ∞x∞

M sgn
∞

+ cT eAτ∞b +
Ep

TM

dx(kT ), (71)

and taking into account the expression of x∞, it follows that

dx(kT + T ) = eAT dx(kT ) +
eAT bcT

L
dx(kT ), (72)

where

L = cT
[

I − eAT
]

−1
eAT

(

eAτ∞ − I
)

b + cT eAτ∞b +
Ep

TM
. (73)

Multiplying the second term of the previous expression by
[

I − eAT
]

−1 [

I − eAT
]

L = cT
[

I − eAT
]

−1
eAT

(

eAτ∞ − I
)

b + cT
[

I − eAT
]

−1 [

I − eAT
]

eAτ∞b +
Ep

TM
, (74)

it follows that

L = cT
[

I − eAT
]

−1 (

eAτ∞ − eAT
)

b +
Ep

TM
. (75)

Lemma 1

χ =

N−1
∑

k=0

sin(nMk) = N sin [p(Nφ + 2µ0π)] , n = pN, p ∈ N. (76)

Proof Taking into account the expression of Mk, χ can be rewritten as:

χ = cos

[

n

(

2π

N
µ0 + φ

)]

N−1
∑

k=0

sin

(

2πn

N
k

)

+ sin

[

n

(

2π

N
µ0 + φ

)]

N−1
∑

k=0

cos

(

2πn

N
k

)

. (77)

But
N−1
∑

k=0

sin

(

2πn

N
k

)

=
sin(nπ)

sin
(

nπ
N

) sin

(

n(N − 1)

N
π

)

, (78)

N−1
∑

k=0

cos

(

2πn

N
k

)

= sin(nπ)

(

cos(nπ)
cos
(

nπ
N

)

sin
(

nπ
N

) + sin(nπ)

)

. (79)

From the two previous equations, it follows that n must be equal to pN with p ∈ N, then

sin(nπ)

sin
(

nπ
N

) = (−1)p(N−1)N, (80)
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and
N−1
∑

k=0

sin

(

2πn

N
k

)

= (−1)p(N−1)N sin [p(N − 1)π] = 0, (81)

N−1
∑

k=0

cos

(

2πn

N
k

)

= (−1)p(N−1)N cos(pNπ) cos(pπ) = N, (82)

from which the proof follows.

With similar technicalities, the proof of the second summation in Eq. (47) can be approached.


