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We denote by Conc A the (∨, 0)-semilattice of all finitely generated congruences of an (universal) algebra A, and we define Conc V as the class of all isomorphic copies of all Conc A, for A ∈ V, for any variety V of algebras.

Let V and W be locally finite varieties of algebras such that for each finite algebra A ∈ V there are, up to isomorphism, only finitely many B ∈ W such that Conc A ∼ = Conc B, and every such B is finite. If Conc V ⊆ Conc W, then there exists a (∨, 0)-semilattice of cardinality ℵ 2 in (Conc V) -(Conc W). Our result extends to quasivarieties of first-order structures, with finitely many relation symbols, and relative congruence lattices.

In particular, if W is a finitely generated variety of algebras, then this occurs in case W omits the tame congruence theory types 1 and 5; which, in turn, occurs in case W satisfies a nontrivial congruence identity.

The bound ℵ 2 is sharp.

Introduction

Why do so many representation problems in algebra, enjoying positive solutions in the finite case, have counterexamples of minimal cardinality either ℵ 0 , ℵ 1 , or ℵ 2 , and no other cardinality? By a representation problem, we mean that we are given categories A and B together with a functor Φ : A → B, and we are trying to determine whether an object B of B is isomorphic to Φ(A) for some object A of A. We are also given a mapping from the objects of B to the cardinals, that behaves like the cardinality mapping on sets.

Examples of such representation problems cover various fields of mathematics. Here are a few examples, among many:

• Every (at most) countable Boolean algebra is generated by a chain (cf. [START_REF] Grätzer | Lattice Theory: Foundation[END_REF]Theorem 172]), but not every Boolean algebra is generated by a chain (cf. [START_REF] Grätzer | Lattice Theory: Foundation[END_REF]Lemma 179]). It is an easy exercise to verify that in fact, every subchain C of the free Boolean algebra F on ℵ 1 generators is countable, thus F cannot be generated by C. • Every dimension group with at most ℵ 1 elements is isomorphic to K 0 (R) for some (von Neumann) regular ring R (cf. [START_REF] Elliott | On the classification of inductive limits of sequences of semisimple finitedimensional algebras[END_REF][START_REF] Goodearl | Tensor products of dimension groups and K 0 of unitregular rings[END_REF]), but there is a dimension group with ℵ 2 elements which is not isomorphic to K 0 (R) for any regular ring R (cf. [START_REF] Wehrung | Non-measurability properties of interpolation vector spaces[END_REF]).

• Every distributive algebraic lattice with at most ℵ 1 compact elements is isomorphic to the congruence lattice of some lattice (cf. [START_REF] Huhn | On the representation of distributive algebraic lattices, I[END_REF][START_REF] Huhn | On the representation of distributive algebraic lattices[END_REF][START_REF] Huhn | On the representation of distributive algebraic lattices[END_REF]), but not every distributive algebraic lattice is isomorphic to the congruence lattice of some lattice (cf. [START_REF] Wehrung | A solution to Dilworth's congruence lattice problem[END_REF]); the minimal number of compact elements in a counterexample, namely ℵ 2 , is obtained in [START_REF] Růžička | Free trees and the optimal bound in Wehrung's theorem[END_REF].

In an earlier paper [START_REF] Gillibert | Critical points of pairs of varieties of algebras[END_REF], we introduced a particular case of the kind of representation problem considered above, concentrated in the notion of critical point between two varieties of (universal) algebras. It turned out that this notion often behaves as a paradigm for those kinds of problems. The present paper will be centered on that paradigm, and will offer an explanation, in that context, why for so many representation problems, the minimal size of a counterexample (if it exists at all) lies below ℵ 2 . Although initially stated for universal algebras, the method of proof of our main result (Theorem 5.1) carries a potential of generalization to many other contexts, starting with Theorem 6.1.

Let us be a bit more precise. For an algebra A we denote by Con c A the (∨, 0)semilattice of all compact (i.e., finitely generated) congruences of A. A lifting of a (∨, 0)-semilattice S is an algebra A such that Con c A ∼ = S. For a variety V of algebras we denote by Con c V the class of all (∨, 0)-semilattices with a lifting in V.

For varieties V and W of algebras, the critical point between V and W, denoted by crit(V; W), is the smallest cardinality of a member of (Con c V) -(Con c W) if Con c V ⊆ Con c W, and ∞ otherwise (cf. [START_REF] Gillibert | Critical points of pairs of varieties of algebras[END_REF][START_REF] Tůma | A survey of recent results on congruence lattices of lattices[END_REF]).

The critical point between two varieties can be anything we like. For example, for (possibly infinite) fields F and K with card F < card K, it is easy to verify that crit(F -vector spaces; K-vector spaces) = card F + 1 .

On the other hand, once we fix restrictions on the similarity types of our algebras, the situation becomes much more interesting. All known critical points between varieties of algebras, with a countable similarity type, are either ≤ ℵ 2 or equal to ∞. For example, it is proved in [START_REF] Růžička | Distributive congruence lattices of congruencepermutable algebras[END_REF] that crit(lattices; groups) = crit(lattices; rings) = ℵ 2 .

It is also easily seen that crit(groups; lattices) = 5. Ploščica in [START_REF] Ploščica | Non-representable distributive semilattices[END_REF], using methods introduced by Wehrung in [START_REF] Wehrung | A solution to Dilworth's congruence lattice problem[END_REF] and Růžička in [START_REF] Růžička | Free trees and the optimal bound in Wehrung's theorem[END_REF], finds a majority algebra M of cardinality ℵ 2 such that Con c M has no lifting by any lattice. However, every distributive (∨, 0)-semilattice of cardinality ≤ ℵ 1 is liftable by a lattice (cf. [START_REF] Huhn | On the representation of distributive algebraic lattices, I[END_REF][START_REF] Huhn | On the representation of distributive algebraic lattices[END_REF][START_REF] Huhn | On the representation of distributive algebraic lattices[END_REF]), therefore the critical point between the variety of all majority algebras and the variety of all lattices is ℵ 2 .

A strong restriction on the possible values of critical points between finitely generated congruence-distributive varieties of algebras is brought by the following dichotomy result proved in [START_REF] Gillibert | Critical points of pairs of varieties of algebras[END_REF].

Theorem 1.1. Let V be a locally finite variety of algebras and let W be a finitely generated congruence-distributive variety of algebras.

If Con c V ⊆ Con c W, then crit(V; W) < ℵ ω .
Critical points between varieties of lattices have been particularly studied. Tools for proving the countability of certain critical points are given, along with examples, in [START_REF] Ploščica | Separation in distributive congruence lattices[END_REF][START_REF] Ploščica | Relative separation in distributive congruence lattices[END_REF][START_REF] Gillibert | Critical points between varieties generated by subspace lattices of vector spaces[END_REF]. Examples of varieties of lattices with critical point ℵ 2 are given in [START_REF] Ploščica | Separation properties in congruence lattices of lattices[END_REF][START_REF] Ploščica | Dual spaces of some congruence lattices[END_REF][START_REF] Gillibert | Critical points between varieties generated by subspace lattices of vector spaces[END_REF]. In [START_REF] Gillibert | Critical points of pairs of varieties of algebras[END_REF] we give two finitely generated varieties of modular lattices with critical point ℵ 1 , solving a problem by Tůma and Wehrung in [START_REF] Tůma | A survey of recent results on congruence lattices of lattices[END_REF]. In [START_REF] Gillibert | The possible values of critical points between varieties of lattices[END_REF] we establish the following dichotomy result for varieties of lattices. Theorem 1.2. Let V and W be varieties of lattices such that every simple member of W contains a prime interval. If

Con c V ⊆ Con c W, then crit(V; W) ≤ ℵ 2 . Moreover, Con c V ⊆ Con c W if and only if V is contained in either W or its dual.
In particular, this solves the finitely generated case of (the correct recasting of) the critical point conjecture for lattices (cf. [START_REF] Tůma | A survey of recent results on congruence lattices of lattices[END_REF]Problem 5]). However the conjecture can be generalized to arbitrary finitely generated varieties of algebras. This generalization is still open (cf. [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF]Problem 3]).

A variety V of algebras is strongly congruence-proper if every finite (∨, 0)-semilattice has, up to isomorphism, only finitely many liftings in V and every such lifting is finite (cf. [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF]). As a consequence of [START_REF] Freese | Commutator Theory for Congruence Modular Varieties[END_REF]Theorem 10.16], a finitely generated variety of congruence-modular algebras, with finite similarity type, is strongly congruenceproper. As observed in [6, Section 4-10], it follows from [START_REF] Hobby | The Structure of Finite Algebras[END_REF]Theorem 14.6] that a finitely generated variety V of algebras, with finite similarity type, that omits tame congruence theory types 1 and 5, is strongly congruence-proper. This, in turn, occurs in case V satisfies a nontrivial congruence identity (cf. [START_REF] Hobby | The Structure of Finite Algebras[END_REF]Theorem 9.18]). In particular, this holds for varieties of lattices, groups, modules (over finite rings), rings.

Theorem 1.1 is generalized in [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF] to strongly congruence-proper varieties of algebras. The aim of the present paper is to improve the bound from < ℵ ω to ≤ ℵ 2 . This solves, in particular, the generalization of the critical point conjecture to the congruence-modular case.

Our main result is the following.

Theorem 5.1. Let V and W be locally finite varieties of algebras. Assume that for each finite algebra A ∈ V there are, up to isomorphism, only finitely many B ∈ W such that Con c A ∼ = Con c B, and every such B is finite. Then either crit(V; W) ≤ ℵ 2 or Con c V ⊆ Con c W.

In particular, the theorem applies to the case where W is strongly congruenceproper (cf. Corollary 5.2). The bound ℵ 2 is optimal since there are finitely generated varieties of lattices (hence strongly congruence-proper) with critical point ℵ 2 . While Theorem 1.2 requires no assumption of either variety V or W be locally finite, we need that assumption for both V and W in the statement of Theorem 5.1. Not every (∨, 0)-semilattice is isomorphic to Con c A for a locally finite algebra (cf. [START_REF] Kearnes | Congruence lattices of locally finite algebras[END_REF]): this suggests that there is still way to go.

In Section 6, we show how to extend our main result from varieties of algebras to quasivarieties of first-order structures (for which a most notable example is given by quasivarieties of graphs, see [START_REF] Gorbunov | Algebraic Theory of Quasivarieties[END_REF]). Theorem 5.1 extends, mutatis mutandis, to Theorem 6.1, by assuming finiteness of the set of relation symbols and changing congruences to relative congruences.

Basic Concepts

We denote by dom f the domain of a function f . Given sets X and Y we denote by X -Y = {x ∈ X | x ∈ Y } the set-theoretical difference of X and Y , and by X Y the set of all maps f : Y → X. For a variety V of algebras and a set X we denote by Fr V (X) the free algebra on X in V.

We denote by 0 (resp., 1) the least (resp., largest) element of a poset if it exists. We denote by 2 = {0, 1} the two-element Boolean algebra. We only consider nonempty algebras. We denote by 0 A the smallest congruence of an algebra A. A (∨, 0)-homomorphism ϕ : S → T separates zero if ϕ(x) = 0 implies that x = 0 for each x ∈ S. Notice that a morphism f of algebras is an embedding if and only if Con c f separates zero. In particular if f and g are morphisms of algebras and there is a natural equivalence Con c f ∼ = Con c g, then f is an embedding if and only if g is an embedding.

Let x < y in a poset P , we write x ≺ y, or, equivalently, y ≻ x, if there is no t ∈ P with x < t < y. Assume that P has 0. An atom of P is an element p ∈ P such that p ≻ 0. We denote by At P the set of all atoms of P .

Let X be a subset of a poset P . We denote

P ↓ X = {p ∈ P | (∃x ∈ X)(p ≤ x)} , P ↑ X = {p ∈ P | (∃x ∈ X)(x ≤ p)} , P ⇑ X = {p ∈ P | (∀x ∈ X)(x ≤ p)} .
A subset Q of P is a lower subset of P (resp., upper subset of P ) if

Q = P ↓ Q (resp., Q = P ↑ Q).
An upper subset Q of P is finitely generated if Q = P ↑ X for some finite subset X of P . An ideal of a poset P is a lower subset I of P such that for all x, y ∈ I there is z ∈ I such that z ≥ x and z ≥ y. An ideal I of P is principal if I = P ↓ {x} for some x ∈ P . We say that P is lower finite if every principal ideal of P is finite. Let θ be a congruence of an algebra A. For an element a of A, we denote by a/θ the equivalence class of a. For a subset X of A we set X/θ = {x/θ | x ∈ X}. If X is a subalgebra of A then X/θ is a subalgebra of A/θ, moreover θ ∩ X 2 is a congruence of X. We shall often identify X/(θ ∩ X 2 ) and X/θ. Given a morphism f : A → B of algebras, the kernel of f is ker

f = {(x, y) ∈ A 2 | f (x) = f (y)}.
Notice that ker f is a congruence of A.

Given algebras A and B and ϕ : Con c A → Con c B a (∨, 0)-homomorphism, we identify ϕ with its natural extension Con A → Con B. That is, given θ ∈ Con A, we set ϕ(θ) = {ϕ(α) | α ∈ Con c A and α ≤ θ}.

Cardinals are initial ordinals, in particular a cardinal is identified with a set. We denote by P(X) the set of all subsets of X. For a cardinal κ, we put

[X] κ = {Y ∈ P(X) | card Y = κ}.
By a diagram in a category S, we mean a functor from a poset, viewed as a category in the usual way (i.e., there is an arrow from p to q iff p ≤ q, and then the arrow is unique), to S. Hence a P -indexed diagram in S is identified with a system (S p , σ q p | p ≤ q in P ) such as σ q p : S p → S q in S, σ p p = id Sp , and σ r p = σ r q • σ q p , for all p ≤ q ≤ r in P .

For an object S of S, the comma category, denoted by S↓S, is the category whose objects are the morphisms f : A → S where A is an object of S and the morphisms from f : A → S to g : B → S are the morphisms h :

A → B of S such that g • h = f .
Denote epimorphisms by f : A ։ B. Given morphisms f : A → B and g : A → C of algebras, we say that f factors through g if there exists h : C → B such that f = h • g. If g is an epimorphism then the map h is unique.

The condensate construction

The proof of the dichotomy result (cf. Theorem 5.1) relies on the condensate construction introduced in [6, Section 3-1]and the Armature Lemma (cf. [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF]). In order to ease the understanding of certain crucial parts of our paper, we shall recall the main lines of that construction. The required notions are introduced formally in [6, Chapter 2]. From Section 4 on, the reader can safely forget most of the notations and definitions introduced in Section 3, but should keep in mind the crucial Lemma 3.11, which requires the notion of a norm-covering U of a poset P . Given a P -indexed diagram S in a variety V of algebras, we shall recall the construction of the algebra F(U ) ⊗ S in V and the morphism π U u ⊗ S :

F(U ) ⊗ S → S ∂u , for each u ∈ U .
The following notation is introduced in [6, Section 2-1].

Notation 3.1. Let X be a subset of a poset P , we denote by ▽X the set of all minimal elements of P ⇑ X.

The following definition is given in [6, Section 2-1].

Definition 3.2. A subset X of a poset P is ▽-closed if ▽Y ⊆ X for every finite subset Y of X. The ▽-closure of a subset X of P is the least ▽-closed subset of P containing X.
We say that P is supported if P ⇑ X is a finitely generated upper subset of P and the ▽-closure of X is finite, for every finite (possibly empty) subset X of P .

Notice that the definition of a supported poset is equivalent to the one given in A sharp ideal of (U, ∂) is an ideal u of U such that {∂x | x ∈ u} has a largest element; we denote this element by ∂u. We denote by Id s (U, ∂) the set of all sharp ideals of (U, ∂).

Notice that this definition of a norm-covering is slightly stronger than [6, Section 2-6]. However, this does not affect the definition of an ℵ 0 -lifter (cf. [6, Section 3-2]), as in that case we require the norm-covering to be supported. Remark 3.4. In the context of Definition 3.3, every principal ideal is sharp. The converse does not hold as a rule. However, in the present paper, we shall only consider norm-coverings for which every sharp ideal is principal, in which case we can identify sharp ideals of (U, ∂) with elements of U .

The following definition comes from [6, Section 2-2]. Definition 3.5. Let P be a poset. A P -scaled Boolean algebra A is a Boolean algebra A, together with a family (A (p) | p ∈ P ) of ideals of A, such that:

(1) A = (A (p) | p ∈ P );

(2) A (p) ∩ A (q) = (A (r) | r ≥ p, q in P ), for all p, q ∈ P ; where joins are taken in the lattice of ideals of A. As an immediate consequence the assignment p → A (p) is order-reversing.

A morphism f : A → B of P -scaled Boolean algebras is a morphism f : A → B of Boolean algebras such that f (A (p) ) ⊆ B (p) , for all p ∈ P . We denote by Bool P the category of P -scaled Boolean algebras with morphisms of P -scaled Boolean algebras.

The following definition comes from [6, Section 2-4]. Definition 3.6. A P -scaled Boolean algebra A is compact if A is finite and, for each atom a of A, there is a largest p ∈ P such that a ∈ A (p) . We set |a| = p, for this p.

The finitely presented (in the categorical sense) objects in the category Bool P are exactly the compact P -scaled Boolean algebras (cf. [6, Section 2-4]). Every Pscaled Boolean algebra is a small directed colimit of compact P -scaled Boolean algebras (cf. [6, Section 2-4]).

The following examples of compact P -scaled Boolean algebras appear in [6, Section 2-6]. They will be used in the proof of Lemma 3.11. Notation 3.7. Given p, q in a poset P we put

2[p] (q) = {0, 1}, if q ≤ p {0}, otherwise.
The structure 2[p] = (2, (2[p] (q) | q ∈ P )) is a P -scaled Boolean algebra, for each p ∈ P . Moreover, given p ≤ q, the identity map on {0, 1} defines a morphism of P -scaled Boolean algebras from 2[p] to 2[q]; we denote this morphism by ε q p . We summarize here another family of P -scaled Boolean algebras, constructed in [6, Section 2-6]. For the sake of simplicity we give the notations only in the cases that we need. Notations 3.8. Let (U, ∂) be a norm-covering of a poset P . The Boolean algebra F(U ), defined in [6, Section 2-6], is the Boolean algebra defined by generators u (or u U in case U needs to be specified), for u ∈ U , and the relations:

v ≤ u, for all u ≤ v in U . u ∧ v = ( w | w ∈ ▽{u, v}), for all u, v in U . 1 = ( u | u minimal element of U ).
We denote by F(U ) (p) the ideal of F(U ) generated by { u | u ∈ U and p ≤ ∂u}.

Then

F(U ) = (F(U ), (F(U ) (p) | p ∈ P )) is a P -scaled Boolean algebra (cf. [6, Section 2-6]). Given a ▽-closed subset V of U , we denote by f U V : F(V ) → F(U ) the unique morphism of Boolean algebras such that f U V ( u V ) = u U for all u ∈ V . Moreover, f U V is a morphism of P -scaled Boolean algebras from F(V ) to F(U ) (cf. [6, Section 2- 6]).
Given u ∈ U , we denote by π U u : F(U ) → 2 the unique morphism of Boolean algebras such that

π U u ( v) = 1, if v ≤ u 0, otherwise , for all v ∈ U .
Then π U u defines a morphism of P -scaled Boolean algebras from F(U ) to 2[∂u] (cf. [6, Section 2-6]).

The following construction of condensates appears in [6, Section 3-1]. Notations 3.9. Let V be a variety of algebras, let P be a poset, and let S = (S p , σ q p | p ≤ q in P ) be a P -indexed diagram in V. Given a compact P -scaled Boolean algebra A, we put

A ⊗ S = (S |u| | u ∈ At A),
with canonical projections δ u A : A ⊗ S → S |u| , for all u ∈ At A. Let ϕ : A → B be a morphism of compact P -scaled Boolean algebras. Given an atom v ∈ B, we denote by v ϕ the unique atom u ∈ A such that v ≤ ϕ(u). We define ϕ⊗ S as the unique morphism from A⊗ S to B⊗ S such that

δ v B •(ϕ⊗ S) = σ |v| |v ϕ | •δ v ϕ A for each atom v of B.
This construction defines a functor -⊗ S from the full subcategory of compact P -scaled Boolean algebras of Bool P to V. It it proved in [6, Section 1-4] that this functor can be extended (uniquely up to isomorphism) to the whole category Bool P (cf. [6, Section 3-1]). We denote by -⊗ S this extension.

An object of the form A ⊗ S, for a P -scaled Boolean algebra A, is called a condensate of S.

The construction of ⊗ implies the following lemma (cf. [6, Section 3-1]). Lemma 3.10. Let S = (S p , σ q p | p ≤ q in P ) be a P -indexed diagram in a variety of algebras V. The following equalities hold.

(1) 2[p] ⊗ S = S p , for all p ∈ P .

(2) ε q p ⊗ S = σ q p , for all p ≤ q in P . The following lemma expresses that a condensate of a diagram contains copies of the algebras in the diagram. Lemma 3.11. Let U be a norm-covering of a poset P . Assume that both U and P have a least element and that ∂0 = 0. Let S = (S p , σ q p | p ≤ q in P ) be a diagram in V. There is a morphism

d 0 : S 0 → F(U ) ⊗ S such that (π U u ⊗ S) • d 0 = σ ∂u 0 for each u ∈ U . Let u ∈ U -{0}.
There is a morphism d u : S 0 × S ∂u → F(U ) ⊗ S such that, denoting t 0 : S 0 × S ∂u → S 0 and t 1 : S 0 × S ∂u → S ∂u the canonical projections, the following equality holds

(π U v ⊗ S) • d u = σ ∂v 0 • t 0 , if u ≤ v σ ∂v ∂u • t 1 , if u ≤ v , for each v ∈ U .
Proof. Notice that F({0}) = {0, 1} is the two-element Boolean algebra. Moreover, given p > 0 in P , F({0}) (p) = {0} and F({0}

) (0) = {0, 1}. Hence F({0}) = 2[0], thus it follows from Lemma 3.10(1) that F({0}) ⊗ S = S 0 . Notice that {0} is a ▽-closed subset of U . Put d 0 = f U {0} ⊗ S (cf. Notations 3.8). Given u ∈ U the following equalities hold (π U u ⊗ S) • d 0 = (π U u ⊗ S) • (f U {0} ⊗ S) = (π U u • f U {0} ) ⊗ S, as -⊗ S is a functor = ε ∂u 0 ⊗ S, as π U u • f U {0} = ε ∂u 0 = σ ∂u 0 , by Lemma 3.10(2).
Let u ∈ U -{0}. Notice that F({0, u}) = {0, ¬ u, u, 1}, with 0 = 1, is the four-element Boolean algebra. Moreover Notice that {0, u} is a ▽-closed subset of U . The following equality holds

F({0, u}) (p) =      {0}, if p ≤ ∂u {0, u}, if 0 < p ≤ ∂u {0, ¬ u, u, 1}, if p = 0
π U v • f U {0,u} = ε ∂v 0 • π {0,u} 0 , if u ≤ v ε ∂v ∂u • π {0,u} u , if u ≤ v , for each v ∈ U .
Therefore, the map d u = f U {0,u} ⊗ S satisfies the required conditions.

Lifting poset-indexed diagrams

In this section we fix varieties V and W of algebras, an infinite cardinal κ, an algebra G ∈ W, and an isomorphism ξ : Con c Fr V (κ) → Con c G.

Given a finite algebra A, the following lemma expresses that there is a large family of quotients Fr V (κ) ։ A such that the corresponding quotients of G have all the same cardinality. For a function t from a subset of κ to A, we denote by t : Fr V (κ) → A the unique homomorphism extending t and sending every element of κdom(t) to c. For each X 0 ∈ [κ] κ , there are X ∈ [X 0 ] κ and an integer n such that the following statements hold:

(1) Let t : X ։ A. Then card G/ξ(ker t) ≤ n.

(2) For each Y ∈ [X] κ there exists t : Y ։ A such that card G/ξ(ker t) = n.

Proof. Let t : κ։A. Notice that Con c G/ξ(ker t) ∼ = Con c Fr V (κ)/ ker t ∼ = Con c A, so card G/ξ(ker t) ≤ m , for each t : κ ։ A.

Given X ∈ [X 0 ] κ we set n X = max{card G/ξ(ker t) | t : X ։ A}, note that the maximum exists and is ≤ m by (4.1). Moreover

n Y ≤ n X , for all Y ⊆ X in [X 0 ] κ . (4.2) Fix X ∈ [X 0 ] κ such that n X is smallest possible. It follows from the definition of n X that (1) holds for n = n X . Let Y ∈ [X] κ .
From the minimality of n X we have n Y ≥ n X , the equality n Y = n X follows from (4.2). Therefore there is t :

Y ։ A such that card G/ξ(ker t) = n Y = n X . That is (2) holds for n = n X .
Notice that given X ∈ [κ] κ that satisfies the conditions (1) and (2) of Lemma 4.1, then every X ′ ∈ [X] κ also satisfies those conditions. Hence an easy induction argument yields the following lemma. Lemma 4.2. Let (A i ) i∈I be a finite family of finite algebras of V, fix c i ∈ A i for each i ∈ I. Assume that there is an integer m such that card B ≤ m for each algebra B ∈ W with Con c B ∼ = Con c A i for some i ∈ I. For a function t from a subset of κ to A i , we denote by t (i) : Fr V (κ) → A i the unique homomorphism extending t and sending each element of κdom(t) to c i .

Then for each X 0 ∈ [κ] κ , there are X ∈ [X 0 ] κ and a family (n i ) i∈I of integers such that the following statements hold:

(1) Let t : X ։ A i . Then card G/ξ(ker t (i) ) ≤ n i ;

(2) For each Y ∈ [X] κ there exists t : Y ։A i such that card G/ξ(ker t (i) ) = n i ;

for each i ∈ I.

Lemma 4.3. In the context of Lemma 4.2, if there is an isomorphism α :

A i → A j such that α(c i ) = c j , then n i = n j .
Proof. It follows from Lemma 4.2(2), applied to Y = X, that there exists t :

X ։A i such that card G/ξ(ker t (i) ) = n i . Put s = α • t. Notice that s (j) = α • (t (i)
), so ker s (j) = ker t (i) , thus n i = card G/ξ(ker t (i) ) = card G/ξ(ker s (j) ) ≤ n j . With a similar argument we obtain n j ≤ n i .

The following lemma illustrates that a natural transformation can be factored through a natural equivalence.

Lemma 4.4. Let I be a poset, let G = (G i , g j i | i ≤ j in I) be a diagram of algebras, let D = (D i , d j i | i ≤ j in I) be a diagram of (∨, 0)-semilattices, and let χ = (χ i | i ∈ I) : Con c • G → D be a natural transformation. Let θ i be a congruence of G i , denote by p i : G i ։ G i /θ i
the canonical projection, for each i ∈ I. We assume that each χ i factors through Con c p i to an isomorphism. Then g j i induces a morphism β j i : G i /θ i → G j /θ j for all i ≤ j in I. Moreover, B = (G i /θ i , β j i | i ≤ j in I) is a diagram of algebras and χ induces a natural isomorphism from Con c • G to D.

Proof. For i ∈ I, we denote by τ i : Con c (G i /θ i ) → D i the isomorphism induced by χ i , that is, τ i is the unique map such that χ i = τ i • Con c p i . Let i ≤ j in I, let α ⊆ θ i be a compact congruence of B i . The following equalities hold

j • Con c g j i )(α) = (d j i • χ i )(α), as χ is a natural transformation = (d j i • τ i • Con c p i )(α) = (d j i • τ i )(0 Gi/θi ), as α ⊆ θ i = ker p i = 0. As χ j = τ j • Con c p j , it follows that (Con c p j )((Con c g j i )(α)) = 0 Gj/θj , therefore (Con c g j i )(α) ⊆ ker p j = θ j . Let (x, y) ∈ θ i . Considering α = Θ Gi (x, y) ⊆ θ i , we see that (g j i (x), g j i (y)) ∈ (Con c g j i )(Θ Gi (x, y)) ⊆ θ j . Therefore g j i induces a homomorphism β j i : G i /θ i → G j /θ j . It is easy to check that B = (G i /θ i , β j i | i ≤ j in I) is a diagram of algebras. By construction β j i • p i = p j • g j i ,
hence the square (3) of the diagram in Figure 1 commutes. As χ is a natural transformation, the square (1) of the diagram in Figure 1 commutes. By definition of τ i and τ j , both triangles (2) and ( 4) of the diagram in Figure 1 An ℵ 0 -lifter of a poset P is a norm-covering (U, ∂) of P , endowed with a set of sharp ideals U ⊆ Id s (U, ∂) and for which the map ∂ : U → P has a collection of right inverses satisfying certain infinite combinatorial properties (cf. [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF]). This property implies, in particular, that ∂ is surjective. Lemma 4.5. Let I be a finite lattice, let A = (A i , α j i | i ≤ j in I) be a diagram in V. Let (U, U ) be an ℵ 0 -lifter of I such that card U ≤ κ. We assume that the following statements hold.

commute. D j (2) Con c G j χj O O Conc pj / / Con c G j /θ j τj q q (1) (3) 
Con c G i Conc g j i O O Conc pi / / χi Con c G i /θ i τi m m Conc β j i O O (4) 
(1) Every element of U is a principal ideal.

(2) The poset U is lower finite and has a least element.

(3) ∂u ≻ 0 implies that u ≻ 0 for each u ∈ U . (4) There is an integer m such that card B ≤ m for each algebra B ∈ W with Con c B ∼ = Con c A i for some i ∈ I. (5) The algebra A 0 is generated by one element. [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF] The algebra G is locally finite.

Then there exists a lifting B = (B i ,

β j i | i ≤ j in I) of Con c • A in W, such that for all 0 ≺ i ≤ j in I, if α j
i is an isomorphism, then β j i is an isomorphism.

Proof. From the surjectivity of ∂ it follows that ∂0 = 0.

Denote by c 0 a generator of A 0 and put c i = α i 0 (c 0 ) for all i ∈ I. For a function t from a subset of κ to A i , we denote by t (i) : Fr V (κ) → A i the unique homomorphism extending t and sending each element of κdom(t) to c i . By Lemma 4.2, there are X ∈ [κ] κ and a family (n i ) i∈I of integers such that the following statements hold: [START_REF] Goodearl | Tensor products of dimension groups and K 0 of unitregular rings[END_REF] Let i ∈ I and let t :

X ։ A i . Then card G/ξ(ker t (i) ) ≤ n i . (8) Let Y ∈ [X] κ , let i ∈ I.
There exists t : Y ։A i , such that card G/ξ(ker t (i) ) = n i . Moreover, we can assume that κ -X is not empty.

Claim 1. There exists a morphism f : Fr V (κ) → F(U ) ⊗ A such that the following statements hold: [START_REF] Grätzer | Lattice Theory: Foundation[END_REF] The morphism

(π U u ⊗ A) • f is surjective, for each u ∈ U . (10) Let 0 ≺ u ≤ v in U . If α ∂v ∂u is an isomorphism, then card G/ξ(ker((π U u ⊗ A) • f )) ≥ card G/ξ(ker((π U v ⊗ A) • f )) . Proof of Claim. Set k u = π U u ⊗ A, for each u ∈ U . Put U * = U -{0}. Fix morphisms d 0 : A 0 → F(U ) ⊗ A and d u : A 0 × A ∂u → F(U ) ⊗ A, for u ∈ U * ,
as in Lemma 3.11 (with S replaced by A). In particular

k u • d 0 (a) = α ∂u 0 (a)
, for all u ∈ U and all a ∈ A 0 .

k v • d u (a, b) = α ∂v 0 (a), for all u ≤ v in U , a ∈ A 0 , and b ∈ A ∂u . (4.3) 
k v • d u (a, b) = α ∂v ∂u (b), for all 0 < u ≤ v in U , a ∈ A 0 , and b ∈ A ∂u . (4.5) As card U * ≤ κ = card X, there is a partition (X u ) u∈U * of X such that card X u = κ for each u ∈ U . Put X 0 = κ -X, so (X u ) u∈U is a partition of κ. Denote by f 0 : X 0 → F(U ) ⊗ A, x → d 0 (c 0 ) the constant map. It follows from (4.3) that k v (f 0 (x)) = k v (d 0 (c 0 )) = α ∂v 0 (c 0 ) = c ∂v (4.4) 
, for all x ∈ X 0 and all v ∈ U . Thus the following equality holds.

k v • f 0 = c ∂v , the constant map, for all v ∈ U . (4.6) 
Let u ∈ U * . As X u ⊆ X and card X u = κ, it follows from (8) that there exists t u : X u ։ A ∂u such that the following equality holds card G/ξ(ker t (∂u)

u ) = n ∂u . (4.7) 
Put

f u : X u → F(U ) ⊗ A, x → d u (c 0 , t u (x)). From (4.5) we obtain k u (f u (x)) = α ∂u ∂u (t u (x)) = t u (x), for all x ∈ X u . Hence k u • f u = t u , for each u ∈ U * . ( 4.8) 
Similarly, (4.4) implies that

k v • f u = c ∂v , the constant map, for each u ≤ v in U . ( 4.9) 
The family (X u ) u∈U is a partition of κ, so there is a (unique) morphism of algebras

f : Fr V (κ) → F(U ) ⊗ A that extends f u for each u ∈ U . Let u ∈ U * . As t u is surjective it follows from (4.8) that k u • f is surjective. As X 0 is not empty, we see from (4.6) that the image of k 0 • f contains (as an element) c 0 , which is a generator of A 0 , so k 0 • f is surjective. Therefore, f satisfies (9). Let u ≻ 0 in U . Let x ∈ κ, let v in U be such that x ∈ X v . If v ≤ u, then it follows from (4.9) that k u • f (x) = c ∂u = t (∂u) u (x). If v < u, then v = 0, hence Con c (G/θ ′ u ) ξ ′ u / / Con c Fr V (κ)/θ u Conc hu { { (2) 
Con c (G u /θ ′ u ) Conc g ′ u (1) Con c G Conc pu O O ξ -1 / / Con c Fr V (κ) Conc ψu Conc qu O O (4) (3) 
Con c G u Conc p ′ u e e ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ϕu =Conc gu O O ρu•ϕu / / Con c A ∂u Figure 2. The map ρ u • ϕ u factors through Con c p ′ u As G u is finite, S u = Con c G u is finite.
By applying the Armature Lemma (cf. [6, Section 3-2]) to the functor Con c on V, we obtain that there is an isotone section σ : I ֒→ U such that the family (ρ

σ(i) • ϕ σ(i) | i ∈ I) is a natural transformation from (S σ(i) , ϕ σ(j) σ(i) | i ≤ j in I) to Con c • A. It follows from Claim 2 that the map ρ σ(i) • ϕ σ(i) induces an isomorphism τ i : Con c G σ(i) /θ ′ σ(i) → Con c A i for each i ∈ I. Put B i = G σ(i) /θ ′ σ(i)
. It follows from Lemma 4.4 that g σ(j) σ(i) induces a morphism β j i : B i → B j for all i ≤ j in I. This defines a diagram B = (B i , β j i | i ≤ j in I), and τ is a natural equivalence from Con c • B to Con c • A.

Let 0 ≺ i ≤ j such that α j i is an isomorphism. In particular, α j i is an embedding, thus β j i is also an embedding. As ∂σ(i) = i ≻ 0, it follows from Assumption (3) that σ(i) ≻ 0. Thus, from Assumption [START_REF] Hobby | The Structure of Finite Algebras[END_REF] 

(cf. Claim 1) we obtain that card G/θ ′ σ(i) ≥ card G/θ ′ σ(j) . However B i = G σ(i) /θ ′ σ(i) = G/θ ′ σ(i) , similarly B j = G/θ ′ σ(j)
, so it follows that card B i ≥ card B j . However, β j i : B i → B j is an embedding, therefore β j i is an isomorphism.

The following lemma is proved in [START_REF] Gillibert | Critical points between varieties generated by subspace lattices of vector spaces[END_REF]Lemma 4.11]. We remind the reader that an ℵ 0 -compatible norm-covering, as defined in [START_REF] Gillibert | Critical points between varieties generated by subspace lattices of vector spaces[END_REF]Definition 4.4], is nothing else as an ℵ 0 -lifter. Lemma 4.6. Let X be a finite set and set P = {P ⊆ X | card P ≤ 2 or P = X}. Define U as the set of all functions from a subset of X to ℵ 2 , partially ordered by inclusion. Let

∂ : U → P u → ∂u = dom u if card(dom u) ≤ 2, X otherwise.
Denote by U the set of all principal ideals of U . Then (U, U ) is an ℵ 0 -lifter of P. Moreover, card U = ℵ 2 .

Remark 4.7. In the context of Lemma 4.6, the poset U is lower finite and has a smallest element. Moreover, ∂u ≻ 0 implies that dom u = {x} for some x ∈ X, hence u ≻ 0. Hence the truncated Boolean algebra P has an ℵ 0 -lifter that satisfies the conditions (1), [START_REF] Freese | Commutator Theory for Congruence Modular Varieties[END_REF], and (3) of Lemma 4.5.

The following lemma expresses that a diagram of (∨, 0)-semilattices with a lifting in V has a lifting in W. 

Q P = α ∨Q ∨P : A ′ P → A ′ Q for all P ⊆ Q in P. This defines a diagram A ′ = (A ′ P , f Q P | P ⊆ Q in P).
It follows from Lemma 4.6 and Remark R:normcov that there is an ℵ 0 -lifter (U, U ) of P, such that card U = ℵ 2 and the following statements hold:

(1) Every element of U is a principal ideal.

(2) The poset U is lower finite and has a smallest element.

(3) ∂u ≻ 0 implies that u ≻ 0 for each u ∈ U . The assumptions of Corollary 4.8 imply that:

(4) There is an integer m such that card B ≤ m for each algebra B ∈ W with Con c B ∼ = Con c A i for some i ∈ I. Moreover, by construction, A ′ ∅ is generated by one element and we have assumed that G is locally finite. It follows from Lemma 4.5 that there exists a lifting B = (B P ,

β Q P | P ⊆ Q in P) of Con c • A ′ in W, such that for all ∅ ≺ P ⊆ Q in P, if f Q P is an isomorphism, then β Q P is an isomorphism. Put C i = B {i} , for all i ∈ I. Let i ≤ j in I. Notice that f {i,j} {j} = α j j = id Aj is an isomorphism, hence β {i,j}
{j} is an isomorphism. The map

g j i = β {i,j} {j} -1 • β {i,j} {i} is a morphism from C i to C j .
The following equalities hold

β I {j} • g j i = β I {i,j} • β {i,j} {j} • β {i,j} {j} -1 • β {i,j} {i} = β I {i,j} • β {i,j} {i} = β I {i} . Hence β I {j} • g j i = β I {i} , for all i ≤ j in I . ( 4.11) 
Let i ≤ j ≤ k, it follows from (4.11) that

β I {k} • g k j • g j i = β I {j} • g j i = β I {i} = β I {k} • g k i .
Moreover, Hence (τ {i} ) i∈I is a natural equivalence from Con c • A to Con c • C.

f I {k} = α 1 k is an embedding, hence β I {k} is an embedding, thus g k j •g j i = g k i . Therefore, (C i , g j i | i ≤ j in I)

Critical points

We can now prove the main result of this paper.

Theorem 5.1. Let V and W be locally finite varieties of algebras. Assume that for each finite algebra A ∈ V there are, up to isomorphism, only finitely many B ∈ W such that Con c A ∼ = Con c B, and every such B is finite. Then either crit(

V; W) ≤ ℵ 2 or Con c V ⊆ Con c W.
Proof. Assume that crit(V; W) > ℵ 2 . The algebra Fr V (ℵ 2 ) is locally finite, so card Fr V (ℵ 2 ) ≤ ℵ 2 , hence card Con c Fr V (ℵ 2 ) ≤ ℵ 2 . There are G ∈ W and an isomorphism ξ : Con c Fr V (ℵ 2 ) → Con c G.

The remaining of the proof is similar to the Dichotomy Theorem of [6, Section 4-9], using Corollary 4.8.

Let A ∈ V, let a ∈ A. Denote by P the set of all finite subalgebras of A containing a. Set A p = p, denote by α q p : A p → A q , and by α p : A p → A the inclusion maps, for all p ≤ q in P . Put A = (A p , α q p | p ≤ q in P ). As V is locally finite, the poset P is a (∨, 0)-semilattice and (A, α p | p ∈ P ) is a colimit cocone of A.

Let I be a finite (∨, 0)-subsemilattice of P , by Corollary 4.8 the diagram Con c • A↾ I has a lifting in W, it follows from the Compactness Lemma of [6, Section 4-9] that Con

c • A has a lifting B in W. Fix B ∈ W a colimit of B. The following isomor- phisms hold Con c A ∼ = Con c (lim -→ A), as A is a colimit of A ∼ = lim -→ (Con c • A), as Con c preserves directed colimits ∼ = lim -→ (Con c • B), as Con c • A and Con c • B are naturally isomorphic ∼ = Con c (lim -→ B), as Con c preserves directed colimits ∼ = Con c B, as B is a colimit of B. Hence Con c A has a lifting in W for each A ∈ V, that is, Con c V ⊆ Con c W.
If W is strongly congruence-proper, then the condition of Theorem 5.1 is satisfied, we deduce the following result.

Corollary 5.2. Let V and W be locally finite varieties of algebras. If W is strongly congruence-proper, then either crit(V; W) ≤ ℵ 2 or Con c V ⊆ Con c W.

By using the results of [START_REF] Hobby | The Structure of Finite Algebras[END_REF], we observed, in [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF], that a finitely generated variety of algebras that satisfies a nontrivial congruence identity is strongly congruence-proper. Therefore, the following result is a consequence of Corollary 5.2.

Corollary 5.3. Let V be a locally finite variety of algebras. Let W be a finitely generated variety of algebras, with finite similarity type. If W satisfies a nontrivial congruence identity, then either crit(V; W) ≤ ℵ 2 or Con c V ⊆ Con c W.

Extension to quasivarieties of first-order structures

We conclude the paper with a word on quasivarieties of first-order structures, as considered in [START_REF] Gorbunov | Algebraic Theory of Quasivarieties[END_REF]. We briefly recall the basic definitions. A class of first-order structures on a first-order language L is a quasivariety if it is closed under substructures, direct products, and directed colimits (within the class of all models for L ). This notion is quite robust and has many equivalent forms, see [START_REF] Gorbunov | Algebraic Theory of Quasivarieties[END_REF] for details. In [6, Section 4-1], we define a congruence of a first-order structure A as an equivalence relation on (the universe of) A, augmented by a family of subsets of finite powers of A indexed by the set of all relation symbols of L , satisfying certain compatibility conditions. (In particular, if there are no relation symbols, then a congruence is an equivalence relation.) This definition is equivalent to the one introduced in [START_REF] Gorbunov | Algebraic Theory of Quasivarieties[END_REF]. Congruences of a first-order structure A are in one-to-one correspondence with surjective homomorphisms with domain A up to isomorphism. A most important class of examples, extensively considered in [START_REF] Gorbunov | Algebraic Theory of Quasivarieties[END_REF], is given by graphs.

Unlike varieties, quasivarieties may not be closed under homomorphic images. Thus the relevant concept of congruence, for a member A of a quasivariety V, is often modified by considering only the V-congruences (or congruences relative to V): by definition, a congruence θ of A is a V-congruence if the quotient A/θ is a member of V. The set Con V A of all V-congruences of A, partially ordered by inclusion, is still an algebraic lattice, and we denote by Con V c A its (∨, 0)-semilattice of compact elements. Furthermore, we define Con c,r V (where the letter "r" stands for "relative") as the class of all isomorphic copies of Con V c A for A ∈ V. The relative critical point crit r (V; W) between quasivarieties V and W of firstorder structures is defined as the least cardinality of a member of the difference (Con c,r V) -(Con c,r W), if Con c,r V ⊆ Con c,r W; and ∞ otherwise. Our main result, Theorem 5.1, extends mutatis mutandis to quasivarieties of first-order structures and relative congruence lattices. Aside from a few additional arguments dealing with the relation symbols, very similar to those dealing with equality for varieties of algebras, the proofs are virtually the same. An important point is the finiteness assumption on the sets of relation symbols in the languages of both V and W, which is essentially required in order to ensure that Con A is finite whenever (the universe of) A is finite. We thus improve the estimate of the Dichotomy Theorem stated in [6, Section 4-9], namely crit r (V; W) < ℵ ω , to crit r (V; W) ≤ ℵ 2 , moreover under a slightly weaker assumption. Theorem 6.1. Let V and W be locally finite quasivarieties of first-order structures, in first-order languages with only finitely many relation symbols. Assume that for each finite A ∈ V there are, up to isomorphism, only finitely many B ∈ W such that Con V c A ∼ = Con W c B, and every such B is finite. Then either crit r (V; W) ≤ ℵ 2 or Con c,r V ⊆ Con c,r W.

It is still not known whether the assumption, stating that for any finite A ∈ V there are only finitely many B ∈ B such that Con V c A ∼ = Con W c B, can be dispensed with. Due to the example in [10, Exercise 14.9(4)], attributed there to C. Shallon, this assumption does not hold as a rule: there is a finitely generated variety of algebras with a proper class of simple members. We also do not know whether the local finiteness assumption, on both quasivarieties V and W, can be dispensed with.
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 3 Definition 4.1]. The kernels of a supported poset P are the finite ▽-closed subsets of P . The following definition is given in [3, Definition 4.3]. Definition 3.3. A norm-covering of a poset P is a pair (U, ∂) where U is a supported poset and ∂ : U → P is an isotone map.

,

  for all p ∈ P . It follows that | u| = ∂u and |¬ u| = 0, hence F({0, u}) ⊗ S = S 0 × S ∂u . Moreover, π {0,u} 0 is the unique morphism from F({0, u}) to 2[∂0] = 2[0] that sends u to 0, while π {0,u} u is the unique morphism from F({0, u}) to 2[∂u] that sends u to 1. It follows that π {0,u} 0 ⊗ S = t 0 and π {0,u} u ⊗ S = t 1 .

Lemma 4 . 1 .

 41 Let A be a finite algebra of V, fix c ∈ A. Assume that there is an integer m such that card B ≤ m for every algebra B ∈ W with Con c B ∼ = Con c A.

Figure 1 .

 1 Figure 1. The family τ is a natural isomorphism

Corollary 4 . 8 .

 48 Assume that κ = ℵ 2 and that G is locally finite. Let A be a diagram of finite algebras and embeddings in V, indexed by a finite (∨, 0)-semilattice I. Assume that for each algebra A of the diagram A, there is a finite bound on the cardinality of liftings of Con c A in W. Then the diagram Con c • A is liftable in W. Proof. Write A = (A i , α j i | i ≤ j in I) and put P = {P ⊆ I | card P ≤ 2 or P = I}. Let us choose c ∈ A 0 , denote by A ′ ∅ the subalgebra of A 0 generated by c, and put A ′ P = A ∨P for each nonempty P ∈ P. Put f

1 •= Con c β {i,j} {j} - 1 •

 11 is a diagram of algebras in W. Let τ = (τ P ) P ∈P : Con c • A ′ → Con c • B be a natural equivalence. Let i ≤ j in I. As τ is a natural equivalence, Con c β {i,j} {j} • τ {j} = τ {i,j} • Con c f {i,j} {j} . However f {i,j} {j} = α j j = id Aj , hence Con c β {i,j} {j} • τ {j} = τ {i,j} , thus the following equality holds τ {j} = (Con c β {i,j} {j} ) -1 • τ {i,j} . (4.12) Therefore, we obtain (Con c g j i ) • τ {i} = Con c β {i,j} {j} -(Con c β {i,j} {i} ) • τ {i} , by the definition of g j i τ {i,j} • (Con c f {i,j} {i} ), as τ is a natural equivalence = τ {j} • (Con c f {i,j} {i} ), by (4.12) = τ {j} • (Con c α j i ), as f {i,j} {i} = α j i .
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 (4.6), therefore (4.7) implies that card G/ξ(ker(k u • f )) = n ∂u , for each u ≻ 0 in U .

(4.10)

It follows from (4.8) that the range of t contains the range of t v , which is equal to ∂v) . Therefore, by [START_REF] Goodearl | Tensor products of dimension groups and K 0 of unitregular rings[END_REF],

However, n ∂v = n ∂u (cf. Lemma 4.3). Thus, by (4.10), we obtain that card G/ξ(ker

We fix a morphism f :

Denote by S the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms and put S = Con c G. For all u ≤ v in U , set S u = Con c G u , denote by g u : G u ֒→ G and g v u : G u ֒→ G v the inclusion maps, and set ϕ v u = Con c g v u and ϕ u = Con c g u . This defines a diagram ((S u , ϕ u ),

Denote by p

Denote by g ′ u : G u /θ ′ u → G/θ ′ u the morphism induced by the inclusion map g u , so the square (1) of the diagram in Figure 2 commutes. It follows from the choice of G u that g ′ u is an isomorphism. Denote by ξ ′ u : Con c (G/θ ′ u ) → Con c Fr V (κ)/θ u the (∨, 0)-homomorphism induced by ξ -1 . Then the square (2) of the diagram in Figure 2 commutes. As θ ′ u = ξ(θ u ) and ξ -1 is an isomorphism, ξ ′ u is an isomorphism. Denote by q u : Fr V (κ) ։ Fr V (κ)/θ u the canonical projection, for each u ∈ U . As ψ u = h u • q u , the triangle (4) of the diagram in Figure 2 commutes.

Therefore, the diagram in Figure 2 commutes, hence

is an isomorphism, the conclusion follows. Claim 2.