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Abstract—As business processes continue to gain relevance
in different domains, dynamicity is becoming a great con-
cern. Static processes no longer cover the actual needs of
constantly changing environments, and process adaptation is a
must in order to maintain competitive levels. While creating
dynamically adaptable business processes can be a challenging
task, undoing these adaptations is a natural functionality that
has not been studied in depth. Straight forward approaches
for unadaptation can easily end up with corrupted processes,
bringing uncertainty to the whole business logic. In this paper
we bring forward a solution for efficiently undoing a business
process adaptation in event-driven environments, considering
also the correlated adaptations that happened afterwards.

Keywords-Event Driven Approach; Business Process; Adap-
tation;

I. I NTRODUCTION

There is a huge amount of variable conditions surrounding
today’s business environments. The context in which our
business processes (BPs) are executed is an important factor
that directly affects the way they are executed. We can no
longer rely on static processes, since we need to consider
these conditions and adapt our processes accordingly in or-
der to obtain better results and maintain a competitive level.
Several efforts have been made towards adding dynamicity
to BPs, showing how much this problematic matters [1]–[4].

By monitoring the context in which business processes
are being executed, it is possible to efficiently respond to
any changes in the environment and continue the process
in an optimal way. Changes in the context can be seen as
events that arrive at a specific moment in time and have
a different meaning depending on several conditions,e.g.,
timing, origin, sequence. The meaning of each event can
help us determine a specific situation to which we can react
by adapting the process. However, sometimes it is not a
single event, but a combination of events that should trigger
the adaptation, and this is whereComplex Event Processing
(CEP) can be used. CEP is an emerging technology from
which organizations can benefit, since it allows them to
find real-time relationships between different events, using
elements such as timing, causality, and membership in a
stream of data to extract relevant information [5].

Using CEP approaches, the reception of an eventǫ (e.g.,
a CPU overload) meet a certain condition and the system is
then adapted [6]. But, what happens when we receive¬ǫ?
The condition is no longer true (i.e., the CPU load is back
to normality) and we would like to go back to our original

process. Undoing of adaptations is a topic that has been left
aside, but it cannot be obviated, since, as we will explain
in this paper, a straight forward approach can easily lead to
corrupted processes.

The objective of this paper is to present an effective
solution to event–driven BP unadaptation, by considering
not only the event that caused the adaptation, but also the
correlated adaptations that came afterwards, leaving all the
unrelated adaptations untouched, in order to obtain a BP “as
it would be if this adaptation had never happened”(similarly
to transactional systems [7] where therollback operation is
used to restore a system). Using this generic and automated
approach, users are relieved from handling the unadaptation
logic.

The rest of this paper is organized as follows. In Section
II, we use a scenario to illustrate the motivation and chal-
lenges of our proposal. Section III presents our approach for
doing and undoing BP adaptations. Section IV describes how
the actual undoing of BP adaptation is achieved. In Section
V, we show an implementation to validate our proposal.
Section VI gives some related work. Finally, Section VII
concludes and discusses future work.

II. M OTIVATION AND CHALLENGES

In this section we will use a simple example to illustrate
how a business process can be adapted and why undoing this
adaptation is needed, but is not a simple and transparent task.

A. Example Description

We consider here a simple process, part of an online cat-
alog software. It contains five activities, which respectively:
(i) logs the user in,(ii) asks for user’s request,(iii) performs
the search in the internal database,(iv) displays the results
to the user and finally(v) logs the user out. This process is
depicted in FIG. 1.

requestlogin search display logout

Figure 1. Illustrative business process (initial)

We want to adapt this process according to the context,
using an event-driven approach. Process adaptations are
driven by the reception of explicit events (triggered by
associated conditions). For example, if the search service
becomes unavailable, afail event will be triggered, and an



adaptation will be executed to fix the problem. Precisely,
it will connect the process to a remote backup service, to
ensure continuity for customers. We summarize in TAB . I the
different adaptation rules associated to our running example.

Event Condition Action
fail search_status 6= ok Use a backup server
slow bw < 100kbps —
cache fail followed byslow Introduce a cache
perf cpu > 80% Monitor the process

Table I
EVENT–DRIVEN ADAPTATION DECISIONS

Accordingly, if the fail event is received, the business
process will be adapted to tackle this issue, and we will
obtain after the adaptation the process depicted in FIG. 2.
In this figure (and the upcoming ones), we represent deleted
elements withdashedlines .

backup

requestlogin search display logout

Figure 2. Consulting a backup when the search service is unavailable

If we then receive a performance alert by the event
perf (identifying a CPU abnormal usage), we want to start
monitoring the CPU consumption for all the activities in the
process. To achieve this, we will add a monitoring activity
after each existing activity. The resulting process is depicted
in FIG. 3.

backup

requestlogin search display logout

monitor

monitor monitor

monitor monitor

Figure 3. Monitoring the process to identify abnormal CPU consumption

As the backup server is a remote entity, we depend on
the quality of the network connection to search the catalog.
Considering a bandwidth drop (identified with aslowevent),
the cache event will also be recognized (as it is defined
as a fail followed by a slow) and we will need to adapt
the process by adding a cache mechanism to help diminish
the response time of the requests. The adapted process is
depicted in FIG. 4.

B. Need for Adaptation Undo

When an adaptation condition is no longer true, we would
like to get our process“as it would be if this adaptation had

bac

req search dis

monitor

monitor monitor

monitor monitor

read

cache?

Figure 4. Introducing a cache to deal with lower bandwidth

never happened”. Retaking our previous example, let’s say
we receive an event¬fail1, which means that we recovered
our internal search server. In this case, we no longer need
the external backup nor the associated cache mechanism and
we can remove them.

Naively, undoing an adaptation does not seem so compli-
cated. It can be seen as removing all the changes made to
the business process that were caused by thefail event. In
order to achieve this, the intuitive undoing action would be
to use the exact “opposite” of the used adaptation. In our
case, it would remove the backup server and re–introduce
the internal search one. The associated process is depictedin
FIG. 5(a). Unfortunately this process does not make sense
in terms of business logic, as it holds the two following
issues2: (i) the searchactivity is not monitored and(ii) the
cache mechanisms are irrelevant since the vanishing of the
backup server.

C. Challenge: Automating Adaptation Undoing

As seen in the previous example, a straight forward
undoing of the adaptation can result in a corrupted process.
To obtain a correct undoing of an adaptation, we could add
an adaptation rule that changes the process to its original
state. However, this approach will only work if we consider
all the possible states of the process, given all the possible
adaptations that could happen, providing the correct process
for each and every one of them. This, far from being user
friendly, is virtually impossible to accomplish.

The ideal case would be to provide the user with an
automated unadaptation of the process, whenever adaptation
conditions are no longer met. Using this approach, we could
automatically produce a system“as it would be if this
adaptation had never happened”. Going back to the previous
example, it results in the synthesis of the process depicted
in FIG. 5(b): the search activity is monitored, and the cache

1Intuitively, if fail is defined assearch_status 6= ok, ¬fail is defined
assearch_status = ok

2Syntactically talking, the removal of the backup activity also creates a
hole between the cache validity test and the cache writing activity, leading
to a corrupted process.
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(a) Inconsistent process obtained after naive unadaptation

monitor

requestlogin search display logout

monitor monitormonitor monitor

(b) Expected result

Figure 5. Undoing adaptation (¬fail): a not–so–easytask

mechanism is not present (since its trigger event depends on
the fail one). As a consequence, to support this automated
unadaptation, we highlight the following mechanismsMi,
which are required to properly undo an adaptation triggered
by an eventǫ:

• M1: Identify the undoing trigger . Based on the
description of events, the system must be able to
recognize their opposite, and trigger the automated
undoing mechanisms when relevant.

• M2: Restore the process. The current process must be
restored to what it wasbeforethe reception ofǫ.

• M3: Forget the correlated adaptations. Adaptations
triggered by any event which depends (immediately or
transitively) onǫ (e.g.,thecache event depends on the
fail event) must be forgotten.

• M4: Re–execute the unrelated adaptations. All adap-
tations that are independent ofǫ must be re–executed,
to yield a system equivalent to the one obtained after
their on–the–fly execution.

III. A DAPTATION: FROM “do” TO “undo”

To tackle the issues identified in the previous section, we
propose to automate the support of BP unadaptation. The key
idea is to formalize the adaptation, and to rely on this formal
model to define and then operationalize the unadaptation. We
consider here an event–driven adaptation engine based on
state–of–the–art mechanisms [8], represented in FIG. 6. At
a coarse–grained level, the engine receives a continous flow
of events from deployed sensors. According to the received
events, the CEP engine will trigger associated adaptations,
stored in an adaptation repository. The obtained (adapted)
process is then sequentially used as input for the upcoming
adaptations.

Complex
Event

Processing
Engine

event

flow

Adaptation rules

Repository

Business
Process

Figure 6. Overview of the adaptation process

A. Business Processes & Actions

We define a business processp ∈ P as a set of activities
acts, which implement elementary tasks, and a set of causal
relations rels to schedule the activity set according to a
partial order. This formalization is based on the ADORE

meta–model [9] and models a subset of the BPEL industrial
standard [10]. For simplification purpose, we assimilate
an activity to itsname, without further knowledge of its
internal contents. A (binary) causal relation is defined as an
ordered pair of activities (i.e., left and right). We denote
as left ≺ right ∈ R the fact that a relation exists between
left andright. We depict in FIG. 7 a business process and
its associated formal representation.

a1

a2

a3

Activities Relations

p = ({a1, a2, a3}
︸ ︷︷ ︸

acts

, {a1 ≺ a2, a2 ≺ a3}
︸ ︷︷ ︸

rels

)

Figure 7. A simple business process,p ∈ P .

To manipulate BPs, we use an action–based approach,
since these approaches are known to efficiently support
the manipulation of models [11]. An elementary action is
defined as the addition or deletion of a model element in
a given business process. In itself, an actionα is simply a
ground term that reifies the associated intention (e.g.,adding
an activity, deleting a relation). TAB . II lists the existing
actions available to modify a given business process. The
execution of an actionα on a processp is handled by a call
to theexec function: exec(α, p) = p′, wherep′ is a process
effectively modified.

Intention Notation
Add an activitya adda(a)

Add a relationa ≺ a′ addr(a, a′)
Del an activitya dela(a)

Del a relationa ≺ a′ delr(a, a′)

Table II
ACTIONS AVAILABLE TO MANIPULATE BP



Actions can be sequenced to implement complex modi-
fications. LetA = [α1, . . . , αn] be a sequence3 of actions.
The execution ofA on a given processp is formally defined
as follows:

exec+(L, p) =

{

L = ∅ ⇒ p

L = [α|A] ⇒ exec+(A, exec(α, p))

Using this representation, the processp depicted in FIG. 7
can be built as the result of the execution of its associated
action sequenceAp on the empty process.

Ap = [adda(a1), adda(a2), addr(a1, a2),

adda(a3), addr(a2, a3)]

p = exec+(Ap, (∅, ∅))

B. Events & Complex Events

An event ǫ is reified as a value associated to a sensor,
e.g., the CPU load is equal to80%. We use a tuple of
terms ǫ = (sensor, value) to represent this information.
Events are continuously sent to a complex event processor
engine, in our case Esper4. Based on this continuous flow,
this engine identifiescomplex events(CEs), defined as
(i) a boolean formula applied to an (elementary) event to
process it or(ii) a combination of other complex events. We
represent in TAB . III the expressiveness associated to usual
complex events definitions. CEs can be conjucted (∧) or
disjuncted (∨) using elementary boolean logic. A sequence
operator is used to introduce causality between two events
(ǫ1; ǫ2 means thatǫ2 foolows ǫ1 eventually, even if not
immediately). Finally, a time window operator supports the
wait for a given complex event for a given duration (e.g.,
ǫ′ = within(ǫ, 200ms) will be recognized if the CE ǫ is
received by the engine within200ms).

Intention Notation Example
Event processing (sensor ∼ value) (cpu>80%)

CE conjunction ǫ1 ∧ ǫ2 slow∧(error=404)

CE disjunction ǫ1 ∨ ǫ2 (error=404)∨(error=503)

CE sequence ǫ1; ǫ2 fail;slow

Time window within(ǫ,∆t) within(¬response,10s)

Table III
COMPLEX EVENTS DEFINITION

C. Event–drivenBP Adaptation

Based on these definitions of BPs and CEs, one can add
adaptability into existing business processes. To perform
such a task, a user would define adaptation rules, and
store them into a shared rule repository. This repository is

3We assimilate a sequence to a totally ordered set (i.e., a list), and use
the notation and functions associated to lists usually encountered in the
logic programming literature [12]. A list is defined as a headh followed
by a tail listT , and is denoted asl = [h|T ]. The empty list is∅.

4http://esper.codehaus.org/

connected to the complex event processing engine, which
triggers the adaptation application at runtime.

An adaptation ruler ∈ AR is defined as a tuple(ǫ, ϕ),
whereǫ is the CE used to trigger the adaptation5, andϕ is a
function used to compute the action sequence to be executed
to perform the adaptation. This action sequence is executed
on the BP, to modify its structure and then implement the
adaptation:

Let a = (ǫ, ϕ) ∈ A, p ∈ P, ǫ ⇒ exec+(ϕ(p), p)

We illustrate such an adaptation in FIG. 8. The goal of this
adaptation is to replace an activity by another one when the
ǫ complex event is processed (e.g., the replacement of the
internal search by the backup server in the running example,
FIG. 2). The application ofϕ on the processp produces a
sequence of actionsA, which aims to replace the activity
a2 by a new activitya′2. To implement this adaptation, the
engine executesA on p, and computes as outputp′, the
adapted process.

a1

a2

a3

a'2

(a) ϕ(p) = A

a1

a'2

a3

(b) p′ = exec+(A, p)

A = [adda(a
′

2
),addr(a1,a

′

2
),addr(a

′

2
,a3),

delr(a1,a2),delr(a2,a3),dela(a2)]

Figure 8. Applying an adaptation(ǫ, ϕ) to p

To properly support unadaptation of BPs, we need to keep
track of the adaptation history. This concept is expressed as a
list of tuples(ǫ, Aǫ), whereǫ is the processed CE andAǫ =
[α1, . . . , αn] the sequence of actions computed according
to this event. The list is maintained in reversed order,i.e.,
the head of the history corresponds to the last adaptation.
Considering the final adapted process (FIG. 4) associated to
the adaptation scenario depicted in SEC. II, the history is
defined as follows:

Hex = [(perf,Aperf ), (slow,Aslow), (fail , Afail )]

D. Automating Adaptation Undoing

We consider here the situation depicted in FIG. 9. This
situation is a formal representation of the adaptation scenario
textually described in SEC. II: p is the initial scenario

5We assume that a given complex eventǫ will trigger only one adaptation:
∀(ǫ, ϕ) ∈ A, ∄(ǫ′, ϕ′), ǫ = ǫ′. According to state–of–the–art engines, we
also assume that an adaptation is only triggered once.



(FIG. 1), andp123 is the resulting adapted process (FIG. 4).

p
ǫ17−→ p1

ǫ27−→ p12
ǫ37−→ p123

Defined complex events:{ǫ1, ǫ2, ǫ3}
Complex events combination:ǫ3 = ǫ1; ǫ2
Rule repository:{(ǫ1, ϕǫ1 ), (ǫ2, ϕǫ2 ), (ǫ3, ϕǫ3 )}
Adaptation steps:

– p1 = exec+(Aǫ1 , p), Aǫ1 = ϕǫ1 (p)
– p12 = exec+(Aǫ2 , p1), Aǫ2 = ϕǫ2 (p1)
– p123 = exec+(Aǫ3 , p12), Aǫ3 = ϕǫ3 (p12)

History: [(ǫ3, Aǫ3 ), (ǫ2, Aǫ2 ), (ǫ1, Aǫ1 )]

Figure 9. Doing adaptation:p becomesp123.

Doing adaptation. The adaptation rule repository holds
three rules, defined with respect to three complex events:
{ǫ1, ǫ2, ǫ3}. Complex eventsǫ1 andǫ2 are elementary event
processing, andǫ3 is defined as the detection ofǫ2 after
the detection ofǫ1. Based on the analysis of the incoming
elementary events, adaptations are triggered by the complex
event processing engine to adapt a given processp. We
consider here the following sequence of events:ǫ1, ǫ2, and
consequentlyǫ3 (according to its definition). After these
three adaptations, we obtain a processp123. This process
is handled through the previously defined mechanisms.

Undoing adaptation. We consider now the detection of a
complex event opposed toǫ1 (denoted as¬ǫ1). In this new
context, adaptations that had been triggered based onǫ1 do
not make sense anymore, and must be undone. Considering
that our objective is“to produce the system as it would
be if this adaptation had never happened”, we also need
to undo all adaptations depending onǫ1 (i.e., triggered by
a complex event which combinesǫ1 with others, hereǫ3).
According to this goal, and with respect to the mechanisms
Mi identified in SEC. II, the system needs to(i) recognize
the opposite event and then trigger the undoing mechanisms
(M1), (ii) rewind the historic to retrieve the process as it
was before the reception of the incriminated event (M2),
(iii) prune from the historic the adaptations that depend
(immediately or transitively) on this event (M3), and finally
(iv) replay the remaining adaptations to obtain the expected
process (M4).

Considering the example depicted in FIG. 9, the undo
mechanism associated toǫ1 is expected to automate the
following steps:

• recognize: Assuming thatǫ1 is an arithmetic compar-
ison (e.g., bandwidth < 100kbps), its opposite can
be automatically computed (i.e., ¬ǫ1 = bandwidth ≥
100kbps). An adaptation needs to be undone since the
complex event processor engine detects the event and
its opposite in sequence,i.e., ǫ−1

1 = ǫ1;¬ǫ1.
• rewind: On the detection ofǫ−1

1 , the system will restore
the process as it was before the detection ofǫ1. In our
case, thisrewind restores the process asp.

• prune: Considering the contents of the history, the
engine knows that the processp was adapted according
to the following sequence of events:[ǫ1, ǫ2, ǫ3]. The
pruning step removes from this sequence the incrimi-
nated event, and all its (transitive) dependencies (here,
ǫ3). In our case, the pruned sequence is[ǫ2].

• replay: The adaptations triggered by the events con-
tained in the pruned sequence need to be replayed on
the process. In our case, it means to adaptp according
to the rule associated toǫ2.

We obtain as a result of this adaptation undoing the
processp2, as represented in FIG. 10.

p
ǫ17−→ p1

ǫ27−→ p12
ǫ37−→

︸ ︷︷ ︸

do

p123
¬ǫ17−→ (p

ǫ27−→)
︸ ︷︷ ︸

undo

p2

p2 = exec+(ϕǫ2 (p), p)

Figure 10. Undoing adaptation:p123 becomesp2

IV. “U NDO” OPERATIONALIZATION

In this section, we formally describe how the undaptation
can be operationalized. We present the different operations
used to support theundo process using a functional style,
being consequently language independent.

A. M1: Recognition of an Undo Trigger (ǫ−1)

We denote asǫ−1 the CE that triggers an undo. This event
is defined as the sequence composed by the eventǫ and
its associated opposite event¬ǫ. Using this definition, an
undo will always be triggered when the engine recognizes
an opposite event (e.g., ¬fail ) eventually preceded by an
event (e.g., fail).

fail−1 = fail ;¬fail

We represent in TAB . IV the way an oposite event¬ǫ is
computed with respect to an eventǫ.

Complex Event (ǫ) Opposite Event (¬ǫ)
(sensor ∼ value) (sensor 6∼ value)

ǫ1 ∧ ǫ2 ¬ǫ1 ∨ ¬ǫ2
ǫ1 ∨ ǫ2 ¬ǫ1 ∧ ¬ǫ2
ǫ1; ǫ2 ¬ǫ1 ∧ ¬ǫ2

within(n, ǫ1) ¬ǫ1

Table IV
COMPLEX EVENTS (ǫ) & OPPOSITES(¬ǫ)

B. M2: Rewinding a Business Process

The objective of this function is to restore a process as it
was before the reception of the initial eventǫ. It intensively
relies on the history model previously defined, identifying
the actions to be undoneand the encountered events.



Undoing actions.For each kind of actionα, we present
in TAB . II its inverseα−1. Executingα−1 afterα annihilates
the introduced modification:exec(α−1, exec(α, p)) = p.
Considering a sequence of actionsA, its inverse (denoted
as A−1) is defined as the inverse of all actions contained
by A, in reversed order. This approach is inspired by aspect
unweaving techniques [13].

α α−1

adda(a) dela(a)
addr(a, a′) delr(a, a′)
dela(a) adda(a)

delr(a, a′) addr(a, a′)

A = [α1, . . . , αn]

A−1 = [α−1
n , . . . , α−1

1 ]

Table V
ACTIONS (α) & I NVERSE (α−1)

Function description. This operation is implemented in a
rewind function. Based on a given processp, the associated
historyH and the intended eventǫ, this function computes
a processp′ (representing the business processp as it was
before the reception ofǫ) and a list of complex events
[ǫi, . . . , ǫj ] (representing all the events recognized between
the receptions of¬ǫ andǫ). For clarity reasons, we decouple
the computation ofp′ (using arestore function) from the
identification of the encountered events (using anextract

function). The definition of these functions, based on the
formalization described in SEC. III is presented in FIG. 11.

rewind : P ×History × CE → P × [CE]

(p,H, ǫ) 7→ (p′, [ǫi, . . . , ǫj ])

restore : P ×History × CE → P

(p,H, ǫ) 7→ p′

extract : History × CE → [CE]

(H, ǫ) 7→ [ǫi, . . . , ǫj ]

restore(p,H, ǫ) =







H = ∅ ⇒ p
H = [(ǫ, Aǫ)|H′]

⇒ exec+(A-1
ǫ , p)

H = [(ǫ′, Aǫ′ )|H
′], ǫ), ǫ′ 6= ǫ

⇒ restore(exec+(A-1
ǫ′
, p), H′, ǫ)

extract(H, ǫ) =






H = ∅ ∨ H = [(ǫ, Aǫ)|H′]
⇒ ∅

H = [(ǫ′, Aǫ′ )|H
′], ǫ), ǫ′ 6= ǫ

⇒ [ǫ′|extract(H′, ǫ)]

rewind(p,H, ǫ) = ( restore(p,H, ǫ), extract(H, ǫ) )

Figure 11. Description of therewind function

C. M3: Pruning the Adaptation History

The objective of this operation is to identify in a sequence
of events the ones related to the to–be–removed event
(immediately or transitively), and consequently reject them
all (as they are now irrelevant). We define aprune function
to support this operation. Using as inputs the sequence

of events computed byrewind (namedHistory) and a
sequence of events to be rejected (namedRemoved, and
initially containing the to–be–removed event), this function
produces aPruned sequence of events. According to our
objectives, thePruned sequence contains events that are
not related to the ones defined inRemoved. Its definition
is represented in FIG. 12

prune : [CE]× [CE] → [CE]

(Hist, Removed) 7→ Pruned

prune(H,R) =







H = ∅ ⇒ ∅
H = [ǫ|H′] ∧ ∃ǫ′ ∈ R, ǫ ∈ ǫ′

⇒ prune(H′, [ǫ|R])
H = [ǫ|H′] ∧ ∄ǫ′ ∈ R, ǫ ∈ ǫ′

⇒ [ǫ|prune(H′, R)]

Figure 12. Description of theprune function

D. M4: Replaying a Complex Event Sequence

The objective of this operation is to perform process re–
adaptation,i.e., to re–execute on the rewinded process the
adaptations that still need to be present in the expected
result (i.e., the adaptations triggered by the events identified
by the prune function). This operation is described in a
function namedreplay, presented in FIG. 13. Using a given
processp′ and a sequence of events[ǫi, . . . , ǫj ] as inputs, the
function produces a processpr that implements the expected
result of the undo process.

replay : P × [CE] → P

(p′, [ǫi, . . . , ǫj ]) 7→ pr

replay(p, L) =







L = ∅ ⇒ p
L = [ǫ|L′]

⇒ replay(adapt(p, ǫ), L′)

Figure 13. Description of thereplay function

V. VALIDATION & I MPLEMENTATION

The unadaptation function takes as inputs the business
processp, the associated historyH and the event to un-
adaptǫ. Let (p′, E) be the result ofrewind(p,H, ǫ), and
pruned the result ofprune(E, [ǫ]). The unadapted process
pu is obtained as the result ofreplay(p, reverse(pruned)).
We implemented the complete approach using the PRO-
LOG language, to support its application on large exam-
ples6. Events are sent to the adaptation engine through the
send_events([[sensor, value],...]) command. We
consider here the scenario described in SEC. II, i.e., the
reception of an errorneous status for thesearch service,
followed by a CPU overload and a network slowdown.

?- send_events([[search_status, error], ...]).

6Video demonstration available here: http://bit.ly/scc11



% Recognizing <EP: fail>
% > act1 = [add_a(backup), ...]
% > exec+(act1, p) ... done.
% Recognizing <EP: perf>
% > act2 = [add_a(m1), ...]
% > exec+(act2, p) ... done.
% Recognizing <EP: slow>
% Recognizing <EC: cache>
% > act3 = [add_a(cache?), ...]
% > exec+(act3, p) ... done.
% => Consumed logical inferences: 2,668 (0.001ms)
?-

The undoing is triggered with the recognition of a¬fail
event,i.e., the reception of a(search_status, ok) event. It
first triggers the rewind of the process to its original state.
Then, the pruning function removes thecache event as it
depends onfail. Finally, the replay is triggered, and the
expected result (depicted in FIG. 5(b)) is obtained as output.

?- send_events([[search_status, ok]]).
% Recognizing <EP: not(fail)>
% Undo required <fail>
% rewind:
% > exec+(invert(act3), p),
% > exec+(invert(act2), p),
% > exec+(invert(act1), p).
% events = [cache, perf]
% prune: [perf]
% replay: [perf]
% > act4 = [add_a(m6), ...]
% > exec+(act4, p) ... done.
% => Consumed logical inferences: 1,971 (0.001ms)
?-

The immediate advantage of our approach is to relieve the
user from handling the unadaptation logic. In this example,
the recognition of the¬fail CE is fully automated, based on
the value received through the associated sensor. The pro-
posed unadaptation function properly handles this situation,
and yields the expected business process.

VI. RELATED WORK

As stated before, dynamic adaptation has been a widely
studied topic [14]. For instance, the MUSIC middleware [15]
is defined to support component assembly self–adaptation.
Event-based AOP (EAOP) is a framework that intends to ex-
press aspects in terms of events that arrive during execution
[16]. They even detect sequences of events, and relate them
usingevent patternsat run-time. However, these approaches
for adaptation are only one way, and they never consider
undoing their changes.

In [17], the authors present an aspect–oriented approach
called WComp, a lightweight component–based middleware
to design composite Web services. They propose an aspect-
oriented approach calledAspect of Assembly(AA) to create
a composition for adaptation. When a change in the context
is detected, they create a simulation by applying all the
AAs (implementing remaining adaptation rules) to the initial
state and compare it to the actual state. Then they apply
the differences by using pure elementary modifications (add,
remove, link, unlink). Our approach is semantically different

as they focus on one kind of event (i.e., service apparition
or vanishing) where we use the definition of CE to drive the
(un)adaptation process.

In [18], the authors propose to automate the handling of
model inconsistencies through the discovery of repair plans,
implemented as action sequences. They demonstrate that
action–based approaches support anefficientimplementation
of model manipulation. FScript [19] uses actions to support
automated rollback (i.e., only for reconfiguration failure).
In [13], the authors propose an action–based approach to
support the unweaving of model aspects. The underlying
principles are close to the ones used in this proposal,i.e.,
the execution of inverted action sequences and the replay
of remaining adaptations (in this case, aspect application).
However, our approach is different as we aim to automat-
ically support the undoing of adaptations (without human
intervention) where aspect model unweaving is a human–
driven process. Moreover, the reification of relations between
CEs helps us to smartly prune the encountered events and
then implement an accurate replay.

In [20], the authors present their approach for creating
dynamic business processes using ECA (Event-Condition-
Action) rules. They decompose the original business process
structure in a set of rules. This rules are then used to createa
Control Flow Checkingtable, where the flow of the process
is defined. To adapt the process they create a new modified
Control Flow Checkingtable, which they compare to the
original. The differences between both tables are then used
to create new rules that will allow the new modifications
to be considered during the BP execution. To undo the
adaptation, the new rules could just be removed, or restored
to their previous state. However, even though the goal of
adaptation is accomplished, the introduction and removal of
rules require external interaction, (i.e. somehow the rules
need to be created and fed into the system).

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have argued that BP unadaptation is an
important issue that should not be obviated, since naive
approaches could end up with corrupted processes. We
presented our approach to solve this issue with a four-
step procedure: recognize, rewind, prune and replay. The
proposed approach is generic since the detection of the undo
trigger event is defined in terms of state–of–the–art CEP

engines, and uses boolean logic to associate an event to
its non–event. Furthermore, our approach is also automated.
Indeed the way BPs are unadapted is fully delegated to an
automatic engine. Thanks to these two advantages, we set
the user free from having to deal with the unadaptation logic.
Moreover, our four–step approach warranties that the final
process will be as expected: the approach considers not only
the original adaptation, but also the subsequent adaptations
that were related to it, and unadapts them as well, while
leaving the unrelated adaptations untouched. The obtained



result is a cleanly unadapted process,“as if the original
adaptation had never happened”. We validated our approach
by formalizing each step of the unadaptation procedure and
implemented the logic approach with PROLOG.

As for future work, we are currently enhancing the pro-
posed approach to support user–driven customization of the
automatically generated unadaptation trigger events: these
generated events could indeed be optimized according to
business knowledge. We are also working in developing an
instance level process (un)adaptation method. Since each
process instance has a context of its own, adapting or un-
adapting cannot always be performed. To correctly achieve
(un)adaptation at the instance level, we need to consider also
the step of the process that the instance is running and then
adapt its process only when referring to future steps. Also,a
particular attention must be paid when loops are involved in
the instance, since in this case a previous step is also a future
step, and these adaptations need to be managed carefully.
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