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The Ginzburg-Landau functional with a discontinuous and

rapidly oscillating pinning term. Part II: the non-zero
degree case

Mickaél DOs SANTOS*

April 29, 2011

Abstract

We consider minimizers of a Ginzburg-Landau energy with a discontinuous and
rapidly oscillating pinning term, subject to a Dirichlet boundary condition of degree
d > 0. We prove that minimizers have exactly d isolated zeros (vortices). These
vortices are of degree 1 and pinned by the impurities. As in the standard case studied
by Bethuel, Brezis and Hélein, the macroscopic location of vortices is governed by
vortex/vortex and vortex/ boundary repelling effects. In some special cases we prove
that their macroscopic location tends to minimize the renormalized energy of Bethuel-
Brezis-Hélein. In addition, impurities affect the microscopic location of vortices.
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1 Introduction

In this article we let Q C R? be a simply connected domain and let a. : Q — {b,1}, b €
(0,1) be a measurable function. We associate to a. the pinned Ginzburg-Landau energy

B = 5 [ {ITu@P + 55 (0cto? = u@)?)?} . (1)

Here, u € H'(Q,C) and € > 0 is the inverse of the Ginzburg-Landau parameter.

Our goal is to consider a discontinuous and rapidly oscillating pinning term (the pinning
term is a. : © — {b,1}). Our pinning term is periodic with respect to a § x J-grid with
§ =6(g) — 0 as ¢ — 0. We are interested in the minimization of (L)) in H*(Q, C) subject



to a Dirichlet boundary condition: we fix g € C*(9£2,S') and thus the set of the test
functions is
H; = {uec HY(Q,C)|troqu = g}.

The situation where d = degyn(g) = 0 was studied in detail in [II]. The non zero
degree case (d = degpqn(g) > 0) is the purpose of the present article. Recall that for
I' ¢ R? a jordan curve and g € HY/?(T',S'), the degree (winding number) of g is defined
as

2

Here "x” stands for the vectorial product in C, i.e. 23 X zo = Im(Z722), 21,22 € C, 7 is
the direct unit tangent vector of I' (7 = v+ where v is the outward normal unit vector of
int(I"), the bounded open set whose boundary is I') and 0, is the tangential derivative on
.

1
degr(g) = — /a gxongdr

This energy is a simplification of the full Ginzburg-Landau energy (see Eq. (I.2))) whose
minimizers model the state of a Type II superconductor (the parameter ¢ corresponds to
a material parameter, this parameter is small for Type II superconductor) [22], [I9]. The
pinning term models a heterogenous superconductor [14].

Physical informations which can be obtained with the simplification of the full Ginzburg-
Landau energy are quantization and location of zeros of minimizers. Their zeros represent
the centers of small areas where the superconductivity is destroyed. These areas are called
vorticity defects. Here the superconductor is a cylinder whose cross section is 2 and the
vorticity defects (under some special conditions) takes the form of small wires parallel to
the superconductor [22], [19].

Before going further, let us summarize two previous works in related directions [16],
[1]. In these works, the role of the pinning term is identified: its points of minimum attract
the vorticity defaults.

In [16], Lassoued and Mironescu considered the case where a. = a. Here, the pinning

term a = b mw ,0<b< 1, and w is a smooth inner domain of 2. These authors
1 inQ\w
proved that the vorticity defaults are localized in w and that their position is governed by
a renormalized energy (in the spirit of the [4]).
In [I], Aftalion, Sandier and Serfaty considered a smooth and e-dependent pinning term
as. Their study allows to consider the case where the pinning term has fast oscillations: it
is a perturbation of a fixed smooth function b: Q — [b,1] s.t. b < a..

They considered the following hypotheses on a., b:
o |Va.| < Cllng|

e there is 0. € R s.t. 0. = o, ((In] Ine|)~Y/2) and for all # € Q, we have

BI(I;i(ITI) {aE — 5} =0.

These authors study a full Ginzburg-Landau energy G L. with a pinning term:

GL.(u, A) = % /

Q

We denoted by A the electromagnetic vector potential of the induced field and by hex
the intensity of the applied magnetic field (see [19] for more details).

1
{]curlA — hex? + |(V — iA)u)? + 2—82(ag - \u!2)2} . (1.2)



In the study of the full Ginzburg-Landau functional without pinning term GL? (GL?
is obtained from (L[Z) by taking a. = 1), the vorticity defaults appear for large apply
magnetic field. They are characterized by two facts: the presence of isolated zeros x; of
a map u with a non zero degree around small circles centered in x; and the existence of
a magnetic field inside the domain. The nature of the superconductivity makes that both
facts appear together. Assuming that the intensity of the applied field hex depends on
0 < e <1 and that hec/|Ine| — A € R%, for the classical full Ginzburg-Landau energy, it
is well known (see e.g. [19]) that there is an inner domain wy (non decreasing with A) s.t.,
when € — 0, the vorticity defaults are "uniformly located" by wh.

In [1], the authors proved the existence of wy, an inner set of 2, where the penetration
of the magnetic field is located. In contrast with the situation without pinning term,
the presence of a. makes that, in general, the vortices are not uniformly located in wp.
Although in the proofs of the main results of [I], the minimal points of b seem play the role
of a pinning site, this fact is not proved. They expect that the most favorable pinning sites
should be close to the minima of b : wy should be located close to the points of minimum
of b.

One of our goals is to prove that the minimum points of a rapidly oscillating and
discontinuous pinning term attract the vorticity defaults.

Before going further, we construct our pinning term a..

Consider § = 6(¢) € (0,1), A= A(e) € (0,1] and let w C Y = (—1/2,1/2)? be a smooth
bounded and simply connected open set s.t. (0,0) € w and w C Y. For k,l € Z we denote

Y2, :=08-Y + (6k,dl), Q! = Uy co v, W=\ w

w;}er = U {w)‘ + (k,l)} and w, = U {(5 Wt (5k,6l)} .
(k,1)eZ? (k,l)éeZ2 s.t.
Y3 ,cQ

For b € (0,1), we define

a: R? — {b,1} as: R? — {b,1}
b ifze€w), and Lo b ifrew
x x
1 otherwise 1 otherwise

The connected components of {a. = b} = w, are called inclusions or impurities.

In the rest of this article A = A(¢) and § = d(e) are functions of e. We assume that
6 — 0 as ¢ — 0. In addition, we assume that either A =1, or A — 0 as ¢ — 0. The case
A — 0 is the dilute case.

We make the assumption

_[In(\)? B

Remark 1. e This is slightly more restrictive than asking that Ad > £ for some « € (0, 1).
e In [I] and in the situation where we have a bounded number of zeros, the smooth
pinning term @™ satisfies the condition |Vaf™°°™®| < C|Ine|. In order to compare

this assumption with (L3]), we may consider a regularization of our pinning term by a
mollifier pi(x) = p(x/t). A suitable scale ¢ to have a complete view of the variations

1
of a. is t = Ad. Thus, |V(pys * a:)| is of order N Consequently, the condition (L3



o

(a) The pining term is periodic on a § x d-grid (b) The parameter A controls the size of
an inclusion in the cell

Figure 1: The periodic pinning term

allows to consider a more rapidly oscillating than the condition in [I]. Indeed, we have
In |Vag™eoth| < In |Ine|+C and on the other hand (L3) is equivalent to In |V (pys*ac)| ~
[In(\)| = o/ Ing|'/3).
We denote by U. the unique global minimizer of E. in H{ (see [16]). Clearly, U.
satisfies )
—AU, = E—te(ag ~U?) inQ

. (1.4)

U.=1 on 0f)
This special solution may be seen as a regularization of a.. For example, one may easily
prove that U, is exponentially close to a. far away from Odw.. Namely, we have

Proposition 1. There are C,«a > 0 independent of €, R s.t.

la. — U] < Ce™*F in Vi = {z € Q| dist(z, dw.) > R}, (1.5)
Ce " . .
|VU,| < in Wg = {z € Q| dist(z, w.), dist(x,02) > R}. (1.6)

A similar result was proved in [I2] (Proposition 2). The above proposition is proved

using exactly the same arguments.
As in [16], we define

1 1
r) =5 [ {oavot + uta - pep .

Then we have for all v € Hj, (see [16])

E.(U.v) = E.(U.) + F.(v).



Therefore, u. is a minimizer of E. if and only if u. = U.v. where v, is a minimizer of F;

in H gl. Consequently, the study of a minimizer v, = U.v. of E. in H, gl (location of zeros

and asymptotics) can be performed by combining the asymptotic of U. with one of v,.
Our main result is the following

Theorem 1. Assume that \,0 satisfy (I3]) and that A — 0.

Quantization. There are eg > 0, ¢ > 0 and ng > 0 s.t. for 0 <e < gg:
1. v has exactly d zeros x5, ..., x5,
2. B(x§,c\d) C we and

3. forp=p(e) L 0 s.t. |Inp|/|Ine| — 0, there is C > 0 independent of £ satisfying

[ In p|
|Ine|

lve] >1-C in Q\ UB(z5, p).

4. fore < g, degaB(xf,E)(vE) = 1.
Location.

e The macroscopic position of the zeros tends to minimize the renormalized energy of

Bethuel-Brezis-Hélein Wy (defined in [{)], Chapter I Eq. (47)):

limsup Wy(zf,...,z5) = min  Wy(a, ..., aq)
at,...,age)
a;Faj
Here the renormalized energy Wy is considered with all the degrees equal to 1, thus
we do not specify the degrees in its notation.

e The microscopic position of the zeros inside w. tends to be dependent only on w and
b: letting

T =———= €cuw,

then, fore, | 0 s.t. a@f” — &i, we have a; € w which minimizes a renormalized energy
W1 which depends only on w and b € (0,1).

Remark 2. 1. The renormalized energy defined in [4]
Wy {{a1,...,aq} CQ|a; #aj fori#j} - R

governs the location of the zeros in the situation where a. = 1 (homogenous case):
the zeros tend to minimize W,. In this article we will consider only the renormalized
energy with the degree equal 1. Therefore, from smoothness of W, (see [4] and [10]),
up to pass to a subsequence, the zeros converge to a minimizer of Wj.

This location is strongly correlated with the Dirichlet boundary condition g € C*(9£2,S!).
Moreover, minimizers of Wy are subject of two repulsive effects: there is g > 0 (de-
pending only on © and g) s.t. if {ay,...,aq} minimizes Wy, then |a; — a;| > n and
dist(ai, OQ) > Mo, 1, € {1, ...,d},i 75 j-



2. The result about the macroscopic position of the periodic and diluted pinning term
may be sum up as: the macroscopic position of the zeros tend to be the same than in
the homogenous case (a: = 1).

3. The microscopic location of the zeros (position inside an inclusion) is independent
of the boundary condition. For example, in the situation w = B(0,rg), i.e., the
inclusions are discs, this position should be the center of the inclusion. This fact is
not proved yet.

2 Main results

We present in this section several extensions of the above result dropping either the
dilution of the inclusion (A = 1 instead of A — 0) or the periodic structure. The main
results of this section are obtained under the condition: AJ satisfies (L3)).

Our sharper results are shared into four theorems:

The first theorem (Theorem [2]) gives informations on the zeros of minimizers wu., v,
(quantification and location).

The second theorem (Theorem [3)) establishes the asymptotics of v..

The third theorem (Theorem M) establishes, under the additional hypothesis A — 0, that
the microscopic position of the zeros is independent of the boundary condition g.

The last theorem (Theorem [l gives an expansion of Fy(v;).

The technics developed in this paper allows to consider either the case A — 0 or A = 1.
The results in the dilute case are more precise. One may drop the periodic structure for
the pinning term and consider impurities (the connected components of w. = {a. = b})
with different sizes (adding the hypothesis A|In | — 0).

More precisely we may consider the pinning term defined as follow:

e Fix Pe N* je{l,..,P} and 1 > & > 0. We consider M5 € N and

M =

{(Z) if M5 =0
{1,.., M5} if M € N*

o The sets M5’s ares.t. (for sufficiently small €) one may fix y7 ; € Qs.t. for (4, 5) # (¢, 5'),
i € M5, i" € M5, we have

lys,; — y5 | = & + & and dist(yS;,09) > &7 (2.1)

For sake of simplicity, we assume that there are n > 0 s.t. for small ¢, we have M} >
d = degpq(g) and

min ¢ Hllin dist(y51,02?), min . lyi1 —y5 1l ¢ > m. (2.2)
1= AR ’ i7i,:17"'7 ’ ’
it



e We now define the domain which models the impurities:

wEZLPJ U {yf,j—i-éj'w’\},w’\:)\-w.

j=lieM;
The pinning term is
a:: R? — {b,1}
. 1 ifr ¢ w.
b if z € w,

The values of the pinning term are represented Figure

Figure 2: Representation of the pinning term with P = 2

Our main results are

Theorem 2. Assume that \,0 satisfy (L3) and if the pinning term is not periodic (repre-
sented Figure[3) then we assume that A|Ind| — 0.
There is g9 > 0 s.t.:

1. for 0 < e < eq, ve has exactly d zeros x7, ..., x5,

2. there are ¢ > 0 and ng > 0 s.t. for e < g9, B(z5,cAd) C we and
min {min |zf — :E§|,dist(:nf,8§2)} > 1.
i | g

In particular, if the pinning term is not periodic, then the zeros are trapped by the
largest inclusions (those of size AJ).

3. for p=p(e) 1 0 s.t. |Inp|/|Ine| — 0, we have for e < ey,

[ In p|

>1-C
[ve] 2 |Ine|

in Q\ UB(z;, p).

Here C is independent of €.

4. for e < e, degaB(xf,s)(UE) = 1.



Theorem 3. Assume that \,§ satisfy (L3)) and if the pinning term is not periodic (repre-
sented Figure[3) then we assume that A|Ind| — 0.

Let e, | 0, up to a subsequence, we have the existence of ay,...,aq € Q, d distinct points
s.t. 5" — a; and

|ve,| = 1 and ve, — vy in Hlloc(ﬁ\ {aq, ...,ad},Sl)

where v, solves

—div(AVv,) = (AVu, - Voo, in Q\ {a1,...,aq}
Ve = ¢ on 02 '

Here A is the homogenized matriz of a® (5) Idpe if A\=1 and A = Idp2 if A — 0.

In addition, for each M > 0, v:”() = e (mf + %) converges, up to a subsequence, in
CY(B(0,M)) to f(\m])%e’gi where f: RY — R* is the universal function defined in [18]
and 0; € R.

Theorem 4. Assume, in addition to the hypotheses of Theorem [3, that A — 0.
Let [x] = [(x1,22)] = ([21], [x2]) € Z2 be the integer part of the point x € R2.

For % a zero of v., let
+ — 3]
3 >
33‘;: = f cw.
Then, as e — 0, up to pass to a subsequence, we have x; — a; € w. Here, a; minimizes
a renormalized energy Wi (given in [12] Eq. (90)) which depends only on w and b. In

particular, a; is independent of the boundary condition g.

|8,

Theorem 5. Assume that \,§ satisfy (L3)) and if the pinning term is not periodic (repre-
sented Figure[d) then we assume that A|1Ind| — 0.
Then
F.(ve) = Jee + db*(mrInb + ) + 0:(1)

where J. . is defined in [B.0) and v > 0 is the universal constant defined in [f] Lemma
IX.1.

This article is divided in two parts:

e In the first one (Section [3]) we consider two auxiliary minimization problems for weighted
Dirichlet functionals associated to S'-valued maps.

e The second part (Section ) is devoted to the proofs of Theorems[dl 2] Bl @ B The main
tool is an n-ellipticity result (Lemma [IT]). This lemma reduces (under the assumption
that A, ¢ satisfy (I3])) the study of F. to the one of the auxiliary problems considered
in Section Bl

3 Shrinking holes for weighted Dirichlet functionals

This section is devoted to the study of two minimization problems and it is divided in
three subsection.



The first and the second subsections are related with minimizations of weighted Dirich-
let functionals among S'-valued maps. In both subsections, the considered weights are the
more general one: o € L>(R?,[b2,1]). The third subsection deals the weight o = U2 in
the situation where U, is the minimizer of E. in H{ with a. given represented Figure [I]
(the periodic case with or without dilution) or Figure I (the general diluted case).

Notation 1. In Section [l we fix :
e a smooth and bounded open subset ' < R?s.t. Q C Q' ;

e a boundary condition g € C*(9€,S') and we fix an extension of g which is in H' N
C>(Q'\ Q,Sh). This extension is also denoted by g.

e we assume that d := degyn(g) > 0.

We will also consider (uniformly finite) families of points/degres {(x1,d1), ..., (xn,dn)} =
{x,d} s.t.

o 1, €0, x; #xy fori#i
e djares.t. d; e N"and ), d; =d.

According to the considered problems, for 0 < p < 871 min, i |x; — x| we will use the
following perforated domains

o Q,:=Q,(x) =Q\UiB(z4,p) ;

o Q= (x) =\ U;B(x;,p).

3.1 Existence results

In this subsection we prove the existence of solutions of two minimization problems
whose studies will be the purpose of the rest of Section B (Subsections B2 and B.3)).

3.1.1 Existence of minimizing maps defined in a perforated domain

Let x = (z1,...,2x5) be 1 < N < d distinct points of Q and let d = (dy, ..., dy) € (N*)V
s.t. Zz dl == d

For 0 < p < 8 ! min {min; dist(z;, 9Q), min; dist(z;, 9Q)}, we denote Q, = Q\UB(z;, p).

We define

I,(x,d) =T, := {w € H'(Q,,S")|w = g on 99 and degyp(a,,p) (W) = di}
and
Tp(x,d) =T, := {w € H'(Q,,S") |w = g on 9Q and w(z; + pe'’) = e’(di“ei)} .

In Subsection 32, we compare the minimal energies corresponding to a weighted Dirich-
let functional in the above sets. Here, we just state an existence results.

Proposition 2. Let a € L>®() be s.t. b*> < a < 1. Consider the minimization problems

o~ 1
Tpa(x,d) = inf —/ o|Vw?
2 Jo,

wel,

10



and

. xd—lnf—/ alVwl?.
Tralxd)= jnf 5 [ al9ul
In both minimization problems the infima are attamed

Moreover, if a € WH*(Q), then, denoting wp $ (resp. wD‘r) a global minimizer of
1

5/ a|lV - |2 in Zy(x,d) (resp. in JTy(x,d)) we have wdeg € H?*(Q,,S") (resp. wng €
Qp

H*(Q,,SY)) and

—div(aVwi®) = a|Vwie2wie® in Q,
deg deg deg _ ’ (31)
€ Z,and wyg X Oywpe =0 on 0B(z4, p)
dlv(anDlr) = a\VwD“ 2 ng in (3.2)
Dlr € J,and faB ozwng X 0y ler =0 '
The proof of this standard result is postponed to Appendix [Al
In the special case a = U2, we denote
Z,.(x,d = U2 Vw|? and d f U2|Vw|?
se(x,d) = in |[Vw|* an. jpe(x )= in ZIVw|“.
wel, 2 Q, weJp 2 Q
3.1.2 Existence of an optimal perforated domain
For a € L>®(R?,[b?,1]) we define
1
1, := inf inf — a|Vwl? 3.3
P, "‘E17"'7w|1\f>€89 wGH;(Q;),Sl) 2 // | | ( )
Ti—Tj|=20p —d.
A1y 503" dy—a B i) ()=
and )
Jpo = inf inf —/ a| Vw|?. 3.4
e wlmd>eﬂ weHL (9,81 2 Jq, Vel (34)
di‘sfé;%lﬁ)gzp& w(@i+pet?)=e"010i) 9,eR
Here ), = Q' \ UB(z;, p).
In the special cas a = Ug, we denote
L. := inf inf 1/ U2 |Vw|? (3.5)
’ Tle\;%ﬂ weHy (2,81 2 Jor
z;—x;|>8p —
d17...7dN>J07Zdi:d dog@B(xi,ﬂ)(w) d;
and
Jpe 1= inf inf L / U2 |Vwl|?. (3.6)
' T1,...,TgEN weHL (9,81 2 Ja,
|lzi—x;|>8p

) 20 —a2(04+6;) 9.
dist(w;,900)>8p W @iTre)=e T 0:ER

We have the following result
Proposition 3. Fora € L®(R?, [, 1]), there are xgﬁ%,xgg € Q% andd, o = (di,...,dn) €
(NN (with >"d; = d) s.t. {xg,e(%, d,} minimizes I, and xgg minimizes Jp o .

The proof of this result is in Appendix Bl

11



3.2 Dirichlet Vs Degree Conditions in a fixed perforated domain

Let 7stop > 0 be s.t. Nsiop < 1075 '9_d2diam(Q).

Consider z1,...,zxy € 2, d > N > 1 distinct points of Q satisfying the condition
Nstop < 1073 -9=% min dist(z;,09), and let p > 0 be s.t. min {nsop, minz; |z; — x|} > 8p.
Roughly speaking 7stop controls the distance between the points and 0€2.

The main result of this section is

Proposition 4. There is Cy > 0 depending only on g,8),nstop and b s.t. for o €
L>(, [b2,1]) we have

Tpa(%,d) < Tpa(x,d) < Z,q(x,d) + Co.
Here, ipa and jp#x are defined Proposition [2

The rigorous proof of Proposition Ml is presented in Appendix
Here, we simply present the main lines of the proof.
Two situations are possible:

1. N =1 or the points z1,...,zn are well separated: %mini# |z; — 2] > Nstops
2. The points x1,...,zx are not well separated: %min#j |z; — 25| < Nstop-

If the points are well separated (or N = 1), Proposition [] can be easily proved: it is a
direct consequence of Proposition 29 and Lemma 28 in Appendix [Cl
Indeed the proof is made in three steps:

Step 1: Using Lemma 28 we obtain a constant C; (depending only on g, €, stop) S.t.
le*lnstop,a()g d) < Ch.

Step 2: With the help of Proposition 29] we obtain the existence of a constant C} (de-
pending only on b) s.t. for d € N, denoting A%, = B(xi, 10 " ns0p) \ B(s, p), we

have
. 1 . 1 .
inf — | o]Vl < inf  — [ a|Vuw|® + Cyd®.
weH (A}, S) 2 )4 weHl(A;,Sl)~2 Al
w (1410 Msgope’? ) =Cst e*4° degsp(a,,0)=d

w(z1 -i—pe“9 ):Cstge“ie

~ 1
Step 3: By extending a minimizer of [Jjg-1 (x,d) by the ones of 5/ alV - |2 with
Al
13
Dirichlet conditions, we can construct a map which proves the result taking Cy =

Cy + d3Cy,.

Tlstop,&

3.3 Optimal perforated domains for the degree conditions

Consider Q' D Q a smooth bounded domain s.t. dist(9Q,) > 0 and a smooth S!-
valued extension of g to '\  (still denoted by g).
In this section, we study the minimization problem

1
L= inf inf = / U2 |Vw|? (3.7)
Z1,...,tNES) weH}(Q,,S) 2 Ja
|zi—z;|>8p
dl,...,dN>0,Zdi:d

’
P
degop(z;,p) (w)=di

12



where

6, = 9\ UB(wi,p)

and

Hgl(Q;,Sl) = {w € HI(Q;,SI) |w=gin Q’\QUB(mi,p)};

here, we extended U, with the value 1 outside 2. We recall that we denoted by U, the
unique global minimizer of E. in H;.

In this subsection we assume that Hypothesis (L3)) holds (|In(\d)|?/|Ine| — 0). This
is not optimal for the statements but it makes the proofs simpler (this hypothesis may be
relaxed in this Section, but it appears as a crucial and technical hypothesis for the methods
developed Section [4]).

A first purpose of this section is the study of the behavior of I, when p = p(e) — 0
as € — 0. In view of the application we have in mind we suppose that A6+ > p(e) > ¢
but this is not crucial for our arguments (here P = 1 if U, is associated associated with
the periodic pinning term) .

A second objective of our study is to exhibit the behavior of almost minimizing config-
urations {(z7,...,2% ), (d},...,d%)}.

For fixed p, e, the existence of a minimizing configuration of points x, . is the purpose
of Proposition Bl In this section we consider only almost minimizing configurations.

Notation 2. For €, | 0, we say that {(z7,...,2%), (d},...,d})} is an almost minimizing
configuration for p = p(ey,) | 0 when 27, ..., 2% € Q, |z} —a:;L] > 8p, dy,....d% > 0,> d =
d and there is C' > 0 (independent of n) s.t.

. 1
inf = U2 |Vuw|* —1,., < C.
weH;(),,81) 2 ,
ngaB(leyﬂ)(w):d;L

Roughly speaking, we prove in this section two repelling effects for the points: point/point
and point/0€ ; and an attractive effect for the points due to the inclusions we.
3.3.1 The case of the periodic pinning term

The main result of this section establishes that when e, p | 0, an almost minimizing
configuration {(x7,...,z% ), (d},...,dR},)} is s.t.

e the points z'’s cannot be mutually close,

e the degrees d}'’s are necessarily all equal to 1,

e the points z'’s cannot approach 02,

e there is ¢ > 0 s.t., for large n, B(z}, c\d) C w, for all .

These facts are expressed in the following proposition (whose proof is postponed to Ap-
pendix [DJ).

Proposition 5. [The case of a periodic pinning term/
Assume that \,§ satisfy (L3) and let a. be the periodic the pinning term (represented
Figure[1)).
Let e, 1 0, p = p(en) 4 0, 2, ...,27% € Q be s.t. |z — a:;L] > 8p, p > &, and let
Ty ondy € N be st Y d =d.

13



1. Assume that there is ig € {1,..,N} s.t. di # 1 or that there are ig # jo s.t.
|lzi, — 2% | — 0. Then

1
inf —/ U2 [Vw|* —1,., ¢ — oo.
weH}(Q),,S") 2 Jay

degaB(z;L ,P) (w):dll

2. Assume that there is ig € {1,..., N} s.t. dist(a ,00) — 0. Then

1
inf —/ U2 [Vw> = I,., ¢ — oo.
weH) (2,8 2 Jor

P
degop(an,p) (w)=dy

3. Assume that L= — 0 and that there is io € {1,... N} s.t. 2 & we or s.t. T} € we
dist (2], Ow,)

20"

and —————— — 0. Then

Ad
inf 1 /
weHL (.51 2 Ja

degyp(an,p) (w)=dj

U2 [Vw|? - I,,,gn} — 0.

l
p

A straightforward consequence of Proposition [5lis the following

Corollary 6. 1. Consider an almost minimal configuration (X,.,d,.) € QN x N+
ie., assume that there is w,. € H (Y \ UB(z!"°, p),S') verifying

1

degop(uee ) (w) = dP*° and 3 / U2\ Vuw|* < I,. + C.
© Q

N\UB( p)

(Here, C' is independent of €.)

Then, there is some 1y depending only on C s.t., for small €, we have
2" — 27|, dist(x%,0Q) > no and d; = 1 for all i # j, 4,5 € {1,..., N}.
In particular, we have N = d.

2. If, in addition, p = p(e) is s.t. p > € and % — 0, then there is ¢ > 0 (independent

of €) s.t., for small e, we have B(z°,cA\d) C we.

Proof. We prove the first part. Let C' > 0. We argue by contradiction and we assume that
for all n € N* there are 0 < e, < p=p(en) < 1/n, xp =X,c,, (di,...,dN) and wy, = w, ¢,
satisfying the hypotheses of Corollary [0l and s.t.

min {|z} — 2}, dist(2}, Q) } — 0 or s.t. there is ¢ € {1,..., N} for which we have d; # 1.

By construction we have that (x,.,,d) is an almost minimizing configuration for I,, ., with
p = p(en) > &y. Clearly from Proposition [{ we find a contradiction.
The proof of the second part is similar. O

We end this subsection by the following direct consequence of Corollary

14



Corollary 7. For sufficiently small €, p, an almost minimizing configuration (x1,...,2q)
for J, . is an almost minimizing configuration for I, ..
Moreover, there is Co > 0 s.t. J,. < 1,. + Co, Cp is independent of small €, p.

Proof. Let C >0 and let (21, ..., 2q), (2], ...,2};) € Q¢ be s.t.

jpﬁ(ﬂj‘l, ...,JEd) < Jp’g +C

and
Ipﬁ(x'l, ey x:i) <I,.+C.

From Corollary [6] there is ng = 7o(C) > 0 s.t. for e < p < ng, min; dist(z}, 9Q) > np.
Using Proposition @ we find the existence of Cj s.t.

Tpe(x1,.ymq) < jp,a(ajl, ey Tq) Jpe +C < jp@(x/l, @)+ C
Ly, ...;zy) + C+ Cy

[p’g + 20 + CO.

ININ A

O

3.3.2 A more precise result for the case of the periodic pinning term with
dilution

In this section we focus on the periodic pinning term (represented Figure [I]) with
dilution: A — 0.

Notation 3. We define two kinds of configuration of distinct points of :

e We say that for &, | 0 and p = p(e,) — 0, d distinct points of Q, x,, = (27, ...,2%)
form a quasi-minimizer of J, ., when J,.,(x,) — Jye, — 0.

e We say that for &, | 0 and p = p(e,) — 0, d distinct points of Q, x,, = (27, ..., x%)
form a quasi-minimizer of W, the renormalized energy of Bethuel-Brezis-Hélein (see
[4]) when Wy (x,) — min W,,.

Proposition 8. [Ezact location of optimal perforations|

Assume that A\, 9 satisfy (IL3) and that X — 0.

Lete, 10, p=plen) =0, p> ey and x, = (27, ..., 2]) be d distinct points of §).

If the points x,, form a quasi-minimizer of J,.,, then x, = (27, ...,x])) form a quasi-
manimizer of Wy.

This proposition is proved Appendix [El

3.3.3 The case of a general pinning with variable sizes of inclusions

We assume that a. is the general pinning term represented Figure We add a hy-
pothesis on the dilution: A|1nd| — 0.

Proposition 9. [The case of a non-periodic pinning term|

Assume that N, 0 satisfy (L3) and A\|Ind| — 0.

Let p = p(e) s.t. p> e and — 0. If (xpe,dpe) € QN x N*N is an almost minimal

p
\93/2
configuration for I,., then N = d (thus d; = 1 for all i) and there are c,ny > 0 s.t. for
sufficiently small e:

15



1 |a® — 27] dist(2%,09Q) > no for alli # j, 4,5 € {1,...,N}.

2. B(z°,eNd) C Ulemsyj1 + A - w (the centers of the holes are included in the largest
inclusions).

Moreover, there is Cy > 0 s.t. J,. < 1,. + Co, Cqg is independent of small e, p. And thus

an almost minimizing configuration X, for J,. is an almost minimizing configuration for

’[P,€

This proposition is proved Appendix [El

4 The pinned Ginzburg-Landau functional

In this section, we turn to the study of minimizers of (I.I) in H, 91. The pinning term is
the periodic one (represented Figure [I]) or the non periodic one (represented Figure [2).

Recall that we fix 6 = d(), 6 — 0, A = A(¢), A = 1 or A — 0 satisfying (L3]). If the
pinning term is not periodic then we add the hypothesis A|In d| — 0.
4.1 Sharp Upper Bound, n-ellipticity and Uniform Convergence
4.1.1 Sharp Upper Bound and an n-ellipticity result

We may easily prove the following upper bound.

Lemma 10. There is a constant C' independent of ¢ s.t., for 1 > A\d > p > € > 0, we have

: P

f F(0,Q) <db*rln=+J,. +C. 4.1

veH} (2,0) (0. ) < dbmin 2 Jpe + (41)

If, in addition, we assume that % — 0 (or )\5/;/2 — 0 if the pinning term is not periodic),

then we have for e sufficiently small

. bp

f  F.(v,Q) < db*(mln = Joe, 4.2

et e(v,2) < db™(mIn-= + ) + Jpe (4.2)

where vy > 0 is a universal constant defined in [{l/, Lemma IX.1.
Proof. From Proposition [B] one may consider (z7,...,25) = x° € Q¢ a minimizing config-
uration for J, .

Note that if % — 0, then, for small ¢, from Corollaries [6] and [7 (or Proposition [ if
the pinning term is not periodic), there are n > 0 and ¢ > 0 s.t. B(zf,cAd) C w. and
min; {min;; |z; — |, dist(x;, 0Q)} > 7.

Assume that 2= — 0 and let w, be a minimizing map in J,-(x%, (1,...,1)).

Consider u, /(y,), the global minimizer of

1 b2p2
0 _ 2 2\2 1
Eap =3 [, {170+ G- PR} we iy (BO.),0)

We consider the test function
We in Q,

T — x5

Z) in B(x5,p)




Estimate (42)) is obtained by using the fact that E(u.) = w|lng| +v + 0.(1) as ¢ — 0
(see [4] Lemma IX.1) and Proposition [

In the situation where LN 0, we may assume that L > Cy > 0. We can replace

the minimal configuration x° by a configuration y® s.t. there is C' > 0 independent of ¢
satisfying
Y; €Ew.N-(ZxZ)and J,.(x,(1,...,1)) < J, .+ C.

We consider the test function

a minimizer of J,.(y®,(1,...,1)) in Q\ UB(y5,p)
We = T —y; : .
i in B(y;, p)

A direct computation shows that (£I) holds. O

Note that
I,. <J,e<mdlInp|+ C. (4.3)

We now turn to the n-ellipticity.

We denote by v. a global minimizer of F. in H gl. We extend |v.| with the value 1
outside €.

One of the main ingredients in this work is the following result.

Lemma 11. [n-ellipticity Lemma/
Let 0 < o« < 1/2. Then the following results hold:

1. If for e < gg
E.(ve, B(z,*) N Q) < x?|Ing| — Cy,

then we have
lve| > 1— Cx in B(z,&**).

Here, x. € (0,1) is s.t. xe — 0 and gy > 0, C > 0, C; > 0 depend only on
by o, X, 2 (|9l a0 -

2. If for e < &g
F.(ve, B(z,e®) N Q) < C|lne|,

then we have
|ve| > o in B(x, ).

Here, p € (0,1) and g9, C > 0 depend only on b,a, 1,2, [|gl|c1 a0 -

This result is a direct consequence of Lemma 1 in [12].

4.1.2 Uniform convergence to 1 of |0.| in R?\ K, K closed set, w € K

With the help of Lemma [T1] we are in position to establish uniform convergence of |uv,]
to 1 far away from w;.

Proposition 12. Let 1072 - dist(w,dY) > u > 0 and K¥ = {z € Q|dist(z,w.) > uAd}.

Then, for sufficiently small e, we have

o] > 1— 0y /BN e
|Ine|
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Here C' is independent of € and L.

Furthermore, if for some small e, we have |v.(z)| <1—C ‘lﬁ()\{j)‘, then
n
1/4 md + 1
Fe(ve, B(z,e'*)) > mUH(MN-

rd+1 [
b2(1—b%) |lne| ’

Proof. Using Lemma [[I] Part 1. with a = 1/4 and with x = \/

obtain the existence of C' > 0 s.t. for € > 0 sufficiently small:

md+1
b2(1 — b2)
In order to prove Proposition 2] we argue by contradiction. There are e, J 0, u > 0 and
z, € Kl s.t.

if F.(v, B(z,e')) < | In(\d)|, then we have |v.| > 1 — Cx in B(z,e'/?).

’/UEn (‘Tn)’ <1l- CX
From (L)), we find

U, — 1| < Ce™ 2 in K2, (4.4)
Consequently, Lemma [Tl the definition of C' and (4.4]) imply that for large n,
1 , 1 - md+1
- —(1- > T . .
3 S {9 g O P 2 s mOd) o) 0

We extend v. to Q' := Q + B(0,1) with the help of a fixed smooth S'-valued map v
s.t. v = g on 0f). We also extend U, and a. with the value 1 outside 2.
For n sufficiently large, we have

1 1
5/9, {!VU&L!Q o= \van\2)2} < Cllne,).

Theorem 4.1 in [19] applied with » = 1072\éx and for large n, implies the existence of
B" = {B]"} a finite disjoint covering by balls of

{:L"GQ’

. / En En 1/8
—n — > —
dist(z, 0Q") > b and 1 — v, ()| > ( b > }

s.t.
rad (B") < 1072 - \u

satisfying

1 b2
5/ {\Wan\2+—<1—\van!2)2} > 7Y dj(|lng,| — |In(Ad)]) - C
uB? X
J

2e2
J
= 7Y _dj|lngl-C.
J
Here, rad (B") = >_, rad(B}'), rad(B) stands for the radius of the ball B, { = €,/(A\J) and

the integers d;L are defined by

I . En
o {|degaB;(v€n)| if B} C {z € Q'|dist(x,0Q") > ?}
f :

0 otherwise
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Since Bj C Q4+ By C {z € Q' |dist(z,0Q') > %}, we obtain

1 b?
3 [ Ao+ o=l PR 2 mdlngl - C. (4.6)
2 UB;-I 25%
From ([£4) and (L3]) we have
b2 (1 — b?) 1
. 1/4 2 _ 2\2
Rlve 0By U B el ) > S [ e e P
+§ |V 12+b—2(1—yv )21 4 0,(1). (4.7)
2 Ju,B, il 9e2 e mA AT

By combining (A1), [A3)), (£5), (£.8) and ([T, we find that

7db?| In&| + wd|In(\S)| > F., (ve,, ) — O, (1)
> F.,(ve,,U;B; U B(xm?f}/él)) -0, (1)
> wdb?|Iné| + (wd + 1) In(A\S)| — O, (1),

which is a contradiction. This completes the proof of Proposition O

4.2 Bad discs

4.2.1 Construction and first properties of bad discs
Consider a family of discs (B(;, 51/4))2.61 s.t
T, € Q,Viel,
B(xi, e /4 /4) N By, e/ /4) = 0 if i # j,
Uier B(z;,eY%) o Q.

Let Cp = Cy(1/4,7/8), 9 = €0(1/4,7/8) be defined by as in Lemma [[112. For ¢ < &g, we
say that B(z;,e/*) is a good disc if

F.(ve, B(zi,e"*) N Q) < Cy|Ine
and B(z;,e/*) is an initial bad disc if
F.(ve, B(zs,eY4) N Q) > Cy|Inel. (4.8)
Define J = J(¢) := {i € I| B(z;,e'/*) is an initial bad disc}.
Lemma 13. There is an integer N which depends only on g and ) s.t.
Card J < N.

Proof. Since each point of Q is covered by at most C' > 0 (universal constant) discs
B(x;,eY%), we have
> Fe(ve, B(wi, ') N Q) < CF.(ve, Q).
icJ
Cnd

The previous assertion implies that Card J < o + 1. O
0
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Let p(¢) = p 1 0 be s.t.

p | In pf®
0 and
ooz oA |Ine|

— 0. (4.9)

Note that from Assumption (L3, such a p exists, e.g., p = (AJ)?.
The following result is a straightforward variant of Theorem IV.1 in [4].

Lemma 14. Let €, | 0. Then (possibly after passing to a subsequence and relabeling the
indices), we may choose J' C J and a constant r independent of n s.t.

J' ={1,..,N'}, N' = Cst,

|z; — x| > 16kp fori,j € J', i #j
and
UicsB(i,e}/*) C Uicr B(wi, kip).
For i € J', we say that B(z;,2kp) is a bad disc.

Proposition 15. We have

P

1. .
dist(B(z;, 2kp), 0Q) 0

2. degaB(%%p) (’Ugn) > 0.

3. Ff:‘n (U€n7 B($17 ZKP)) > szdegaB(xi,znp) (UEn) In gﬁ - 0(1)
1
4. |ve,| >1-C ||1nn€p|| in Q\ Uje Bz, 26p).

Proof. We prove Assertions 1., 2. and 3.. Set
Jo = {i € J' | dego(p(z; 26p)n0) (V=,) > 0}

Since |vg, | > % in Q\ UjeB(x;,2kp), we have

0<d= Z dega(B(xiQ.%p)ﬂQ) (Uan) < Z dega(B(xi,Z%p)ﬂQ) (UEn)‘ (410)
IeJ’ IeJj

Consequently Jj # 0.

Up to a subsequence, we may assume that J is independent of n.

From Proposition [ for all i € Jj , we have dist(B(z;,'/4),0Q) > § (or 67 if the
pinning term is not periodic). Consequently, for i € J} we find

dist(B(x;, 2kp), 0N2)

— 0 4.11
P (4.11)
. P
since 532 — 0.
Assertions 1., 2. and 3. will follow from the estimate
FEn (UEn? B(x“ 2"€p)) 2 bzﬂ-degaB(xi,Qﬁp) (Uan) In €£ - 0(1)7 (412)

n
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valid for ¢ € J|. Indeed, assume for the moment that (£I2]) holds.

Then, by combining (£2), ([A3), @3J), €I), EI0) and {I2), we find that Jj = J',
i.e., 2. holds. Consequently, by combining Assertion 2. with (£.I]), Assertion 1. yields

and from Assertion 2. and (£I2), Assertion 3. holds.

We now turn to the proof of ([£I12), which relies on Proposition 4.1 in [19]. We apply
this proposition in the domain B = B(0,2k), to the function v'(z) = v, (p(z — x;)) and
with the rescaled parameter £ eq0 = £

Note that, from @), &€ < Emeso < p < A2 and |Ine| ~ | In Epeso| > | In(A)).
Clearly, v’ satisfies

1 1
Vo' |2+ 1—1/22} B / {vval2+_l_%"22}
/B {’ ‘ €r2neso( ’ ’ ) B(wi,26p) ’ | ’ 62( ‘ ’ )
= O(“IIED - O(“ngmeso‘)'

Hence, one may apply the following result of Serfaty and Sandier: there is (B;);er, a finite
covering of

{2 € B(0,25 — &meso/D) | [V (2)| < 1 — (gmoso/b)l/g}
with disjoint balls B; of radius r; < 1073 s.t.

1/ { /12 b2 /22}
— Vo'l* + 1—|v > d;i|In Emeso| — O(1);
2 Jpnus, V'] — (1= [v']%) % A | —O(1)

meso

hore d. — J1degan, (V) if B C B(0,2k — &meso/b)
700 otherwise

Note that from construction, {|v.,| < 7/8} C UJB(xi,E}LM) C Uy B(x;, kp). Conse-
quently:

. 3
if dega(BjmB(O,zn—gmeSO/b))(U/) # 0, then we have B; C B(0, 5/1)

Therefore, Z dj = degaB(O,Z%) (U/) = degaB(xi,Z%p) (Uen) and

1 \v4 2 1 2)\2
5 1- > d ; \ meso| — 1
2 /;(mi’z%p) { ‘ U&n‘ + 262 ( ’Utfn ’ ) } - ™ egaB(SEz72lip) (/U&‘n)‘ né‘ ’ O( )

= wdegop(a, anp) (Ver) 1n§ —0(1).

Thus (@I2) holds.

The last assertion is obtained using Lemmas [I0] and [[Il Indeed, note that the proof of
([AI2) gives a more precise result

3
FEn (Uffn? B(xi7 5/4:,0)) > b2ﬂdeg83(mi,2ﬁp)(van) In Eﬁ - O(l)

n

Let z € Q\ Uy B(z4,2kp) then B(w,s}/ﬁ‘) N B(x;, 3kp) = 0. Consequently, using Lemma
and the previous lower bound, we obtain:

F., (ve,, B(x,e%) < Ingpe, + Co < md|In p| + Co.

[ 1In p|

Therefore, from Lemma[IT} there is C' > 0, independent of x s.t. |ve, (7)] > 1-C Tnen|

O
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4.2.2 Location and degree of bad discs

Let w,, = € H'(Q\ Uy B(x;,2rp),S).

’/Uffn‘
Proposition 16. The map wy, is an almost minimizing function for I, ., .

1
Proof. Indeed, denote K, = =

/ U2 |Vw,|?, then we have
2 O\U j» B(x;,2Kp)

Kn (1= [ve, ) Vewn

IN

P (00, 0\ Uy B 20) + [
Q\U j» B(x4,26p)

(1= Jve, [ Ve[

= an(vean) F, Usn,UJ’B 55172“/0)) +/
O\U ;s B(x;,2kp)

1
< @), PropTHS Iy, +Cy | 122 / Va2 + O(1)
| In 6” Q\UJ/B Zi,26p)

1 —
< @D, PP IIS o, + O 1 P (00 0\ U B Zip) + O(1)
| Inp[®
S (H)7 (m) S [2’€P75n +C ’1 € ‘ + O(l)

< (M) < [2f-6p,an + 0(1)-
O

By combining Proposition Bl with Proposition [16] in the periodic case or Proposition
if the pinning term is not periodic, we obtain the following

Corollary 17. The configuration {(3317 R $N’)7 (degﬁB(x1,2np) (Uen)v e deg@B(xN/ ,26p) (UEn))}
is an almost minimizing configuration of Is., ., and consequently, N' = d, degop(a, 2np) (Ve,) =
1 for all i and there is ng > 0 independent of large n s.t.

i#]

min {min |z; — x|, min dist(mi,aQ)} > 2np,
B(x;,2noA\6) C we.

4.3 H}

o—~Weak convergence

In order to keep notations simple, we replace from now on, 2kp by p/2.

Using Corollary [T, up to subsequence, there is {aj,...,aq} C Q s.t. possibly after
passing to a subsequence, we have z}' = x; — a;.

Let pg > 0 be defined as

po = 1072 I]I€l7lé1ll {dist(ax, 0), |ar — a;]} -

1
Proposition 18. We have / {]V\U%W + 5_2(1 — ]van\2)2} =0(1).
Q

n
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Proof. From (@.2)), Proposition [I5] (Assertion 1., 2. and 3.) and Proposition [I6, we infer

that )
/ {|V|ven||2 Lla- |v€n|2>2} — o).
O\U; B(z1,p/2) €n

Consequently it suffices to obtain a similar estimate in B(x;, p/2). Note that B(z;, p) C we.

Thus, if we set

T; + pr)

ol (z) = Yenl - . B(0,1) — C,

then ' solves

u' (1 — [o/%) in B(0,1).

From [5], we obtain

1 9 b2,02
— V|d'||” + 1—[W?)?} =0().
5 Lo THIE + S =02 = 00

This estimate is the subject of Theorem 1 for the potential part and Proposition 1 in [5]
for the gradient of the modulus (see also Corollary 1 in [5]).

1 2 2
Set K, = —/ {|V|u/|‘2 + b (1-— |u/|2)2}. Using Proposition [Il we obtain
2 /B0,1/2)

2e2
1 o b U, ve 2\
W= B(wi.0/2) {‘ = ( b2
1 2 b2 212
= 5 v - (1— n(1).
5 S {1 g (e B f - ont)
Consequently, Proposition [I§ holds. d
Proposition 19. There is C > 0 s.t. for (fized) 0 < n < pg and n sufficiently large we
have
1 2 2
5 - Uen’vvan‘ - In,an <C. (4.13)
2 Q\UB(a;,n)

Proof. We prove the result for the periodic pinning term. The proof for a non-periodic
pining term is similar.
We use results proved in Appendix [D] Section [D.2} Proposition [33] and Lemma [341
Set

U2|Vw|?.

- ) 1
ue(B(zo, B)\ Blag,1),d) = inf 5/
weH (B(zo0,R)\B(o,1),S") 2 JB(xo,R)\

B(zo,r)
degyp(aq,r) (W)=d

Since the configuration (z7,...,z]}) is almost minimizing, from Proposition B3] we obtain

that
<C; (4.14)

Iyew =Y pe (Blaf o) \ Blal.m)

here C' is independent of n and large n. Using Lemma [B4] we have:
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e by Assertion 1. we find that

U2 |Vuw,|* <C, (4.15)

;|
2 UB(Z'Z';”SU)\B(I?LW/2)

e by Assertion 2. we find that
1

U2 |an|2 He., n7p0) \B(l‘%vn) S Ca (416)
2 /UB(ma,pw\B(mm) Z : < >

e by Assertion 3. we obtain

1
—/ U2 |V, |* < C; (4.17)
Q\UB(@,.00)

here C' is independent of 1 and large n.

Denote K, = 3 B
a'L?n

(s-t- B(a,,n/2) € Blai, 3n/4))

UZ |Vve,|* = I.,. We have for a fixed > 0 and large n

1
Kn,n < (m)v PI‘Op. mg 5/9

U2Vl =3 e, (Bt po) \ BEm)) +C"

\UB(as,n)
<@Em.Em<y [ Ve =Y e (B o) \ Bl ) +
UB(QC%PO)\B(QC?M) 7
< @Ig) < C.
Here C’,C” and C are constants independent of 1, n. O
Consequently, there is v, € HL (Q\{a1,...,aq},S) s.t. ve,, — vy in HL (Q\{a1,...,aq}).

In order to obtain the expression of the homogenized problem, we use the unfolding
operator (see [§], definition 2.1). More specifically, we define, for g C R? an open set,
€ (1,00) and 0 > 0,

7:5 : LP(Q(]) — LP(QO X Y)

_[e(s [%} +dy) for (w,y) € Ol x ¥
10} = Ts(o)(z,y) { 0 for (z,y) € As xY

Here, Y = (—1/2,1/2)?, [s] is the integer part of s € R and

ot U T et 5] (3] [2)).
Y& CQo, KezZ?
Y =6(K+Y)

A straightforward adaptation of a result of Myrto Sauvageot (J20], Theorem 4) gives
the following

Proposition 20. Let Qy C R? be a smooth bounded open set. Let v, € H?(,C) be s.t.

1. v, <1 and/ (1—|va)? =0,
Qo
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2. vy — vy in HY(Qq) for some v, € H'(Qp,S),

3. there are H, € W1 (Qq,[b?,1]) and § = &, | 0 s.t. Ts(H,)(w,y) — Ho(y) in
Lz(QO X Y),

4. —div(H,Vvy,) = vpfn(z), fn € L®(Q0,R).
Then vy is the solution of
— div(AVv,) = (AVu, - Vo),
where A is the homogenized matriz of Ho(5)Idg2.

The proof of Proposition 20l is postponed to Appendix [El

We apply the above proposition to Qo = Q\ UB(a;,n), § = 6, | 0 the sequence which
defines a.,, and H, = Ufn. By a straightforward application of Proposition [Il we obtain

a?(y) =1—-(1-*)I,(y) ifrA=1

L%(QoxY)
T5 (U2 )(x, = .
s(U2) () {1 a0

We find that v, solves

—div(AVw,) = (AVu, - Vo, )v,, ifA=1,
—Av, = |V, |, if A —=0.

Here A is the homogenized matrix of a2(3)IdR2.

4.4 The small bad discs
4.4.1 Definition

From the global bound on the potential part (Proposition [I8)), one may construct bad
discs of radius ¢, in the following sense:
as in [4] (Theorem II1.3), for [ > 2, there are k;, u; > 0 (depending only on €, g and )

s.t. for x € Q, if
1

) (1 —Jve?)? <
g2 B(z,2K€) :

then 1

lve] > 1 — P in B(z, kie).
We fix [ > 2 and we drop the subscript [. Let (B(z;, k¢));er be a family of discs s.t

r;, € Q,Viel,
B(xi, ke/2) N B(xj, ke/2) =0 if i # j,
UZ'GIB(JZ‘Z‘,KAS) o 0.

We say that B(z;, ke) is a small good disc if

1

= (1= [of*)* < p.
g2 B(z;,2ke)
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If B(x;, ke) is not a small good disc, then we call it a small bad disc. We denote J C I
the set of indices of small bad discs.

Following [4], using Proposition [I§] there is N; = N > 0 (depending only on €2, g and
l) s.t. Card(J) < N.

Using Lemma 27, for &, | 0, possibly after passing to a subsequence and relabeling the
discs, there are J' C J and &' € {x,...,9V 1k} s.t.

{lve,| <11/} C UiesB(xi, ken) C Uiey Blzi, K'en)

and
Ti— T
u28/{'ifi,j€=]’,Z';réj.
€n

4.4.2 Separation of small bad discs

By a standard iterative procedure, we may assume that the small bad discs are mutually
far away in the e-scale.

Proposition 21. Possibly after passing to a subsequence, we have, for large R and J" C J,
{’UEn‘ < 1 - 1/12} - U’iEJ”B(x?7 REn)7

where, for i # j,
|z — a7
————— — 00 asn — 00.

€n

4.4.3 Each bad disc contains exactly one small bad disc

We already know that the separated small bad discs are covered by the p-bad discs
defined in Lemma [T4l We next prove that there are exactly d small bad discs and conse-
quently, there is exactly one small bad discs per p-bad discs.

Proposition 22. For large n and for all i € J”, we have

degop(an, ke, (Ve,) = 1.

Proof. First we prove that, for large n and for all ¢, we have

degaB(x;L,Rsn) (U€n) 7& 0.

We argue by contradiction and we assume that, up to a subsequence, there is i s.t.

degyp(en Re,)(Ve,) = 0.

n n

. . |xz o $j| 1
Set M,, = min | bmin ———,§" " | and set
i#; 8Rey,
u, . B(0,M,) — C
€
wey (B a?)
'_)
v b
Note that, B(z}', Me,) C w. and by Proposition 21 we have M,, — occ.
It is easy to check that u/, solves —Au/, = u/,(1 — |u},|?). Following [7], up to a
subsequence,
ul, — ug in C2.(R?); (4.18)
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here ug : R? — C solves —Aug = ug(1 — |ug|?) in R2.

Then two cases occur: /(1 — ]u0\2)2 < 00 or /(1 - \u0]2)2 — 0.
C C
Assume first that /(1 — |ug|?)* < oo. From [7], noting that the degree of ug on large
C

circles centered in 0 is 0, we obtain that ug = Cst € S! and consequently / (1—|ug|?)* = 0.
C
Since u!, — ug in L*(B(0,2bR)), we find that

b2
/ a—jpp = 2 / (1~ [un/b[2)?
B(0,2bR) €n JB(2?,2Ren)

b2
_ _2/ (1= [ve, )2 + 0n(1) — 0.
€n JB(a?,2Ren)

Noting that B(z], key,) is a small bad disc and that B(z],2key,) C B(z}, 2Re;,), we have
a contradiction.

Therefore /(1 — |up|?)? = co. Consequently, there is M > 0 s.t.
C

22 4p* 2y2
(1= uo")” Zsupq — [ (L= v, [7)" ¢
B(0,bM) n €n JQ

Thus, for large n we have

b2
/ (1= fun[)? = —2/ (1~ Jue, /b]*)?
B(0,bM) €n JB(a?, Mey)

2?
> sups — 1—|v 22},
> s 2 [ =)

which is a contradiction with B(z]', Me,) C .
Consequently we obtain that for large n, degyp(ynr ge,)(ve,) # 0.
Now we prove that

degop(an Re,)(ve,) =1 for all 7 and large n. (4.19)

Note that each small bad disc contains at least a zero of v.,. Consequently, for p satisfying
([Z9), all small bad discs are included in a p-bad disc B(y, p) defined in Lemma [[4] (For
sake of simplicity we wrote B(y, p) instead of B(y,2kp)).

If B(y,p) is a p-bad disc, we denote Ay, = {i € J"|z!" € B(y,p)}. Clearly, if
Card(A,) = 1, then (4I9) holds.

We define

2t {10—2 ming jen, iz 27 — 7| if Card(Ay) > 1

Re, otherwise

From Proposition 211 if Card(A,) > 1 then e, /e, — .
For simplicity, we assume that y = 0 and let

- x; a0
B = B(0,8) \ U; AB<J,—”>.
(0,8) \ Uiea, >
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Clearly, we are in position to apply Theorem 2 in [I3] in the perforated domain B.
After scaling, we find that

1

p
Vo, > > degyp(pn Ve, )| In— —C =7mln— — C.
2 /B@,sp)\um’ oo 2 degopey e (t20) =) =),

Q€N

In order to prove ([£I9), we observe the case where there is y s.t. Card(A,) > 1. Note
that if for all y centers of p-bad discs we have Card(A,) = 1, then (@I9) holds. Moreover
if Card(A,) > 1, then we have

Z |degaB(w;L,R€n) (UEn)| > 1L
i€Ay

We obtain easily the following lower bound for i € A,:

1 2!
= Vv > ‘de n Ve, )| In —-C.
2 /B(ac?,&%)\m Voo, Bon(ey ) (V)| 10 7
Summing for ¢ € A,, we obtain that
Y
Z / |V, |* > 27 1n ¢,
= (2 ey Ren) Rgn

Consequently, we deduce that

1 / 2 P ®7
— Vv, | > mdln — + 7 In — On(1).
2y: 2 JB(y.8p)\UB (a7 Ren) Ren y s.t. c;(/xy)x Ren

From Lemma [I0 and Propositions [I6] and [[5] we deduce easily
1

/ U2 |V, |* = ndb? L2 +0,01).
2 JU B(y,8p)\UB(@7,Ren) €n

Combining the previous estimates, we obtain that
{y center of p-bad discs | Card(Ay) > 1} =0,
and thus degypn ge,)(ve,) = 1 for large n. O

Corollary 23. For large n, there is a unique zero inside each separated small bad discs
defined in Proposition [Z]]

Proof. From Proposition 22, one may assume that v, (z}') = 0.

Let i € {1,...,d}. In view of (£IS), if we denote

u, . B(0,M,) — C
uan(%na: +al) | (4.20)
xT — b

then, up to a subsequence, u/, — ug in C'(B(0,bR)).
Using the main result of [18], we have the existence of a universal function f : Rt —
[0,1] s.t

uo(x) = f(|z))e' %) where 2 = |z]e*?, 6; € R and f: RY — R is increasing.  (4.21)

Therefore, we may apply Theorem 2.3 in 2] in order to obtain that, for large n, u, has a
unique zero in B(0,bR). Consequently, for large n, v, has a unique zero in B(z}, Re,,). O
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Corollary 24. One may consider that R depends only on | (it is independent of the
extraction we consider), i.e, for l > 2 there is R > 0 s.t. for small e, denoting {z5|i €
{1,...,d}} the set of zeros of a minimizer v., we have

{Joe] <1 -1/} € U;B(a5, Rie).

Proof. From Corollary 23], one may assume that v., (z]") = 0.
Let f: Rt — R™ be defined as in ([£21]) and u/, as in ({20). For [ > 2, consider R; > 0
be s.t.

[ — Ry is increasing and f(bR;) > 1 — SEh

Note that from [21], one may consider R; ~ v/21/b.

By uniqueness of f, the full sequence |u},| converges to f in L> [B(0,bmax{R, R;})].
Consequently, for n sufficiently large, since f is not decreasing,

{Jve,| < 1—1/12} C U;B(a™, Riey).

4.5 Asymptotic expansion of F.(v.)
4.5.1 Statement of the main result and corollaries
Our main result is
Proposition 25. For all e, | 0, up to a subsequence, there is p = p(ey) s.t. €, K p K Ad
and s.t. when n — oo the following holds

b

where J, . is defined in B.8) and v is a universal constant defined in [4], Lemma IX.1.

Corollary 26. Let e, | 0, p be as in Proposition[23. Then we have

Jeren — Jpen = wdb®In Eﬁ +on(1).

Proof of Corollary 2. Using Proposition 3] consider (1, ..., z4) € Q% a minimizing config-
uration of points for J, ., i.e. s.t.
Tpen (@150 xq) = Jpe,

Combining Corollary [[with Proposition 5l we have the existence of ¢ > 0 s.t. B(x;,cAd) C
We.

Therefore, given a minimizing map w,, of jp,an (21, ...,xq), we may easily construct a
map w, € H'(Q\ U;B(z;,e,),SY) s.t. @, € J-, (21, ..., 24) and

1 -
Jer < 5 U2 Vi
Q\UB(z;,en)

1 1
o s 02 9
2 Jo\UB(z.p) 2 JUB(2i,p)\B(@i,en)

= Jpe, +db’rIn eﬁ + 0n(1). (4.23)
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On the other hand, Lemma [I0 combined with Proposition 23] yield
b
Jpen + db* (7 In e—p +7) +0,(1) < F., (ve,) < Jep iy + db (T Ib+ 7). (4.24)
We conclude with the help of ([@23]) and ({.24). O

4.5.2 Proof of Theorem
We are now in position to prove Theorem [ i.e., we are going to prove that
F.(ve) = Jeo + db?(rInb +7) 4 0-(1).
Indeed, using Lemma [IQ) it suffices to prove that
F.(ve) > Jeo + db?(rInb + ) 4 0-(1).
This estimate is equivalent to:
for all €, | 0, up to subsequence, we have F., (v.,) > J., o, + db*(rInb+7) + 0,(1).

Let €, J 0. Then, up to a subsequence, there is p = p,, given by Proposition 23] s.t.

b
Fo(ve) > Jypen + db2 (w0 22 4 4) 4 0,(1).

€n

We deduce from Corollary 26] that

Fo(ve,) > Jepe, —db?In 2 4 db?(r 1nz—'0 )+ on(1)

€n

= Jopen, +dV*(mlnb+7) + 0,(1),

which ends the proof of Theorem [l

4.5.3 Proof of Proposition

In order to construct p, we first define a suitable extraction.
For [ € N\ {0,1}, consider R; given by Corollary
Using Proposition 22] and Corollary 23] for sufficiently large n, v., has exactly d zeros
xn =7 n __
1 = 1,...,33‘d—33‘d.
Clearly, these zeros are well separated and far from 99 (independently of n).
Fix i € {1,...,d} and consider

ul, . B(0,0%/en) — C
En
S

For simplicity, assume x; = 0.
Up to a subsequence, one has, as in (€.21]),

ul, — ug in O (R, C), ug(x) = f(|z])e" %)

where z = |z|e?, §; € R and f : Rt — R¥ is increasing.
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Consequently, for [ € N\ {0,1}, one may construct an extraction (n;); s.t., denoting

/
u;Lz =u = |u2|el(9+¢l) and Ve, = VI,

{Jvi| < 1—=1/1%} C U;B(ws, Rien,), (4.25)
262
= Rjep, < 7
1 2 1
Vil 4+ = (1= |u / Vuol> + = (1= |uol?) | < =, 4.26
Lo [T+ 5 () = [ 9wl g (1ol | < 7 20
and 1
67 — billcr (Bopry)) < 7 (4.27)
Here R; ~ +/21/b and is defined in Corollary 241
Following the proof of Proposition 1, Step 2 in [7], one has
/ |V¢j|? < C independently of I. (4.28)
B0, 222\ B(0,R))

In B(0,)26%)\ B(0,ey,,), we denote v,, = v; = |v;|e’?+?) (e = z/|z|). By conformal
invariance, (4.27) implies that

(4.29)

C
190 = Oill e 080,010 + |91l 11720B(0,00)) < 7

Denote W; = B(0,2p;) \ B(0, p;) and consider ¢! € H/2(0W;,R) s.t

iy gt = [P0 on 08000
: ! 0 on dB(0,2p;)

Using ([.29), it is clear that |[¢);]| 512 = O(1/1). From this, it is straightforward that there
exists a constant Cy > 0 (independent of [) and W € H'(W;,R) s.t

1 C
trow, Ut = ¢y = ¢! and 2/ IV < 120.
Finally we define ¥; € HY(Q \ UB(z;, 1), R) by

\I/ﬁ( —x;) inx;+ W
v, =
0 otherwise

and

Therefore, denoting w; = ok = e0+o) U, = Ue,, and 2, = Q \ B(x;, p;), we have

. B 1
To(T15 00y 2g) < = UA V| = 5/9 UZ |V > 4+ 22UV (0 + ¢y) - VI + oy(1).
Pl
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From (£.28)), we obtain easily that

=2

i

V(@ + @) VI
Qp,

/ V(O +gp) - V\I’i( —x;)| = on(1)
zi+W;

and consequently

A 1
Tl sza) 5 [ ORITwl + (1), (4:30)

Qp,

On the other hand, from direct computations, one has

1 1 1
3 | UAvuP =g [ OAveP g [ URGal - 096+

Qp, Qp, Qp,
Using the same argument as Mironescu in [I8], one may obtain that

%/ UZ(1 — |u|)Y?|V6]? < C with C independent of . (4.31)

Pl

From (431]) and (4.25]), we obtain

1 1
—/ Ulz\Vle Z —/ Ulz\le\z — Ol(l).
2 Ja,, 2

Pl

Therefore, with (£.30]),

1 .
Fanz (Ulv sz) + Ol(l) > 5 / Ul2‘vvl’2 + Ol(l) = jpl' (4-32)
ol
In order to complete the proof of ([£22), it suffices to estimate the contribution of the discs
B(zi, pr)-
One has (using (4.20])
b2 u\ |2 b2 uy |2 2
B = 5 [ () g (- [5]) e
b? 2 1 2\ 2
= — Vu |+ = (1= |u|”) +a(1
2 B(O,le)‘ l‘ 2 ( | l| > ( )
b? 2 1 22
= = [Vuol” + 5 (1 —[uol”) +ai(1).
2 B(O,le) 2 < )

From Proposition 3.11 in [19], one has

1 1 2
—/ ‘VU0’2+— (1— ‘UO‘2) :Fln(le)—i-’Y—l-Ol(l),
2 JB(0bRy) 2

hence

Fe, (v, B(zi, pr)) = 0° [ In(bRy) + 7] + or(1). (4.33)
By combining ([£.32) with (£33), we obtain (£.22]) with p; = Rjep,.
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4.6 Proof of Theorems [2] and [3]
We prove the quantization part of Theorem [I] and Theorem

e The existence of exactly d zeros is a direct consequence of Corollary 23l

e The fact that they are well included in w,. and that v. has a degree equal to 1 on small
circles around the zeros are obtained by Proposition 22 and Corollary

e The lower bound for |v.| is given by Proposition
Theorem Blis obtained by combining:

e The weak H'-convergence of v., to v, which is a direct consequence of Proposition
(this is explained right after Proposition 20]).

e The behavior in an e-neighborhood of the zeros of v, , given by (4I8]) and Theorem
(combined with the main result of [I§]).

e In the case where A — 0, the fact that we may localize the zeros inside the inclusions

(microscopic location part of Theorem [I] and Theorem []) is obtained via Theorem 4 in
[12].
Indeed we take f,,(2) = tTop((ky 10),6/2)Ven ((Kn,ln) + 62) with (ky, 1) € §-Z7 is a center
of a cell containing a zero of v, . Using the main result of [I7], one may easily prove
that f, satisfies the conditions (A1) and (A2). Thus we can apply Theorem 4 in [12]
and infer that the location of the zero inside the inclusion is governed by a renormalized
energy which is independent of the boundary condition.

e The macroscopic location part of Theorem [l is a direct consequence of Proposition [15]

(#2)), Corollary (26]), (433) and Proposition [8

A Proof of Proposition

We prove the existence of minimal map in Z, and in J,. The main ingredient is the
fact that these sets are closed under H'-weak convergence (see [15]). Thus, considering a

1
minimizing sequence for 3 / a|V - |? in above sets, we obtained the result.
Qp
We fix 6p,0; : Q, — R some multivalued functions with smooth gradient s.t. e
d;
IT; <M> and e = x‘i’:‘. Here d; € N*, and they are given by the definition of Z, or

lz—i]

wWo _—

‘ —

if we are considering the minimization in J,, then we have d; = 1.
From Lemma 11 in [6], there is ¢pg € C(9Q,R) s.t. ge™*% = e*0.
Note that

w €T, == w =) with ¢ € H(Q,,R) and trage = ¢y, (A1)
w = e %F9) with ¢ € H(Q,,R),
w e jp — Z@Z + ¢ = Cst; on 83(3}2',,0) and trgng = ¢ - (AQ)
ji

Clearly, from (AJ) and (A2), Z, and in J, are H'-weakly closed.
We now prove the second part of Proposition 21
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One may easily obtain that for some A : €, — R, denoting w = elfote) ¢ Hl(Qp, R)
(and thus w € 7,)), we have

— div(aVw) = M <= {~div[aV (0 + ¢)] = 0 and A = a|Vw|*}. (A.3)
This observation is a direct consequence of the following identity

—div [aVeZ(G‘)ﬂb)} = —div[aV (0 + ¢)] et(fote) 4 alV (6 + ¢)‘2€Z(60+¢).

Note that under these notations one has |Vw| = |V (6p + ¢)|. Thus w is a minimizer in Z,
or J, if and only if 6y + ¢ minimizes the weighted Dirichlet functional under the condition
fixed by the RHS of (AJ]) or (A2]).

Consequently, we find that 6 4+ ¢ minimizes the weighted Dirichlet functional under its
Dirichlet boundary condition.

Therefore, we obtain easily that —div [@V(0y + ¢)] = 0. The identity V(6y + ¢) =
w X Vw yields —div(aVw) = Aw.

Hence, the Euler-Lagrange equations in ([B.1)),(B.2) are direct consequences of (A.3).

The condition on the boundary for wg% (resp. wD‘r)

equation satisfied by 6 + ¢‘;‘e§, w;‘i% — 0+458) (resp. 0 + gprg, g = e’(9+¢25)) by
Y € D(Q,R) (resp. ¥ € D(Q,R) s.t ¢p = Cst; in B(x;, p)).
Since « is sufficiently smooth, we can rewrite the Euler-Lagrange equation as

follows from multiplying the

Va-V(p+0)
a

—Ap = with € L*(,).

Va-V(p+0)
a

So, by elliptic regularity gbp QSD” € H%*(Q,,R), and consequently wgfo%, wgg € H%(Q,,Sh).

B Proof of Proposition

We prove the existence of a minimizing configuration {x,d} = {(z1,...,zn), (d1,....,dpn)}
for I, .
Let ({xn,dn})n be a minimizing sequence of configuration of I, ., i.e.,

. 1
inf By a|Vw|2 — Ip,od
weH (QR S s.t. 2 n
w=g in ¥\QUUB(T 1)
degyp(an ,p) (w)=dj for all i

here QF = Q' \ UB (27, p).

Up to a subsequence, we have N, = N = Cst, d, = d = Cst and x, — x with
X = (21, ..., xN) s.t. ming; |x; — x5 > 8p.

Consider wy, € Z,(xy,d) a minimizing map. Since wy, is bounded independently of n
in Hl(Qz), up to a subsequence, we have w, — wy in Hlloc(Qg), Qg = Q' \UB(z4,p).

Clearly the following properties hold:

e wy € Hp, (Q9,S') and wo = g in Q) \ Q.

1
e For all compact K C Qg we have 3 /

1
o|Vuwg|* < liminf—/ a|Vw,|? < Iyq.
K 2 Jk
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Thus wo € H (29,S') and / a|Vwol|? < 1,4
)

Now, it suffices to check that degyp(,, ) (wo) € N* for all 4. Since wp is Sl-valued, this
fact is equivalent to degyp(y, ) (wo) € N* for all i and for all p’ € (p,2p).

In view of the fact that for p € (p,2p) we have w, = W o\UBE) wh =
Woio\UBET ) and on the other hand the set
T = {w € H' (Y \UB(x;,0),S") | degop(z; py(w') = d; for all i € {1,..., N}}

is closed under the H!-weak convergence (see Appendix[Alor [15]), since w/, € Z’, we obtain
that w(, € Z'. Therefore {x,d} = {(z1,...,zn), (d1,...,d,)} is a minimizing configuration
for I, .

Now we prove the existence of a minimizing configuration for J, .
Let (xy,)n be a minimizing sequence of configuration for J, ., i.e.,

Toa(%n,1) = Jpa

Up to a subsequence, one may assume that there is x = (21, ..., z4) € Q% s.t. Ty — T4,
|z; — x| > 8p and dist(z;,0Q) > .
Let 1, = 8 max |z — x;|. There is a smooth diffecomorphism ¢, : R? — R? satisfying

¢n = Idp2 in R?\ UB(z}, p + m°)
On [xi + (1 +n,)z] =2 +2  for x € B(0,p)
|n — Idg2|c1(r2y = 0n(1)

For example we can consider ¢,, = Idr2 + H,, with

H, =0 in RQ\UB(:E?,p—I—%p)
" 1/2
oo+ (L m)a] = (1= (o)) & — 2~ ) for 2 € BOO, 50

Here 1, : RT™ — [0,1] is a smooth function satisfying

0 ifr<p
n(r) = - d [¥h| = O, 2.

For wy, € J,(xpn,1) a minimizing map, we consider

W Q\UiB(zi, (14 1m0)p) — st
x = wn [fn(2)]

Clearly w, is well defined and we have

/  aVinP= /
Q\U; B(wi,(14+1n)p) Q\U; B(z7,p)

o [:EZ Tt nn)pe“’} —n [qb(‘ri +(1+ nn)Pele)] = W [:E? + pe“ﬂ — U0+0:)

a]anIQ + o, (1),
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We can extend w, in U;B(zi, (1 4+ 1,)p) \ B(zi, p) by wn(z; + re?) = 040 p < <
(1 +1n)p-

1
Clearly, we have w,, € J)o(x,1) and ~ /
Q\Ui

5 | Vit |? = Jpa + 0n(1).

B(zi,p)

Thus considering w € J, «(x,1) a minimizer of — a|V - |?, we obtain

Q\U; B(z4,p)

1 1
—/ a|Vw]? < —/ | Vit |? = Jpa +on(1).
2 Q\U; B(zi,p) 2 Q\U; B(z4,p)

Letting n — oo we deduce that the configuration x = (21, ..., z4) is minimizing.

C Proof of Proposition 4

As explained in Section B:2] Proposition Ml is easily established when either N = 1 or
when the points are well separated. It remains to consider the case where N > 2 and there
are i # j s.t. |z — x| < 4Nstop-

C.1 The separation process

We assume that N > 2 and that the points are not well separated. Our purpose is to
compare the energy of jp,a to the energy of fp,a. To this purpose, we decompose €, into
several regions and we compare energies in each regions. These regions are constructed
recursively using the following version of Theorem IV.1 in [4].

Lemma 27. Let N > 2, z1,...,onx € R? and n > 0. There are k € {9°,...,9V"1} and
{y1, .., yn'} CH{z1, ., an} st

Ug\ilB(xiy 77) C Ui\ng(yly "177)

and
lyi — y;| > 8kn for i # j.

We let 29, ..., x?\, denote the initial points x1,...,xyx. For k > 1 (here, k is an iteration
in the construction of the regions), we let Ny denote the number of points selected at Step
k, and denote the points we select by :E]f, vee x]f\,k

The recursive construction is made in such a way that Ny > Niy1 and N > 1 for all
k>1.

The process will stop at the end of Step & if and only if one of the following conditions
yields

Rule 1: there is a unique point in the selection (i.e. Ny = 1),
Rule 2: min;; |:Ef — :E§| > Mstop-

1 - k=1 k-1
Step k, k > 1: Let my = g min;; |27 — 27|
Using Lemma [27], there are

kg € {91, ..., 9N—1711 and {af, ,x?vk} C {:I:If_l,...,w?v_kil}

s.t.
U;B(zF =t m}) € UjB(x?,/{kn,{C) and |zf — xﬂ > 8k, for i # j.

36



We denote n, = 2/<;k77k We stop the construction if Ny =1 (Rule 1) or if 4 7 min k T

? Y'> nstop (Rule 2).
In Figure B and 4] both stop conditions are presented.
Claim:

i. From the definitions of 0}, and 7, we have Ny < Nji_1 and ng_1 < 1}, < 1.
ii. The balls B(xé‘?, 2ny.) are disjoint.

iii. Denoting Af C {1,..., Ni_1} the set of indices i s.t. xf_l € B(:Eé?, kg1, ), then for i € A;?
k=1 _ k=1 %
x| >

we have B(xf_l,njg) C B(wf,ﬁkng). Furthermore, by construction, |z;

/
4ny..
K11
:L'% - x%| > 477st0p
T = 2K17]
477/1 < 4775t0p T : ‘ ‘ 4
(a) The initial balls ) The first step: a selec- (c) The process stops at the end of the first
tlon of two centers step since there are two well separated balls.
Figure 3: The process stops when we obtain well separated balls
o’ 4
k1M
o
m = 2K1m h ‘ y
(a) The initial balls (b) The first step: a selec- (c¢) The second step: it remains a unique ball
tion of three centers (the picture is at scale 1/2)

Figure 4: The process stops when we obtain a unique ball
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C.2 The separation process gives a natural partition of ()

Let Q,g, x1,...,xn, d and p, nsop like in Section with V > 2 and s.t. the points
are not well separated.

We apply the separation process. The process stops after K steps, 1 < K < N — 1.

We denote

{y1, .., yn'} C {x1,...,xn} the selection that we obtain, i.e., xJK =y; and N’ = Nk,

oN . Tlstop if N' =
- ’ 80 2 max Y 9 C.l
7 {min{9N * Nstop %min ly; — y]|} N > 1 n (K 77stop) (C.1)

We denote

Dj,k = B(ﬂj‘?,’l’]k) \ U:c?*leB(xlj,nk)B(x?_l’77]/6)7 k€ {17 "'7K}7 ] € {17 "'7Nk}7 (02)

Rj,k = B($§,771,c+1) \B(gj?vnk% k€ {07 7K - 1}7 ] € {17"'7Nk}7 (03)

and

D =Q\ Ujeq,. vy B(y;,m).

Note that by construction of 7, 7 and acf the following properties are satisfied:

D = Q\ UB(y;,n)

(a) The macroscopic perforated domain and the first (b) A mesoscopic ring and a mesoscopic perforated domain
mesoscopic rings

the balls B(xf_l, 2n;.) are disjoint (C.5)
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and
2-9n), < e < 9V (C.6)

Therefore

Q,=D U UjeDj U Uj xRk U U, R; with disjoint unions. (C.7)

Construction of test functions in D and Dj

Lemma 28. 1. Let n > 0. There is C1(n,Q,9) > 0 s.t. if x1,....,ony € Q satisfy
min;; |x; — x|, min; dist(x;, 0Q) > 4n and dy,...,dy € N* are s.t. Y d; = d then
there is w € H}(Q,,S") s.t. w(z) = (x;+f)di on 0B(zi,m) and

| 1vul < ci).
Qy
Moreover Cy can be considered decreasing with 1.

2. Letn >0,k > 8, do,dy,....,dv € N* be s.t. 3,y di =do. Then, there is Ca(k, do)
s.t. x1,...,an € B(0,kn) satisfying min;z; |z; — x| > 4n we can associate a map to
each family w € H'(B(0,2kn) \ UB(x;,7),S') s.t.

xo
W on 8B(O, 2HT])
Til on OB(x,1m)
and
/ IVl < Calx, do).
B(0,26m)\UB(z4,m)

Moreover Cy can be considered increasing with k, dy.

Proof. In order to prove 1., we consider, e.g., the test function

H:Q,—R
R (z— xi)d‘i with H ot H=0in {dist [.33,8 (Q \ B(a:,-,n))} > 77}
|z — x| —AH =01in {d1st [:L", 0 (Q \ B(:Ei,’l’})>:| < 77}

w € H}(Q,,S") and w(z) = (x_n+:)dz on 0B(z;,n)

Assertion 2. was essentially established in [I3], Section 3. We adapt here the argument
in [I3]. By conformal invariance, we may assume that n = 1. We let

¢ d;
S
I, L in B(0,26) \ B(0, %)
‘a:—kxi (‘—2‘ —2)‘ '
w(@) = (z — ;)™ . 3 —
11, iz — 2| in B(0, 55) \ UB(x;,3/2)
a4
T—=Ti)" a@le—ai|-2)p; —
(‘x — xi’)di e (2| 1‘ 2)992 in B(ZEZ, 3/2) \ UB(ZEZ, 1)
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(z —aj)%

here p; € C*(B(x;,3/2) \ UB(z;,1),R) is defined by e¥i = j#iﬁ Clearly
x — xj|%
llill H1(B(2s,3/2)\UB@) 1 bounded by a constant which depends only on dj. O
By (CI) and Lemma B8 part 1., one may find a map wo € H'(D,S!) s.t.
g on 0f)
wo = B (z — yj)dj ' ( where d; = Z d;)
(@) = 20 on 9By ) .
satisfying in addition
/D Vwol2 < C1 () < C (rstop). (C.8)

For each D, combining (C.2), (C.35), (C.6) and using Lemma 28 part 2, there exists a
map w; € H'(Dj,S!) s.t.

— ke
x —xt)%
% for x € OB(:Eg?,nk)
) _ mf’k
W k = N .
5(2) (& — af~)dn k=1
- for x € OB (x; ™", 1))
U
Here,
dig= Y d;
szB(w;cvnk)
and
/ Va4 < Co(2p,dyp) < Co(2- 971, d). (C.9)
Dj

Construction of test functions in R;’s and R;}’s
For R > r > 0 and 79 € R? we denote %(xo, R,7) := B(wo,R) \ B(xo,r). For a €
L>(R2,[b?,1]), we define

~ 1
o(Z(xg, R, 7),d) = inf —/ a|Vuwl? C.10
: ( ( ° ) ) wEHl(%(xO7R,r),S})2 R(zo,R,T) ’ ’ ( )
degyp(zq,r) (W)=d
and
Dir 7 . 1 2
e (% (xo, R, 1), d) = inf alVuw|*. (C.11)
weH" (B(z0,R)\B(@o,n):8") 2 J B(wo,R)\B(zo,r)

w(xo+Re?)=e??
w(zo+re?)e ¥ =Cst

In the special case a = U2, we denote

Ma(%('x(h R7 T)a d) = MU? (‘%(‘T()u R7 T)7 d)

and

W2 (R (o, R,r),d) = gl (R (a0, R,r), d).
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Note that the minimization problems (C.10)) and (C.11]) admit solutions; this is obtained
by adapting the proof of Proposition 2
If « is Lipschitz, then the solutions of (CI0) and (C.IT)) are in H2.

We present an adaptation of a result of Sauvageot, Theorem 2 in [20].

Proposition 29. There is C, > 0 depending only on b € (0,1) s.t. for R > r > 0 and
a € L®(R% R) satisfying 1 > o > b, we have

Mgir(%(‘roa R7T)7CZ) < Na(‘@(x()yR?T)a CZ) + dQCb-

Proof. This result was obtained by Sauvageot with a@ € W1°(R?, [v?,1]). We may extend
this estimate to a € L>®°(R?, [b%,1]).

Indeed, let (p;)1s1>0 be a classical mollifier, namely pi(z) = t~2p(x/t) with p €
C>°(R%,10,1]), Suppp C B(0,1) and [z p = 1.

Set oy = a* py € WH(B(z¢, R), [b%,1]). We have

}i_r}& Poy (Z(x0, R, 7),d) = po(%(x0, R,7),d) (C.12)

and

}/IH(l] MDir(‘@(gjO) R, 7"), ~) = MaDir('@(:EOv R, T)7 d) (013)
—

Qg

We prove (C.12), Equality (C.13]) follows with the same lines.

Let w be a minimizer of o (% (zo, R,7),d). By using Dominated convergence theorem,
since oy — a in LY(B(zg, R)), we obtain that ay|[Vw|* — o|Vw|? in LY(%#(xo, R,7)) as
t — 0. Consequently

lim 1o, (0, R, 1), d) < pia( (0, R 1), ).

On the other hand, let w; be a minimizer of ,ua(%(a:o,R,r),cZ) and let t, | 0. Up to
a subsequence, wy, — wo in H'(%(x0, R, 7)) as n — oo and /g, Vwy, — /aVuwy in
L*(%(z0,R,7)).

Since the class Z := {w € H(%(xo, R,7),S') | deg p(zo, ) (W) = d} is closed under the
H'-weak convergence (see Appendix [A] or [I5]), we obtain that wy € Z. Consequently, we
have

liItniélf,uat(e@($0,R,’f’), )Zﬂa(t@(x&R’r)v )
%

Thus the proof of (CI2) is complete.

Therefore, without loss of generality, we may assume that « is Lipschitz.

One may easily prove that if R < 4r, then uD"(%2(zo, R,r),d) < 2d°wIn4. Thus we
assume that R > 4r. Clearly, it suffices to obtain the result for d = 1 and zo = 0.

Let w be a global minimizer of pq(Z(xg, R/2,2r),1). As explained in Section [Al
denoting z/|z| = €, one may write w = ¢"®+%) for some ¢ € H*(%#(zo, R/2,2r),R). Now
we switch to polar coordinates.

Consider

B 2 ) i 27
I—{p€[2r,R/2]|/0 V(0 + ¢)| (p,@)d9§p2/0 a(p,@)d@}.

Then I is closed (since ¢ € H?). On the other hand, I is non empty, by the mean value
theorem.
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Let 71 = minI and ro = max I. We may assume that ¢(r2,0) = 0 and ¢(r1,0) = 6.
We construct a test function:

0 if 2ro <p <R
Do —
TzT p¢(7"2,9) if 7o < p < 2r9
2
¢/(p’ 9) = ¢(p76) if T1 S P S 79
20 — _
& rl¢(’f’1,9)+2r1 peo ifr1/2§r§r1
1 71
bo ifr<p<ry/2
As explained in [20], there is C' depending only on b s.t.
1
5/ __a([VB+ P =V +9)?) <C.
B(0,R/2)\B(0,2r)
Thus the result follows. 0

As a direct consequence of Proposition (the two first assertions of the next propo-
sition are direct), we have

Proposition 30. Let a € L°(R?,[b%,1]), R > r1 >r >0, d € Z and x¢ € R2, we have
1. pio(Z(x0, R,7),d) = d?pio(# (0, R, 7), 1),
2. b27rln§ < po(Z(x0, R,7),1) < 7Tln§,
3. po(#(xo, R, 7),1) < pio(#(x0, R,71),1) + pro(Z(x0,7r1,7),1) + 2C), where Cy, is given
by Proposition and depending only on b.

For a € L>®(9Q,[b?,1]), using Proposition B9, there is Cj depending only on b € (0,1)
st. forall k € {1,.., K — 1}, j € {1,..., N}, there is w. j x € H (R;,S') s.t.

o kvdig
T — x7)%,
% for x € 8B($§a77;g+1)
U/kﬂ}kl
w 7‘7k r) = 1
,j ( ) (l‘ _ x?)dg,k k 1
%JJJ@T for x € 8B($j777k) where ya,jk €S
UM

and s.t. for all w € H'(R;,S") satisfying degyp (k) (W) = ;). one has
]7

/ |V jk* < / o|Vw|? + C’bd?k < / a|Vw|? + Cyd?. (C.14)
Rj,k Rj’k Rj,k

Now we consider the rings R;. For j € {1,..., N}, we denote
di= Y d.
z:€B(y;,m)

Using Proposition B9} for j € {1,...,N'}, we obtain w, ; € H'(R;,S') s.t.

% for x € 0B(y;,n)
Wa,j(x) = (z —y;)?
%C’].TJ for x € 0B(yj, nk) where v, € S*
K
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and s.t. for all w € H'(R;,S') satisfying degyp(y, n)(w) = d; one has

/a|wa,j|2g/ alVul? + Cyd?. (C.15)

g R;
C.3 Proof of Proposition 4

Note that there are at most d? regions Dj 1, at most d? rings R}, and at most d rings
R;. Consequently, denoting

Cy = 04(97 Qa b, nstop) = Cl("?stopa g, Q) + d202(2 : 9d_17 d) + 2d2cbd2
and using (C1), (C3), (CI), (CI4), (CI3), one may construct a test function w, € J,

(up to multiply by some S!-Constants each function previously constructed) s.t. for all
w € Z,, one has

/ oz|Vwa|2§/ a|Vul? + Ch. (C.16)
Q, Q,

Clearly, (CI6) allows us to prove Proposition ll with Cy = Cy/2.

D Proof of Proposition

D.1 Description of the special solution U.

From Proposition [, we know that far away dw,, U, is uniformly close to a.. Here we
prove that, in a neighborhood of dw,, U, is very close to a cell reqularization of a..
Let \
a: YV=(-33)%(-53 - {b.1}
{b ifrewd=\w .

1 otherwise

x
Consider V; the unique minimizer of
22
E5 (V,Y) / IVV|? + 252 ~ V)2 V € HL(Y,R). (D.1)
Lemma 31. We have the existence of C,v >0 s.t. fore >0 andx €Y

. §J
|U-[y; + 0] — Veyoi ()| < Ce™ <.

Thus in the periodic case, we have U, which is almost a 0 - (Z x Z)-periodic function in
Qincl in the sense that

U.(x) — Us [+ (6k, 01)] | < Ce™ % if &, 2 + (5k,8) € Q" and k, 1 € Z.

Proof. Step 1. We first prove that, for all s > 0 and for sufficiently small ¢, we have

b2 1 b2 1
U2 > R 5 in Q\ w.. The same argument leads to U2 < +

+ s in w; and for

b2+ 1 b2+ 1
i —SinY\wAandVgg i + 5 in w?.

sufficiently small &: Vg >
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From Proposition [I it suffices to prove that for

¢
1462
1—/+5

— s in {z € R?|dist(x, Ow.) < Re}. Here C > 1, > 0 are given by

R>a'ln

1402

we have U, >

@3).

We fix 0 < s < 1 and we prove that for € = ¢, | 0, up to pass to a subsequence, we
b +1
have U2 > — s in {z € R?|dist(z, w.) < Re}.
Let zo = yi; + A7 20 € Owe, 20 € 0w and for x € B(z:, A\0FTY), we write © = 2. + &7
with & € B(0,\6*+1/e) (here P = 1 if we are in the periodic situation). We define

U.(Z): B(0,X67T1/e) — b, 1]
i s Ud(ze +e7)

It is easy to check that

— AU, = U.(a? — U2) in B(0, \0"+1 /) 02)
U. € H' N L>®(B(0, A1 /e), [b, 1]) '
where B
b in 2577 A B0, AP+ Je)
Ge = 3 .
1 in W N B(0,\67+1 /¢)
Clearly
_ J
Ye T % B0, AT e) = {% S(w— zg)} N B(0, A7+ J¢)
J .
= 2 [N B8,
and thus
2 _ J )
W N B0, 6T /e) = % AIR*\ w) — 20) N B(0,57 7]}

Note that A\d¥*! /e — oo and 6717 — 0, thus by smoothness of w, up to a subsequence,

j ,
we have % AIR? \w) = 221N B(0,67T179)} — Ry, (R x RT). Here Ry, is the vectorial

rotation of angular 6y € [0, 27).

For sake of simplicity, we assume that 6y = 0.

From (D.2)) and standard elliptic estimates, we obtain that U, is bounded in W2?(B(0, R))
for p > 2, R > 0, thus up to consider a subsequence, we obtain that U. — Uy, in CIIOC(]R2)
where U, € C'(R?, b, 1]) is a solution of

—Aﬁb = ﬁb(l — 0}12) in RxR*
—~ AU, = Uy(V? — U) inRxR™. (D.3)
Uy, € CH(R?) N HE,.(R?) N L=(R?)
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It is proved in [14] (Theorem 2.2), that (D.3) admits a unique positive solution. Moreover
Up(x,y) = Up(y) (Up is independent of its first variable) and Uy, is the unique solution of
U =Uy(1 - UP) in RT
Ul = U,(0? ~U2) i R- ,
UbECI(R,R), UI;>O, Emszl, l_imUb:b

This solution Uy may be explicitly obtained by looking for U, under the form

AeV2® _ i
_— ifxz>0
U — AeV2r 41
b(x) Be—b\/im _ :
ifx<0

Be—bV2r 4 1

2 3 B
WegetB:—gb + 1+ 2by/2(b +1)7A_B(1—|—b)+1 b
1-v? B(1-b)+1+0

U(O)_bB—l_1+b2+b\/2(b2+1)_ 1—b? b [b® +1
’ B+1  20+.202+1)  2b+2(0 1) 2

b +1

b +1

Since U,(0)? >
From the convergence U, — U, in L=(B(0, R)), we obtain that, for ¢ sufficiently small,

s B(O,R)m{%‘j-[(Rz\w)—Z?]}

and U, is an increasing function, for x > 0, Uy(x)? >

J
Step 2. Fix j € {1,..., P} s.t. M5 # 0 and fix i € M5. We denote  := % Forz €Y,
consider W (z) = Ve(z) — Ue(y5 ; + 87 x) which satisfies (using (LH))

—EAW (2) = W(2) {0 @) = [Ve(@)® + Vo + Fa)Velo) + Unli; + 892} Y
OSWﬁCe_% on(‘)Y.

By Step 1, taking s = b2, for sufficiently small ¢, we have for z € Y \ w?

Uaz(yzaj +5J1L"),V§2(33) > max <b2, 5 ) > 3

Thus, using the weak maximum principle, we find that W > 0 in Y. Consequently, since
_
W is subharmonic, we deduce that W < Ce™ €. O

D.2 Behavior of almost minimizers of I,

We recall that for zgp € R? and R > r; > r > 0, we denoted Z(xo, R,7) := B(xo, R) \
B(:L'(),T‘).

D.2.1 Useful results for the periodic situation

We establish two preliminary results for the periodic situation represented Figure [I]
(Propositions B0l and B3] below). Thus in this subsection we assume that U is the unique
global minimizer of E. in H{ with the periodic pinning term a. represented Figure [Tl
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Energetic estimates in rings and global energetic upper bounds

From Lemma BI] (U; is close to a periodic function) we obtain the next result.

Lemma 32. For all1> R >1r > ¢, x,29 € R? 5.t. B(xg, R) C and and x — xo € 6 - 72,
we have
pe(Z(x, Ry1), 1) > pe(%#(xo, R,7),1) — 0-(1).

Adding the condition that B(x, R) C Q' we have
|pe(Z (2, R,7),1) — pe( (20, R, 1), 1)] < 0c(1).
Moreover the o-(1) may be considered independent of x,xq, R, 7.
Lemma [32] implies the following

Proposition 33. Let n > 0 and n > p > e. Then there is C = C(Q,Q,g,b,n) > 0 s.t.
for xg € R? we have
Ip,a < dua(c‘%)(%,ﬁ,ﬁ), 1) + C(T,)v

where C(n) is a constant independent of xg.

Estimates for almost minimizers

Lemma 34. 1. Letx € R?, 0 < r < R, a € L®R?,[*,1]), Co > 0 and a map
w € HY(Z(x, R,7),S) s.t. degyp(z,r)(w) =1 and

/ VWl — po((x, R,7),1) < Co.
A(x,R,r)

DO | =

Then for all ', R’ s.t. r <1’ < R' < R one has
1

= / a|Vw|? — po(Z(x, R ,7"),1) < 4C, + Co,
2 A (x,R'r'")

where Cy depends only on b and is given by Proposition [29.

2. Let x1,..,tqg € Q, di =1, ¢ < p < 1072y, 5 := 1072 - min {|z; — x|, dist(x;, 0Q)},
Co >0 and w € H'(Q),S") s.t.

1
5/Q U2|\Vw|? < I,. + Co.

b
Then for p <r < R <n one has for all i

1
5[ UV - (e Rr). ) < Co+ Cla
Z(zi,R,r)

here C(n) depends only on b, g,Q, " and 7.

8. Under the hypotheses of 2., we also have for n > pg > p

1
5 [ UZIVwl* < Clpo, Co);
,

here C(n,Cy) depends only on b, g,Q,', Co, po and 0.
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Proof. Using the third part of Proposition B0l we have

1
—/ a\VwF < po(Z(x, R, R 1) + po(Z(x, R, 17'),1)
2 % (z,R,T)

+ pao(Z(x, 7", 7),1) +4Cy + Cp.
We easily obtain

1 1
5/ a]Vw]2 > po(%(z,R,R'), 1)+ 5/ oz]Vw]2 + po(Z(x,7" 1), 1)
%(Z‘,Rﬂ“) ‘%(Z‘?Rlvrl)

which proves the first assertion.

The second assertion is obtained by using the same argument combined with Proposi-
tion 33l

Last assertion is a straightforward consequence of Proposition and both previous
assertions. ]

D.2.2 Lower bound on circles

In this subsection we proof an estimate for the minimization of weighted 1-dimensional
Dirichlet functionals.

v’ if0 0,0
Lemma 35. Let 6y € (0,27) and let o : [0,27] — {b?, 1} s.t. a(f) = be €10,60) .
1 if 0 € [0, 27]

Let o € H([0,27],R) s.t. p(27) — ¢(0) = 2. The following lower bound holds

_ 272
S 2+ 6p(b2 - 1)

1 2w 5 27‘(‘2
— >
2Aa@mwﬂw_ﬁé

Proof. The proof of these lower bounds is based on computations of minimal energies.
We prove the first estimate. It is easy to check that a minimal function @i, €
H([0,27],R) for %fozﬂ ()]0 - |? df under the constraint ¢(27) — ¢(0) = 27 exists and

Cst
satisfies Jg(a0p@min) = 0. Thus Jgmin = % with Cst = —5——. Therefore
(6% o~
0
1 m 272 272

[ ez [7aemora -
= 0 (07 (1% _5 0 (0% 0P min -

2 IR T2+ 02— 1)

67

D.3 Proof of the first part of Proposition

Let a7, ..., 2% € Q2 s.t. ]w?—x?\ > 8p and dy,...,dNy > 0, d; = d (up to a subsequence
the degrees may be considered independent of n).
Assume that

there is ig € {1,..., N} s.t. d;, # 1 or that there are i # j s.t. |27 —27[ — 0.  (D.4)

Up to a subsequence, there are a1, ...,aps € Q and {Aq,...,Ap} a partition of {1,..., N}
s.t.
1eN — 33? — ay.
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Note that since d; > 0, (D.4)) is equivalent to

there exists [y € {1,..., M} s.t. Jlo = Z d; > 1.
’iEAlO

There are two cases:
1. Card(A;) > 1,
2. Card(A;) = 1.

In the first case, we apply the separation process (defined in Section [CI) in QF =
B(ar,2po) \ Uiea, B(xi, p).

Since for i, j € A; we have |z; — x| < 7stop, in the end of the process (after K steps),
we obtain a unique z¥ =y, € {x;|i € A;} in the final selection of points and 7 — 0.

For k € {1,...,K} we denote {2}, ,a:?\,k} the selection of points made in Step k, n
the radius of the final balls in Step k and 7 the radius of the intermediate balls. Note
that ng = p.

From (C.3) and (C4), the following rings are mutually disjoint

Rip =Rk njyrm), dje = Y. diwithke{0,..,K -1}, j € {1,... N},
:B’LeB(:E 777k+1)

Ro = %y, po, e )-
1 1
For w € Hy(9,,,S") we have

K—-1 N

1 2 2 1 2 2 1/ 2 2
- > —
2/mUenyw)y > 2/Rl U? |Vw|? + Z_:ZZ:Q U2 |V
l 0 k=0 j=1 3,k
1 K—1 Ng ~
> 5/1 U2 IVl + 3 e, (25, m1,mw), die)
Ry k=0 j=1
~ 1 N
> df pre,, (%(x0, po, i), 1 Z Z ok e (Z (20, Mt1, M), 1) — O(1)
k=0 j=
> dj e, (% (0, po, p), 1) + (d} — J)Wb [ Innk| — O(1). (D.5)

In the second case the computations are direct

1 1
—/ U2 |[Vw]? z—/ U2 |[Vw|?
2 Qp 2 =%($i7p07p)

l
> dy e, (% (0, po, p), 1) + (df — di)mb?|In p| — O(1). (D.6)

Summing the lower bounds (D.3)) and (D.G)) over I and applying Proposition B3] we obtain
the result since n — 0, n € {nk, p} and d;, > 1.
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D.4 Proof of the second part of Proposition

We now prove the second part of Proposition B we establish the repelling effect of OS2
on the centers z;’s.

Let a,...,z, € Q and p = p(e,) | 0 s.t. dist(2],00) — 0. From the previous
subsection we may assume that there is 9 > 0 (independent of n) s.t.

min {Ir;m |z — 2], dist(€, OQ/)} > 10%n0.
i

Up to a subsequence we may assume that 27 — a; € Q with a; # a;j for i # j. Let

n= Iz} —ai|

We fix zo = zo(ep) € Q2 s.t.

:ut‘(‘@(xO’nOap)v 1) < xlél[é; /LE('@($77707P)7 1) + 1.

We prove that for w € H;(Q’ \ U;B(z2, p),S') we have

1

5 | U2Vl 3 e (w0, /i,1/2).1). (D.7)
H(ais/mn/2)

Estimate (D.7)) implies that {z7, ...,z } can not be an almost minimizing configuration of
points.

Indeed, Z(ai, /7,1/2) D % (x},\/1/2,2n) and by Lemma 28), p-(#(a;,/n,1/2),1) =
pe(Z(x},\/1/2,2n),1) + O(1). Thus combining (D.7) with the third assertion of Propo-
sition B0} we obtained that p.(Z(z%,m0,p),1) > p(%(xo,m0,p),1). And since for j €
{2,...,d} we have p.(Z(z},n0,p),1) > pe(%(x0,m0,p),1) + O(1), by Proposition B3, we
get the result.

We argue by contradiction and we assume that there is w. = w$ € Hy(Q\U; B(z7, p), S')
s.t.

1
5/ V21V w,? = (B (a0, T, 0/2),1) + O(1). (D)
H(ai,\/0/2)
In particular we have %/ U2|Vw,|* = pe(Z (a1, v1,1n/2),1) + O(1).
#(air/1m/2)

The key ingredient to get a contradiction is the fact that the map w, is almost constant
in the "half" ring % (a;,/n,n/2) \ Q.

By smoothness of {2, we may assume that the cone K jnpe = {x = a1+ pe? |0
[0,7/2], n/2 < p < \/n} does not intersect Q: K 5, N Q= 0.
e? if 9 € [0,7/2]

which is s.t. wg € H' (%Z(a1,/1,1/2), St
1 otherwise 0 (Z#(a1,/M,n/2),S")

We consider the map wg(a;+pe®?) =

and degpp(q, ) (wo) = 1. )
For d € N* (to be fix later) we define the map wiesy = wlwo € H (% (a1, Vi:n/2),Sh)

and degaB(ah\/ﬁ) (West) = d+1.
Thus, we have

1

9 / Ug’thest’2 > NE(%(ala \/ﬁa 77/2)7J+ 1) = (Ci—i— 1)2N6(%(a17 \/7_77 77/2)7 1)
Z(a1,/1,1/2)
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On the other hand, letting ., o : Z(a1,/n,1/2) = R s.t. w, = e?+(9) and wy = eo®),
(note that ., o are locally defined and those gradients are globally defined and lie in

L*(%(a1,/7,1/2),R)) we have (using (D.8)),

1 1 N
5/ U2|Vwest|* = 5/ U2|dV g, + Vio?
R(a1,1/7,0/2) Z(a1,/1,1/2)
d? 1
-5 U2+ | U2Vl +
‘%(al 7\/77777/2) ‘%(al 7\/ﬁ777/2)

+d / U2V . - Vo
‘%(alv\/ﬁvn/2)
d*pe(% (a1, /0,n/2),1) + 4x|Inn| +
- J/ U2V, - Vipo + O(1).
A(a1,3/10/2)

IN

Since wy, = g in Z(a1,/N,n/2) \ © and [[Vollr2(%(ar, mn/2ne) = 0, we have (using
Cauchy-Schwarz inequality)

= O(v/[Inn]).

/ U2V . - Vo
'%(017\/77777/2)

Therefore we obtain

cpua(%(al,\/ﬁ, n/2),1) + 4x|Inn| + O(/|Ing|) > (d + 1)2u5(%(a1,\/7_7, n/2),1)

which implies that 47| In n|+O(y/| Inn|) > (2ci+1)u€(<%’(a1,\/7_7, n/2),1) > (2d+1)b%x|1n7|.
Clearly we obtain a contradiction taking d > (4 — b%)/(2b?).

D.5 Proof of the third part of Proposition

In this subsection, we prove the third part of Proposition 5} the the attractive effect of
the inclusions.

Assume that there exist Cp > 0, sequences e,,p | 0, p = p(en) > &, s.t. p/(AJ) = 0
and distinct points x7, ..., 2]}, satisfying

1

inf - U2 \Vw]?> —1,.. <CO,. D.9
et sy 2 Jo, Vel Vel = Doy < Co (D.9)
degaB(zi,p)(w)zl

We denote x,, = (27, ..., z]).
From the first and the second assertion, there exists 79 > 0 (independent of €) s.t.

min {Ir;ém |z — 27|, min dist(x?,@Q)} >10% .79 > 0.
i#£] i

We want to prove that there is some ¢ > 0 s.t. for ¢ = 1,...,d we have (for small ¢)
B(z}',c\d) C we.
To this end, we argue by contradiction and we assume that either =z ¢ w. or 2} € w;

and 7d18t(a;15’ Ouwe) — 0.
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We are going to prove that letting y, € 0 - (Z X Z) s.t. x,y, € K‘il, then,

Tpen(®n,1) =Ly e, (Yn, x5, ...y ), 1) — o0. (D.10)
Up to a subsequence, we may assume that lim,, % exists. We divide the proof into

two steps:

dist (27, we)

Step 1. if 27 ¢ w. and %

— ¢ € (0,00], then (D.I0) holds;
dist (2], we)
A0

We now prove Step 1.

Assume that there exist Cy > 0, sequences e, p | 0, p = p(e,) > &, and distinct points
dist(z, we)

Step 2. if — 0, then (D.I0) holds.

xy, ...,z (well separated and far from 0€2) s.t. p/(Ad) — 0, 2T ¢ w., — s €
(0, 00] and
1
inf = U2 |Vw|* —1,., < Co.
weHL(Q,SY) 2 /Q;) eV pen =0

degap(a;,p) (W)=1

Denote w,, a minimizer for fpﬁn (xpn, 1) (see Proposition 2)). Using Lemma [34] Part 2, for
p <r < R <, one has

[ URIVunf e (Bt R\ BT < Co + Clo)
B(zT,R)\B(z},r)

Let x € (0,1072 - ¢) be s.t. B(0,2x) Cw C Y and dist(w,dY) > 10k.

From Lemma [3413, we have

~

d
Ip,sn(xn, 1) = Zﬂsn(t@(l‘% Mo, p)v 1) + 0(1)
i=1

and

d
Tpen((WUn: 25, ey 23), 1) = e, (B (Yns 0, ), 1) + Y e, (Z(2}, 7m0, p),1) + O(1).
=2

Since |2} — yn| < 0, using Propositions 29 B0l3 and Lemma 28] we have

poer (Z (Yns M0, ), 1) = pe, (Z(27,10,9),1) + e, (Z(yn, k0, p), 1) + O(1)

Therefore

~

Tpen (s 1) = Zp e (Ys 25 oo 2}), 1) = pie, (Z (@, K6, p), 1) — ptc,, (% (yn, 0, p), 1). (D.11)

Thus it suffices to estimate the energies in the rings with radii k6 and p. We have (using

(L.3))
te, (Z(yn, k6, p),1) = w|In A| + b7 In % +O(1). (D.12)
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SN0 ife< oo
In order to estimate p., (Z(z, k6, p), 1), welet x = ¢ 2 and n = dist(z, Owe).
Ad  otherwise

Note that 77+X — O(1) and that Us, = 1+ V, in Z(z7, k6,7 + x) U 2271 — X, p),

n-
[Vall Lo = ofe ) (from (L.3)).

Thus we obtain

+nb21n2f—§ +wln%+(9(1)

- mn% +0(1). (D.13)

Estimates (D.11]),(D-12) and (D.I3) contradict (D.9).

We now turn to Step 2. Arguing as in Step 1., it suffices to prove that

o
Bz, K5, p),1) > wl
peo (At i p). 1) 2wl

e, (Z(x7, k0, p), 1) — e, (Z(Yn, k6, p),1),1) — oo for some fixed x. (D.14)
It is direct to check that
Ad
pe, (B (yYn, K6, p),1) = 7| In A| + b 1117 +O(1). (D.15)

Let k > 0 depending only on w be s.t.
k< 1072 - dist(w, 0Y") and B(0,10% - k) C w.

Let r,, = max {€n s P \/)\5 dist(zy, &ug)} + /. We consider K,, the cone of vertex x,,

and aperture 7/2 which admits the line (z,,, g, 2,) for symmetry axis and s.t. K, Nw:N
(2, kA, ) = 0. Here g, (x,,) is the orthogonal projection of z;, on dws.

dist(xy,, we)

Note that since — 0, for large n and small x (independently of n), by

smoothness of w, K, is well defined (see Figure [l).

We have U., = 1+ V, in Z(x},kA\0,m,) N K, where, |V,|lze = o(e2). Thus,
1 in K,
b2 otherwise
HY(%Z(27, kNS, 7),St) s.t. degyp(zn r,)(w) =1, we have

if we define «,, = , then, from Lemma with 0y = 37/2, for w €

1 4 Ad
5/ an!V’w]sz2bz ngn/{—.
R (2 KA, rn) + Tn

Clearly, from construction, U2 > ay,+0(2), thus if wy, is a minimizing map for Ip en (Xn,y 1),
then we have

1 4w KAO
- U. |Vw,|? > v? In — + o, (1).
2 /%?’(m?,nA&,rn) 5n‘ v ’ T +3 " Tn ? ( )

Now the computations are direct

preg (Z(21, K0, ), 1) = e, (Z(21, K6, 3N0), )+Msn(%’(w’f,md ) 1) + pre, (Z (2 75 p), 1) + O(1)

4 Ad 2]
72 31 + 071 p — 4+ 0(1). (D.16)

> 7l A+ b5

A0
Therefore, (D.14) is a direct consequence of (D.I5) and (D.I6]) since — — +oo.

Tn
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Figure 5: The domain W,, N K,

E Proof of Propositions [8 and

E.1 An important effect of the dilution of inclusions

We first state a result which establishes that a sufficiently large circle has a small
intersection with w, if A — 0.

Lemma 36. For p >4, if C, is a circle with radius p, then (C, Nw.) < 1672 Ap.

{Y.|Y- is a § x d-periodic cell s.t. YN C, # 0} in the periodic case

) {v. = B(yS , A7) |y5 ; € M5 and Y.nC,#0} in the non—peri?dic case
For Y, € S, we denote &, the connected component of w, which is included in Y.
For simplicity, we fix j = 1 if we are in the periodic case (and j € {1,..., P | M € N*}

if we are in the non-periodic case).

Since p > 4, if Y. € S, then C, ¢ Y.. We have easily for Y. € S

Proof. Let S := {

HHC,N @) < 27N
and

ANC, MY\ o) = 6 (% —2m> .

Thus we obtain

AN C,NY:\ @)

1
5—271')\

AN C,N@:) < 2mA <8O, N YL\ @)

Consequently,

HHNCpnwe) = > ANC,Na) < 8TX Y AN (CoNY\ @) < 8rAA(C,) = 167 Ap.
NAS Y.€S

O
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E.2 Proof of Proposition [8

We are now in position to prove Proposition Bl The proof is done in 3 steps.

Let x,, be a quasi-minimizer for J,., p = p(e,) 1 0, p > €,. From Corollary [6, up to
a subsequence, there are 19 > 0 and a = (a1, ...,aq) € Q¢ independent of ¢, s.t. = ag,
la; — aj|, dist(a;, 0) > 10%n,.

We prove that Wy(az,...,aq) = ming,  p.cq Wy(bi,...,b,). We argue by contradiction
and we assume that, up to consider a smaller value for 7g if necessary, we have the existence
of b= (bl, ...,bd) € O s.t. |b2 — b]| > 102770, diSt(bi,aQ) > 102’1’}0 and

W, (b) < W,(a) + 10%n.
Step 1. We estimate the energies in perforated domains with a fixed (small) perforation

size The goal of this step is to prove the existence of small py (independent of ¢,,) s.t. we

have for ¢ € {a,b} and x € Q% s.t. max; |z; — ¢;| < po
jpoJI(X) - jpo,an(x) < 2n (E.1)

From [10] ((15) and Lemma 2), we may fix pg > 0 independent of ¢, s.t. for ¢ € {a, b},
we have X X
Too.1(X) — Lo 1(x) < mp for all x € Q% s.t. max|z; — ;| < po,

ip()’]l(x) — md|In po| — Wy(x)| < np for all x € Q% s.t. max|z; — ¢i| < po
1
and
[W,(c) — W,(x)| < np for all x € Q% s.t. max |z; — ¢;| < po
1
For ¢ € {a,b} and x € Q¢ s.t. max; |z; — ¢;| < po:

xr —x;

o We let 64 = Z?:l 0., where 0, € (—m, 7],

tion of the argument of x — x;.

= e+ (2 # x;) is main determina-
|z — a4

e We fix ¢X € C°(9Q,R) s.t. €% = ge <. Clearly, since degy(ge %) = 0, and since
ge Wx € C®(09Q,SY), ¢¥ € C®(9,R) is well defined [3].

o We let ¢, = ¢F, ¢ = ¢* € H! be the solutions of

—A¢, =0 in Q\ UB(z4, po)
¢« = o on 0f)
Oys = — 352000z, on OB(wi,p0), 1= 1,....d
and
—div(U2V¢) = div(U2Vby) in Q\ UB(x;, po)
b = ¢ on 0f2
O =—3520u0u; on 0B(x;, po), 1 =1,...,d

o We let ¥ = ¢ — ¢, be the solution of

—div(U2V) = div[(U2 — 1)(Vlx — V¢,)] in Q\ UB(z;, po)
=0 on 0N .
o =0 on 0B(zi, po), 1 =1,...,d
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Remark 3. 1. From Proposition 2 the functions ¢, ¢ are s.t. w, = e0xt64) 4y =
e!0xt9:) € T, (x) satisfy

N 1 1
Iﬁo,ﬂ(x) = _/ |Vw*|2 = _/ |V (0x + ¢*)|2
2 Jo\UB(@y.00) 2 Jo\UB(@;.p0)

~ 1 1
T e(x) = = / U2Vl =+ / U2|V (0x + $)2.
2 Q\UB(z4,p0) 2 Q\UB(zi,p0)

2. V¢ and V¢, are bounded independently of x and &, in L?(Q\ UB (x4, po))-

and

3. From a Poincaré inequality we have the existence of Cy independent of x s.t.

1M L2 @\uB@p0) = CollVY I L2(@\uBTE 200

Therefore, using a trace inequality in % (zi,2po, po) We obtain [[1[| 1255 < Cy,

C}, is independent of x, &y,.

*i,00))

4. We have |V¢,| which is bounded in L>(Q2\ UB(z4, po))
V.| < Cp with Cy independent of x.
Indeed, with standard result of elliptic interior regularity, we have

04l c2(0B(s,800))> 1D lc2(0B(ci 4p0)) < Co-

Thus, from global regularity for the Laplacian, we have

IV &l oo (0B IV 5 | Lo (225,800,000 < C-

We let Q,, = Q,,(x) := Q\ UB(z4, po). This step is devoted to prove that / VY| =0
Qpyp

when &, — 0 uniformly on x. This estimate will easily imply (EJ]). Indeed

. B 1

Lpa() =Ty () = 5 [ U2 190+ 6. = [V (6x+ )]

1 2 2
by, (- URIVOxt o)

< Gy (”VQMLZ(Q#O) + 11— Ui”ﬁ(ﬂpo)) —0.

Consequently we obtain

~

jpo,ll(x) - jp075n(x) < ipo,ll(x) = ZLpgen (X) + 10 < 10 + 00 (1) < 210
which is exactly (E.TJ).
Thus it remains to establish that / |V4|?> = 0 when &, — 0 uniformly on x:

PO

/ U2V = / div[(U2 — 1)(Vy — Vo)
Qpq Q

PO

- / (1= U)(Vbs — V) - Vs + / (U2~ 1)0, (6 — b:)00
Q

PO 9p
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From the L? bound on V4 and the L> bounds on V¢,, V6, we have (with Cy independent

of x)
1/2 1/2
U2V < (/Q |1—U3|2|v0x—w*|2) (/Q |vw|2) +
P PO

/Qﬂ
1/2 1/2
2 1\2 _ 2 2
+</8%<U5 1210, (6 ¢*>|> (/mpo|¢|>

< Co (1= U2lizza,) + 111 = Ullz200,,) ) -

0 0

From Lemma 36 we have [|1 — U€2||L2(39#O) = O(A) uniformly in x.

Therefore / |V4|> = 0 when &, — 0 uniformly on x and (E.I) holds.
Q\UB(‘TZ 7PO)

Step 2. We study the energies in Z(x;, po, max(d, \?))

Let & = max(), v/§) and w, = e’ be a minimizer of J,., (x,) (¢y is locally defined
and its gradient is globally defined in 2\ UB(z;, p)).
We prove that there is r € (K2, k) s.t.

e 1
—/ |0gon (x? +1e) 20 < 74+ ——=Vi=1,..,d.
0

2 V| In k|

This estimate is obtained via a mean value argument. We first prove that

Nan(%(x?vﬂvﬂz)vl) = ( (‘T K, "12)71 +0€n( )

b? 0L X 6Z + X6 -
Indeed we let ' C R?bes.t. w C ' < B(0,1) and of. = 0L X 0L+ o . From
1 otherwise
Lemma I, we have a. < a? + W, with |W¢|z~ = O(e?). For p > § and = € R?, from

Lemma [36] we have %1[{a5 = b’} NOB(x,p)] < 16772)\,0. Therefore, using Lemma [35] we
obtaine

pa(Z (x5, 6%),1) + O Ink]) < poy (Z(a}, 5, 67),1)
:uf:‘n('%($zn7/{7 52)71) < ﬂﬂ(‘@(l‘?ﬂ%’ "{2)71)'

A

Since for s € (k2, k) we have s > §, we obtain

e, (2 (2}, K, /12), 1) = pa(Z (2}, Kk, Kk ) 1)+ O(\|Ink|) = 7| In k| + o, (1).

2 |Vw,|? = 7| In k| +O(1). And

En

1
Therefore from Corollary [7] and Lemma [34] 5
Rz K2)

2m
from standard estimate we have / 109 pn (x? + 5e¥)[2d > 27 Vs € (K2, k).
0
We deduce that

K q 2
27rd]1n/£]+(’)(1)2/ waan/ —SZ/ |O0pn (2 + 5e*)|d.
UZ (2D ,k,k2) k2 S ; Y0
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Assume that such 7 does not exist, then we obtain that for s € (k2, k)

2T
Z/ 0o (2 + se?)[2df > 2rd + 2
Z' 0

V| 1n k]|

and consequently

2
an22 Ink| | 27d + = 2nd|In k| + In k|.
L [Tl = I ( — M) ] + /s

1
Clearly this lower bound is in contradiction with 3 / U2 |Vw,|* = 7| Ink|+O(1).

%(x?,[{/7f{2)

Let h? : St — SY, h?(e) = wp(z? + re?). We have A x Oghl' = Oppn(z? + re'f).
Thus from Step 2.: [|hl x 30}1?“%2(81) < 2wd + 2/4/|In k|. Consequently

/ IR X Aph? — 1% = / (B2 x BphZ? + 1 — 207 x Bph} < 2//]TA| — 0.
St St

Therefore h}' x Gph — 1 in L?(S'). Consequently, up to pass to a subsequence, we have
the existence of o; € (—m, 7] s.t. a; 'hle™ — 1in H'(S!).
From Propositions 12 and 13 in [12] we have

1 1
inf _/ Vw2 = inf _/ Vol + on(1)
weH (% (a7 ,po,r),S") 2 Z(x],po,T) weH (% (a7 ,po,r),S") 2 Z(x],po,T)

w(poe?)=a;e*? w(poe’?)=a;e??
w(re??)=h7(e*?) w(re’?)=a;e"?

= a2y on(1).
r

Step 3. We conclude
We are going to construct a map W, € J,(yn), max|y; — b;| < d and s.t.
Lo v < g (£2)
\UB(yip)

Clearly (E.2) is in contradiction with the assumption: J, — J,(x,) — 0. Then this
contradiction will imply that a = lim x,, minimizes W,.
We let y,, be s.t. max |y — b;| <6 and z] — y' € 0Z x 6Z and we define

whe () inz € Q\ UB(y?, po)
’LZ)n(l‘) = Csti,nwi(x - yzn + ‘T?) nze %(yznv Po; T)
wplz — Yyl + x)] inxeZyrrp)

Here:

e wyy is a minimizer of Jp, 1(yn),

e w' is a minimizer of inf l/ |Vwl|?
weH (R(x7po.),8Y) 2 J (a7 o)

w(poe?)=a;e

w(re'?)=h7(e?)
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e Cst;,, € S! is a constant s.t. w,, € H'(Q\ UB(y?, p),S!)
e w, is the minimizer of 7, ., (x,) used in Step 2..

We now compare the energy of w, and w,.

[ wwap = [ e[ 02wl
DUB(y;,p) Q\UB(y2,p0) Ui Z(y}po,T)

+ / U2 |V, %
U@@(y?,’r‘,p)

From Step 1. (the definition of py and Estimate (E.I)), we have

A

1 -
5 [ U2 Va2 < pol + Wy(yn) + 10 + 0n(1)
Q\UB(y;*,p0)

IN

md|In po| + Wy(xn) — 10m0
1

= 5/ 7U52n’vwn‘2 — To-
Q\UB(z ,p0)

N

From Step 2.,

1
—/ U2 |V, |* = rdln 22 + on(1) <
2 Ui%(y?7p07r) r

N =

/ UZ |Vw,|* + on(1).
Ui Z(z,po,T)

(3

From Lemma [31]

/ U2 |V, |* = / UZ [Vw,|* + 0, (1).
Ui=%(y?7/r7p)

Ui Z(x77,p)

Therefore we obtain (E.2]) and consequently Proposition [ holds.

E.3 Proof of Proposition

The strategy to prove Proposition [@is the following:

Step 1. We first obtain informations about almost minimizing configurations for I5. (i.e
the domain € is perforated by discs with radius §).

Step 2. We make the description of almost minimizing families of points (x.). for the
minimization problem inf, cg2 p1c(%(z0, 6, \0%/%),1).

Step 3. We estimate inf, cge p1=(% (20, \6°/2, p), 1) and we conclude.

Step 1. We study almost minimizing configurations for I,

We prove that {(z5,d1), ..., (z4,d,)} is an almost minimal configuration for 5. if and
only if N =1, d; =1 and there is 19 > 0 s.t. dist(a$,00Q), |z; — x| > no.
First note that for n9 > 0 and x1,...,z4 € Q s.t. dist(x;,00),|z; — x| > no we have
easily
Tse < wd|n 6| + C (o)

with C(no) which depends only on €, g and 7.
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We first consider {(x5,d1), ..., (¥%,d,)} which is an almost minimal configuration for
Is..

We argue as in the proof of Proposition [ (Assertions 1 and 2, see Subsections [D.3] and
[D.4). We use the separation process defined Subsection and the associated natural
partition of Q\ UB(z5,d) (see Subsection [C.2).

Here the key ingredients are Lemmas [35] and (which replace the periodic structure

of the pinning term). Combining both lemmas we get that if 1 > R > r > ¢, then
R R R
pe(%(x0,R,7),1) =7ln = +O(A1n 7) =mln s + 0-(1).

Here we used the assumption A|Ind| — 0.

Therefore we get: {(z5,d1), ..., (x%,d,)} is an almost minimal configuration for I;.
then N =1, d; = 1 and there is n9 > 0 s.t. dist(z5,09), |z; — x| > no. (This is proved
by contradiction exactly as in Subsection [0.3] and [D.4)). Moreover Zs . < 7d|In 8| + C(1).
Therefore Is. = nd|Ind| + O(1).

Conversely, since I5. = wd|Ind|+0O(1), for ng > 0 and 7, ..., x5 € Qs.t. dist(af,0Q), |25 —
x?] > 1o, we have (27, ...,2%) which is an almost minimizing configuration for I5..

Step 2. We study inf, cge pt (% (0,9, A33/2),1)

For j € {1, ..., P}, we denote: wl = UieM;l/f,j + A w.
Letting . € w. et ¢ > 0 (independent of ¢) s.t. B(z.,cAd) C w}, we may easily prove
that

inf j1c(% (w2, 0, A6%2),1) < 7% In 62| + 7| In A| + O(1).
xo

We prove that for a fixed constant Cyp > 0 and ¢ < p < 4, if we have (z.). C Q which is
s.t.

pe( (2,8, 00%%),1) < inf pe(R(we,6,06%/%), 1) + Co,
ToE

then there is ¢ > 0 independent of ¢ and (z¢). s.t. B(z.,c\d) C we, t.e. B(x.,cAd) C
Yi 1 + AMw with y7, € MJ.
Up to pass to a sequence €, | 0 we may assume that one of these cases occurs

Case 1. z. € w. \ W},
Case 2. z. ¢ we,
Case 3. z € w! and dist(z., Owl)/Ad — 0.
Let
A\§3/2 in Case 1
& = ¢ max{dist(z., dw.), A\6>/2} in Case 2.
max{dist(z., dw.), A\0*?} in Case 3
One may easily adapt the proof of Lemma [36] to prove that for j € {1,..., P} we have
dist(z,w?) > 67/2, then for s > 0, we have S (0B(x,s) Nw!) < C\ with C independent

of z, s and e.
Consequently, from the construction of the pinning term (the dilution of the inclusions

implies that dist(wg,wg/) > 6min{57'h) | we have:
Case 1. #'(w. N 0B(z.,s)) < CX for s > A\6%/? (here we used the fact the since

99



Te € We \w;, then if we denote @, C wao the connected component of w, which contains
., then Z(z-,8,\0%%) N@. = 0 and dist(z.,wl \ @) > & for j = {1,..., P}.
Therefore we have:

pie (R (2,6, \6%%),1) > 7| In A6Y2| — O(1)

and thus (z.). cannot be an almost minimizing configuration.

Case 2. We let jo = min{j € {1,.. P}|dlst(x€,8w€) = dlst(:ne,&ug)} Since z. ¢ we,
from the dilution of the inclusions, if there is j' # jo s.t. dlst(xs, ol ) = dist(z, dwl®) =
dist(z¢, Ow, ), then we have s, = dlst(ma, Owl’) > 690 /2 > §1°. Therefore for s > a. + A\670,
we have S (0B(x.,s) Nw.) < CA. On the other hand, because z. ¢ w., we have (using
the dilution of the inclusions) for 6 > s > 0, ,%”I(E?B(aza, s)Nw:) < (14 O(N))7s (here we
used the fact that, from the dilution of the inclusions, we have dB(x., s) Nw. which is at
most a half-circle pulse "small" pieces of circle).

If &, > §, then we have
pe (R (22,8, 06%/2),1) > 7| In A6Y/2| — O(1).
Otherwise &, < § and we have

e (B (12, 0,06%2),1) = pe(B(xe,6, 2 + A7), 1) + p1e (% (2, 20 + A0, 2.), 1) +
+ Ns('@(‘re, Ee, )\53/2)7 1) + 0(1)

with

o (A (v.,8,2. + A6°),1) > 7ln + 0:(1). Here we used the fact that

1)
& + \dJo ‘
0B(x., s) has a small intersection with we when s > &, + Ad7° combined with Lemma
00

; Jo
s M€('@($€aae+)\5ﬂ),%€), 1) > ’yﬁlnm

&
of ). Here we used the fact that /#1(0B(z.,s) Nw,) < (14 O(\))7s combined with

+0O(1) with v € (b%,1) (7 is independent

Lemma [35
. ,ug( (2,2, 00%2),1) = 7ln %—I—O(l). Here, we used the fact that 2(z., ., A\6%/2)N
= (.
There, we have
5 &: + A6
3/2 €
pe(#(xe,0,X0°7%),1) > wln YT + 7 ln = + 7ln )\53/2 +O(1)
Jo
> 7|l A6Y? + n(y—1)In 2 AN o(1)
(S
(2 > A%%) > 7|In(A6Y2)| + 7(y — 1) In(1 + 0 12) + O(1)
> b |In 62| + w|ln |+ 7(y — %) In 62 + O(1)

with 7(y — b%)Ind~1/2 — 4-00. Therefore (z.). cannot be an almost minimizing configu-
ration.
Case 3. If we denote @. the connected component of w! which contained x., from the
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dilution of the inclusions, we have dist(z.,w. \ @z) > 0. Therefore, from Lemmas B35l and
36, we have the existence of v € (b2, 1) s.t.

pe(B (e, 6,M6%2), 1) = pc(R(xe,6, . + M), 1) + pe(R (22, 2 + N6, 2:),1) +
+ pe (R (e, 2, M6%%),1) + O(1)

®: + A 2 Xe
>
= T T i S O
A8
(=0 = allAl+7(y =) In 2>+ 762 n6'/2| 4 0().
€

Consequently (z.). cannot be an almost minimizing configuration.
Step 3. We study inf,,cp p1e (% (20, \6%/2, p), 1) and we conclude
)\53/2

It is obvious that inf, cpe pe(%(z0, A6%/2,p),1) = 7b*In . Now we are in posi-

tion to conclude. On the one hand, for n9,c¢ > 0 and a configuration of points/degrees
{(z5,d1), ..., (2%, dN)} st di =1, [20° — x§’€|,dist(:nf’€,69) > o and B(2?,cAd) C w}
foralli # j,4,5 € {1,..., N}, we have fp,g(xg) =1,.+0(1).

On the other hand, for &, | 0, if either there is ¢ € {1,..,N} st. d; > 1 or
dist(z°,0Q) — 0 or there are i # j s.t. |v; — x;] — 0, then the configuration of
points/degrees cannot be almost minimal for I5., and thus it cannot be almost minimal
for I,.,.

Moreover, if there is i s.t. zi" ¢ w! or dist(z5",0wl)/(AS) — 0, then (z"), can-
not be an almost minimizing configuration for inf, cge pu.(% (0,9, A33/2),1). And thus
{(zi",d1), ..., (2} ,dn)} cannot be an almost minimal configuration for I,., .

The rest of the Proposition is obtained exactly as Corollary [7l

F Proof of Proposition

We use the unfolding operator (see [8], definition 2.1). We define, for Qg C R? an open
set, p € (1,00) and 6 > 0:

7:; : Lp(Qo) — Lp(QO X Y)
z inc
o moa= Ullra) Bl
and
Qinel .— U YE, As =\ Q9 and [g = ([%} , [%]) e 72,
Y& Qo

YE=6(K+Y), Kez?

Here, for s € R, [s] is the integer part of s.
We will use the following results:

75 is linear and continuous, of norm at most 1 ([8], Proposition 2.5), (F.1)

Ts(¢y) = Ts(¢)T5(¥) ([8], equation (2.2)), (F.2)
5T5(Vo)(w,y) = VyT5()(x,y) for ¢ € WHP(Qp) ([8], equation (3.1)),  (F.3)
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for ¢ € L'(£), we have / 0] :/ Ts5(¢s) (|8], Proposition. 2.5 (i)). (F.4)
Qincl QoxY

If 5 € H'(Qp) is such that ¢5 — ¢g in H', then, up to subsequence, there exists qAS €
L2(Q, HL . (Y)) 5.t

per

Ts(ds) — ¢ and Ts(Vs) — Vo + qug in L?(Qo x Y) (|8], Theorem 3.5). (F.5)

Here H] (V) stands for the set of functions ¢ € H'(Y) s.t. the extending of ¢ by Y-
periodicity is in Hi _(R?) (see [9], section 3.4).

loc
In order to define properly the homogenized matrix A we recall a classical result (see

Theorem 4.27 in [9]).

Proposition 37. Let Hy € L®(Y,[b?,1]). For all f € (HL,.(Y)) s.t. [ annihilates the
constants there exists a unique solutzon h e per(Y) of

div(HoV,h) = f and My (h) = / h=0.
Y

Using the previous theorem we denote x; € H 1

per(Y) the unique solution of

diV(HOVij) = 8yj (HO) and My(Xj) =0. (FG)

With these auxiliary functions, we can give an explicit expression of A the homogenized
matrix of Ho(5)Idg2 (see Theorem 6.1 in [9]):

—0y, X2
A/H< Oy x1 b )Z/Hld Vo x = ().
° Oyx1 1 —0y,x2 . o(Idr2 — Vyx), x = (x1,X2)

For the convenience of the reader we restate, in larger detail, Proposition

Proposition. Let Qo C R? be a smooth bounded open set and let v, € H?(,C) be s.t.
L Joal <1 and/ (1= [on[?)2 = 0,
Qo

2. v, — vy in HY(Qp) and v, € HY(Qo,SY),

3. there is H, € WH>(Qq, [b%,1]) and &, | 0 s.t. Ts, (H,) — Ho in L*(Qo x Y) with
Hy independent of x € Q,

4. —div(H,Vv,) = v, fn(x), fn € L®(Qo,R).
Then v, is the solution of
— div(AVv,) = (AVu, - Vo, )u,

Here A is the homogenized matriz of Ho(5)Idg2 given by
=0y, X2
A= / H leI Y1 >
‘ ( —0 y2 X1 1_83;2)(2
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Proof. In order to keep notations simple, we write, in what follows, & rather than 9,.
Since f, is real valued, we have that div(H,Vuv,) x v, = 0. From (E.l) and (E2)), we

obtain

divy [Ts(Hp)(z, y)Ts(Vvn) (2, y)] X Ts(vn)(z,y) =0 in Qy x Y. (F.7)

Note that from the assumptions and (EJ),(E5), passing to a subsequence, there is @ €
L2(Q, H} (V) s.t.

T (vn) (2, y) = vi(), Ts(Von)(x,y) — Vou(z) + V,o(z,y) in L2(Qy x Y)

and
T5(Hn)(z,y) — Holy) in L*(Qo x Y).

Thus we obtain the convergence:
divy, [Ts(Hy) (2, ) Ts(Vo) (2, )] x Ts (vn) (2, y) — divy [Ho(Vo, + Vy9)] xv. in L2(Qox H (V).

Consequently,
divy [Ho(Vuy + Vy0)] x v, = 0.

Since v, is independent of y € Y, the previous assertion is equivalent to
—divy [HoVy(0 x vs)] = (VyHo - Vuy) X vy,
which in turn is equivalent to

—divy [HoVy (i x v.)] = Y _ 0y, Ho(Dsvs X v..).

Hence, from Proposition 37 and (E.6]), we obtain

B X v ==Y xi(Bww X ) = —x - (Vou X 02), x = (X1, X2) - (F.8)

Let 1 € D(Qp) and n sufficiently large s.t. Supp(v¢)) C Qg“d. Since —div [H, Vv, X v,] =0,
we have

H, Vv, xv, -Vy=0.

ancl
This identity combined with (E.4]) implies that
QQXY
Therefore, using (F.3) and (E.5]), we obtain:
0= [ T Tonx )Vl = [ TH)T(T6) X Ti) - T(VY)
QoxY QoxY
— Hy [V, X v + Vi (0 x vy)] - V.

n—o0 QO XY

Finally, for all ¥ € D(Qy), using (E.8), we have

0= / HoVv, x vy [Idge — Vyx]- V¢ = / ({/ Hy [Idg2 — Vyx]} Vv, X v*> V)
QoxY Qo Y

= —/ —div (AVw, X vy) 1.
Qo
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Here A = / Hy (Idge — VyX).

Y
Thus —div (AVwv, X v.) = 0. Note that, since Hy and y are independent of z, A is
a constant matrix. This fact combined with the equation —div (AVv, X v,) = 0 implies
that v, satisfies

— div(AVuv,) = (AVu, - Vo, )u,. (F.9)

Indeed, we can always consider @, which is locally defined in 4 and whose gradient is
globally defined and in L?(Qqg, R?) s.t. v, = ",
Since v, X Vv, = Vi, we obtain that div(AVe,) = 0. Identity (E9) follows from the
equation of ¢, and the fact that |V, |? = |Vu.|?.
]
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