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Dans cet article, nous apporterons une réponse exacte (asymptotiquement) et surprenante à une question ouverte depuis
plusieurs années dans le domaine de la modélisation des comportements sociaux : est-il possible de naviguer dans un
graphe petit-monde de Kleinberg en temps optimal ? C’est-à-dire, est-il possible de suivre un chemin optimal d’un point
à un autre en utilisant seulement les informations disponibles localement. Cette question a clairement des applications
dans le design de tables de routage et de protocoles pair-à-pair. La réponse que nous apportons est la suivante : si la
dimension sous-jacente du graphe petit-monde est 1, la réponse est non, les chemins optimaux sont de longueur Θ(logn)
alors que le mieux que l’on puisse faire à partir des informations locales est Θ(logn · log logn) ; lorsque la dimension
sous-jacente est > 2, on démontre qu’un simple algorithme de parcours en largeur réussit à naviguer optimalement.

1 Introduction
Milgram revealed in his famous experiment [Mil67] that not only are individuals a few handshakes away

from each other, but they are also able to find such short paths between them, in spite of their extremely
local view of the worldwide social network. In 2000, Kleinberg [Kle00] proposed a simple random network
model that captures this surprising property of social networks. Beyond this natural sociological motivation,
his model had an important impact on the design on several peer-to-peer protocols (e.g., [ZGG02]), because
it addresses the general question of how decentralized algorithms can find short paths in a partially unknown
network. Kleinberg’s small world model consists of a d-dimensional grid {−n, . . . ,n}d (representing local
acquaintance between individuals, such as geographic or professional) augmented with one “long-range”
directed link per node pointing to a random node at distance r chosen with probability proportional to 1/rs

where s is a parameter of the model (this long-range link represents a random acquaintance met in the past
for instance). Kleinberg defined a decentralized routing algorithm as an algorithm that tries to route locally
a message from a node (the source) to another (the target), that is to say, by visiting only neighbors (local
or long-range) of already visited nodes (starting from the source). Kleinberg’s most striking result is that
no decentralized algorithm can found short paths (i.e., of length polylog(n) where n is the size of the grid)
if s 6= d, even when the diameter of the augmented graph is Θ(logn) as it was shown later on by [MN04,
MN05]. Only when d = s, decentralized algorithm may found short paths between random pairs. Indeed,
the simple greedy algorithm that simply routes the message to the closest neighbor (local or long-range)
of the current message holder computes paths of expected length O(log2 n) [Kle00]. Several decentralized
algorithms [FGP04, LS05] have been proposed to compute better paths when s = d efficiently (i.e. by
visiting at most polylog(n) nodes with high probability) and the best so far [LS05] for Kleinberg’s original
model computes path of length O(logn(log logn)2) between arbitrary pairs, which is still significantly larger
than the diameter Θ(logn) of the graph. The question of the ability of efficient decentralized algorithms to
find optimal paths was then stated by Kleinberg in 2006 in its celebrated paper [Kle06] (open problem n◦3).

We answer precisely to this question by first showing that if d = 1 no efficient decentralized algorithm
may found shorter paths than Ω(logn log logn) on expectation, and second, by providing a new efficient de-
centralized algorithm (largely inspired from the work of [LS05]) which computes optimal paths of expected
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length O(logn log logn) for d = 1 and O(logn) for d > 2, respectively. To our knowledge, this is the first
time that such a transition in performance is observed in this model when s = d.

Path length is a critical indicator of performance in routing protocols (speed, fault tolerance,...). A lot
of the peer-to-peer protocols (Symphony, Chord,...) so far use an augmented 1D ring, and our paper shows
that performance might be improved by considering 2D rings instead, with a modest overhead cost since
the degree of each node remains constant (5 for d = 2). We may also wonder if other networks (like the one
in [FG10]) present similar transition where, even if the diameter is small and short paths can be computed
by decentralized algorithms, diameter may not be obtained by any efficient decentralized algorithm.

2 Definitions and Main Results
The network. We consider the d-dimensional Kleinberg’s smallworld random network Kd with one long-
range links per node [Kle00] defined as follows. † The network consists of a d-dimensional toric lattice
Ld = {−n, . . . ,0, . . . ,n}d of (2n+1)d nodes, where each node u has, in addition to its 2d neighbors in the
lattice (its local contacts), an extra directed link pointing to a random node v 6= u (its long-range contact)
chosen independently with probability 1/(Zd ·β||u−v||), where ||u− v|| denotes the (`1-)distance in the un-
derlying toric lattice Ld (||u− v||= ∑

d
i=1 |ui− vi|), and βr denotes the size of the balls of radius r in Ld

(βr = #{u : ||u||6 r}), and Zd is the normalizing constant Zd = ∑v6=0 1/β||v|| = Θ(logn).

Efficient decentralized routing algorithms. We study algorithms that compute a path to transmit a mes-
sage or a file from a source to a target, along the local and (directed) long-range links of the network.
Following Kleinberg’s definition, such an algorithm is decentralized if it navigates through the network
using only local information to compute the path. Precisely, it has the knowledge 1) of the underlying lat-
tice structure (the d-dimensional torus), 2) of the coordinates of the target in the lattice, and 3) of the nodes
it has previously visited as well as their long-range contacts. But, crucially, 4) it can only visit nodes that
are local or long-range contacts of previously visited nodes, and 5) does not know the long-range contacts
of any node that has not yet been visited. However, 6) the algorithm (but not the path it computes) is au-
thorized to travel backwards along any directed links it has already followed. As Kleinberg pointed out in
[Kle02], this is a crucial component of human ability to find short paths : one can interpret point 6) as a
web user pushing the back button, or an individual returning the letter to its previous holder (who wrote
his address on the envelope before sending it). We ask furthermore the algorithm to be efficient, in the
sense that it has to visit a number of intermediate nodes which is at most poly-logarithmic in the size of
the network (polylog(n)) with high probability, when computing a path between a pair of nodes. This is a
standard requirement in social network ‡ where the size of the network is typically exponentially larger than
the capacity of each individual. Efficient decentralized algorithms are thus likely to model the capacity of
individuals to route messages in a social network.

Since each node has a constant degree 2d +1, the diameter of Kd is Ω(logn). It was shown by [MN04]
that the diameter of Kleinberg’s smallworld is indeed Θ(logn) for all dimension d ; their analysis suggests a
decentralized algorithm that would visit Ω(

√
n) nodes to compute a path of length O(logn) for each pair of

nodes, which is obviously unrealistic in the framework of social network (where n≈ 109). [Kle00] initially
showed that greedy routing (that always passes the message to the neighbor (local or long-range) of the
current holder that is the closest to the target) computes path of expected length O(log2 n) while visiting
O(log2 n) nodes. [MNW04] showed that all decentralized routing algorithm has indeed to visit at least
Ω(log2 n) nodes on expectation to compute a path between a random pair of nodes. [LS05] proposed an
efficient decentralized algorithm that computes near-optimal paths of expected length O(logn(log logn)2)
between each pair of nodes while visiting an optimal expected number of nodes O(log2 n). The question of
finding an efficient decentralized algorithm computing optimal paths of length O(logn) between any pair
of nodes was finally formulated as the open problem n◦3 by Kleinberg in its celebrated paper [Kle06]. The
following theorem, which sums up our main results, solves precisely this problem.

†. Note that our results are still valid with O(1) long-range links per node instead of one.
‡. with the notable exception of [FG10] whose routing algorithm visits 2O(

√
logn) nodes.
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Theorem 1 (Main results)

(1) For any dimension d and any ε> 0, there is an efficient decentralized routing algorithm that computes
a path of expected length at most O(logn log logn) between any pair of nodes (s, t), while visiting at
most O(log2+ε n) intermediate nodes with high probability.

(2) For any dimension d > 2, there is an efficient decentralized algorithm that computes paths of optimal
expected length O(logn) between any pair of nodes, while visiting at most O(log2 n) nodes with high
probability.

(3) For dimension d = 1, for all efficient decentralized routing algorithm A , there exists a constant c > 0
and a pair of nodes (s, t) such that the expected length of the path computed between s and t is at
least c logn log logn (showing that (1) is asymptotically optimal for d = 1).

Overview of previous results. Our optimal decentralized routing algorithms (propositions (1) and (2)
in Theorem 1) rely on simplifying and then improving the approach of [LS05]. The key steps of the re-
sults in [LS05] were obtained through rather complicated calculations. We obtain here a simple geometric
rereading of their results that allows us to improve them and get an optimal routing algorithms. In our re-
formulation of [LS05], if we forget about the technical details, their algorithm rely on the fact that in a
Kleinberg’s network, the long-range link of any node u has an equal probability ∼ 1

logn to fall in each of the
rings centered on u and whose distance ranges in [2i,2i+1) for i ∈ {1, . . . , logn}. It follows that if u is at dis-
tance r ∈ [2i,2i+1] from the target t, its long-range links has probability≈ i

logn ∼
logr
logn to be closer to t than u.

If one neglects the possible overlapping (which is fine for large enough r), the breadth-first search tree roo-
ted in u expands at a rate of≈ 1+ i

logn towards the target (1 because there is always at least one local contact
which is closer to t, plus i

logn for the probability that the long-range contact of the current node is closer

to t). It follows that after h = logn log logn
i steps, the BFS tree rooted contains ≈ (1+ i

logn )
logn log logn

i ∼ logn
leaves among which one has a positive constant probability to fall in the ith ring (the one that contains t)
and thus has a positive constant probability to fall at distance at most r/2 from t. Routing the message
from u to this leaf and repeating the process until reaching t yields a path whose expected length is at most
≈ ∑

logn
i=1

logn log logn
i = logn · log logn ·Hlogn ≈ logn(log logn)2.

In order to get proposition (1), we now fix some ε > 0 and consider concentric rings of radius logε j n,
with j ∈ {1, . . . , loglogεn n}, centered on the target. Consider that the message has reached a node u at dis-
tance r ∈ (logεi n, logε(i+1) n]. As in [LS05], we explore the BFS tree rooted in u but (1+ε) times deeper, up

to depth h= logn(1+ε) log logn
logr . This ensures that we get, with constant probability,≈ (1+ logr

logn )
logn(1+ε) log logn

logr ∼
log1+ε n leaves among which one of them has with constant positive probability its long-range contact logε n
times closer to the target. A constant number of BFS are thus explored in each ring centered on the target
on expectation. It follows that the expected length of the computed path between any pair of nodes is now

at most ≈ ∑
loglogεn n
i=1

(1+ε) logn log logn
log logεi n

. logn · log logn.

In order to get proposition (2), we improve the analysis of the algorithm above by taking into account
that the cardinal of the spheres grows at least linearly with their radius when d > 2. It follows from our cal-
culation that the expansion factor of the BFS tree rooted at a node at distance r ∈ (logεi n, logε(i+1) n] is now

at least ≈ 1+
√

logr
logn . Thus, we just need to explore each BFS tree up to depth h ≈ (1+ ε) log logn

√
logn
logr

to gather, with constant probability, log1+ε n leaves among which one long-range link points to a node
logε n times closer to the target. It follows that the expected length of the computed path between any

pair of nodes is at most ≈ (1 + ε) log logn∑
loglogεn n
i=1

√
logn

log logεi n
≈ log logn

√
logn∑

loglogεn n
i=1

1√
εi log logn ≈

1√
ε

√
log logn logn

√
loglogεn n = 1

ε
logn. It follows that this exploration based efficient decentralized algo-

rithm computes asymptotically optimal paths on expectation for any pair of nodes.

Our last result, proposition (3), shows that, even if it does not matches the diameter of the graph, no
other efficient decentralized algorithms can do better when d = 1. Consider an efficient decentralized routing
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algorithm which is bounded to visit at most m = O(logc n) nodes, for some constant c > 0. The intuition
for this last result is the following. First, in a Kleinberg’s network, with high enough probability, none of
the long-range contacts of any set of m nodes can be more than O(logc−1 n) times closer to the target than
any node in S. It follows that the algorithm has to visit at least one node in each concentric rings of radii
mi centered on the target. The first step consists of partitioning the underlying grid into concentric rings
of radii m9i, for i ∈ {1, . . . , logm9 n}, centered on the target. According to the above, no matter how high
the exponent c is in m = O(logc n), the algorithm will need to go through Ω(logm9 n) = Ω(logn/ log logn)
rings. The second step consists of proving by a coupling argument that the algorithm has almost no control
over the first nodes it will visit each times it enters a ring. Indeed, we prove that since the algorithm visits
at most m nodes in total, we can force the algorithm to enter each ring through a set of at most m9 nodes
(the entry points), which are close to the farthest border of the ring from the target, and chosen randomly
and independently of the algorithm. The third and last step consists then of bounding the extent of the BFS
trees rooted on these entry points. Since the entry points are independent of the algorithm, we are left with
a purely geometric analysis of these trees. This requires a finer analysis than for the routing algorithm we
proposed before, since we need to bound precisely the total length of the possibly explored long-range links.
By bounding the cumulated length of the long-range links used in these BFS trees, we are able to prove that,
with high enough probability, none of these BFS trees reaches the next ring, closer to the target, before depth
& logn log logn

logr , at least for the range of distances r ∈ [2log0.1 n,2log0.9 n]. We conclude that the expected length

of the computed path is at least ∑
logm9 (2log0.9 n)

i=logm9 (2log0.1 n)

logn log logn
logm2i & logn log logn

9logm (Hlog0.9 n/2logm−Hlog0.1 n/2logm) &

logn log logn
9c log logn 0.8loglogn = Ω(logn log logn). It follows that no efficient decentralized routing algorithm can

do better than our algorithm in proposition 1.
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