

LISA long-arm interferometry: an alternative frequency pre-stabilization system

Benjamin Sheard, Gerhard Heinzel, Karsten Danzmann

► To cite this version:

Benjamin Sheard, Gerhard Heinzel, Karsten Danzmann. LISA long-arm interferometry: an alternative frequency pre-stabilization system. Classical and Quantum Gravity, 2010, 27 (8), pp.84011. 10.1088/0264-9381/27/8/084011 . hal-00587613

HAL Id: hal-00587613 https://hal.science/hal-00587613

Submitted on 21 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LISA long arm interferometry: an alternative frequency pre-stabilisation system

Benjamin Sheard, Gerhard Heinzel and Karsten Danzmann

Albert-Einstein-Institut Hannover (Max-Planck-Institute for Gravitational Physics and Leibniz University Hannover), Callinstraße 38, 30167 Hannover, Germany

E-mail: benjamin.sheard@aei.mpg.de

Abstract. Laser frequency noise is a significant noise source which couples into the main science measurement of the Laser Interferometer Space Antenna via the mismatch between the interferometer arm lengths. In this paper we discuss the application of unequal pathlength heterodyne Mach-Zehnder interferometer to measure and actively stablise the master laser frequency as used in LISA Pathfinder. In comparison to an optical cavity or atomic reference the technique has a wide operating range and does not require a complex lock acquisition procedure. Frequency tuning can be provided by purely electronic means and does not require physically changing the pathlength (or resonance frequency) of the frequency reference and can therefore be combined with arm locking in a straightforward manner.

PACS numbers: 04.80.Nn,07.60.Ly,07.87.+v,95.55.Ym

1. Introduction

The Laser Interferometer Space Antenna (LISA) aims to to detect gravitational waves in the $100 \,\mu$ Hz to 1 Hz frequency band by measuring the distances between freely-falling proof masses enclosed within three identical spacecraft in a triangular constellation [1]. The 5 million km inter-spacecraft distances will be measured using laser interferometry with close to shot-noise limited precision. Whilst the orbits of the spacecraft are designed to keep the separation between the three spacecraft equal and as constant as possible without station keeping, a slowly changing mismatch on the order of $\pm 60\,000$ km is unavoidable [2]. This large arm length mismatch couples laser frequency noise to the differential single-pass length measurement between two adjacent arms according to the following expression

$$\sqrt{S_x(f)} = \left|\operatorname{sinc}\left(\frac{2\pi f \Delta L}{c}\right)\right|^{-1} \frac{\Delta L}{\nu} \sqrt{S_\nu(f)} \tag{1}$$

Where ΔL is arm length mismatch, ν is the laser frequency, c is the speed of light, $\sqrt{S_x(f)}$ is the displacement amplitude spectral density in m/\sqrt{Hz} and $\sqrt{S_\nu(f)}$ is the frequency amplitude spectral density in Hz/\sqrt{Hz} . For $f \ll c(2\pi\Delta L)^{-1}$ Equation 1 can be approximated by

$$\sqrt{S_x(f)} \approx \frac{\Delta L}{\nu} \sqrt{S_\nu(f)} \tag{2}$$

The coupling into the phase measurement is therefore

$$\sqrt{S_{\phi}(f)} \approx 2\pi \frac{\Delta L}{c} \sqrt{S_{\nu}(f)}$$
(3)

In the baseline configuration where offset phase locking is used, a single interferometer arm is essentially a Mach-Zehnder interferometer with an enormous mismatch of 10 million km. The coupling of the laser frequency noise to a single arm measurement is on the order of 210 rad/Hz. With the baseline pre-stabilised frequency noise level of $30 \text{ Hz}/\sqrt{\text{Hz}}$ [3] the phase noise of the beatnote to be measured is $6 300 \text{ rad}/\sqrt{\text{Hz}}$. This comparitively large phase noise must be measured by the phasemeter with a fidelity of approximately $6 \,\mu\text{rad}/\sqrt{\text{Hz}}$ [4, 5]. It is only after subsequent active stabilisation with arm-locking and processing the raw measurements using a post-processing technique called time-delay interferometry (see e.g. [6, 7]) that the laser frequency noise is removed.

Time delay interferometry (TDI) "synthesises" an equal arm length interferometer by appropriately combining the raw signals with delayed versions of the same signals. To process the raw data using TDI requires an accurate knowledge of the propagation delay in each arm. The main phase measurement observes the picometre level *fluctuations* only in the measurement band and does not directly provide a measurement of the absolute propagation delay. One approach is to implement a dedicated ranging system using pseudo-random codes which are phase modulated onto the main carrier. The absolute separation of the spacecraft can be determined by tracking the phase of these codes at the receiving spacecraft. Preliminary results with a laboratory prototype have shown sub-metre resolution [8].

An alternative method of inferring the propagation delay is to minimise the noise power in the TDI outputs [9]. An extension of this approach is to modulate the laser frequency at the edge of the measurement band and adjust the delays used in TDI to minimise this peak in the final output [10]. Initial estimates of the resolution are on the sub-metre level.

Figure 1. Frequency noise requirements for an arm length mismatch of 60 000 km $(20 \,\mu \text{Hz}/\sqrt{\text{Hz}} \text{ at } 0.1 \text{ Hz})$ and with TDI combined with 1 m ranging accuracy (560 Hz/ $\sqrt{\text{Hz}}$ at 0.1 Hz). Also shown for comparison is the typical free-running laser frequency for Nd:YAG NPRO lasers.

Assuming that a contribution of $4 \text{ pm}/\sqrt{\text{Hz}}$ is allocated to residual frequency noise, Equation 1 may be inverted to compute the allowable laser frequency noise for a given arm length mismatch. Figure 1 shows this for a mismatch of 60 000 km and for TDI combined with 1 m ranging accuracy (which corresponds to a 2 m effective arm length mismatch in the worst case). A free-running laser will not meet the requirement with a 1 m ranging accuracy and additional stabilisation is needed.

There are number of possible ways to stabilise the laser frequency including stabilisation to a reference cavity [12] or atomic reference [11], and arm locking [13]. A tunable pre-stabilisation system is desirable if arm locking is used. Sideband locking can be used with a fixed reference cavity in order to combine the frequency stability of the reference cavity with tunability [14].

In this paper we analyse an alternative laser frequency pre-stabilisation system, based on that used in the LISA technology package (LTP) on board LISA Pathfinder [15, 16]. Unlike stabilisation to a reference cavity or an atomic reference no electro-optic modulators, acousto-optic modulators or high power RF electronics are required. The main additional components are a few extra beamsplitters and mirrors on the optical bench and a few extra photodetectors and phasemeter channels. The cleanliness requirements are the same as that of the main optical bench and no additional thermally stable vacuum chamber would be required.

2. "LTP-style" frequency pre-stabilisation

Figure 2 shows a schematic of how an "LTP-style" pre-stabilisation could be implemented on the LISA optical bench. The reference interferometer measures the phase difference ($\phi_{\rm R}$) between the lasers on adjacent optical benches in one LISA satellite. This reference interferometer already exists in the current LISA optical bench design. To measure the frequency noise of the master laser an additional interferometer with unequal pathlengths, as will be implemented in LISA Pathfinder [15, 16], can be placed on the optical bench. The additional components required include

- Single-element photodetectors (2x for redundancy)
- Fast (\geq MHz) phasemeter channels (2x for redundancy)
- Beam-splitter(s) and mirrors on the optical bench

The main difference between this system and that of LTP is that the beatnote is generated by interference with an offset phase-locked laser at a variable frequency difference of 2...20 MHz rather than interference between two beams produced by acousto-optic modulators at a constant frequency difference of 1...2 kHz.

The output of this additional interferometer (ϕ_F) can not only be used to measure the frequency fluctuations of the laser but also to actively stabilise the master laser frequency. Thus, in the proposed configuration there are two control loops:

- ($\phi_{\rm R}-$ frequency offset) locks the slave laser to the master laser as in the LISA baseline
- $(\phi_{\rm F} \phi_{\rm R} \text{tuning bias})$ locks the master laser absolute frequency

The laser from the adjacent optical bench (the slave laser) is offset phase locked to the master with high gain/bandwidth with a constant offset:

$$\nu_{\rm s} = \nu_{\rm M} + f_{\rm het} \tag{4}$$

with $2 \text{ MHz} \le f_{\text{het}} \le 20 \text{ MHz}$. Such a phase locking arrangement will be used in any case.

After phase locking the closed loop phase noise of the slave laser is given by (in the frequency domain):

$$P_{\rm s|cl} = \frac{G_1}{1+G_1} P_M - \frac{G_1}{1+G_1} \epsilon_1 + \frac{1}{1+G_1} P_{\rm s|fr}$$
(5)

where:

- • $P_{\rm s|fr}$ free running slave laser phase noise
- $P_{\rm s|cl}$ closed loop slave laser phase noise
- $P_{\rm M}$ master laser phase noise
- ϵ_1 error point noise (sensor noise) for loop 1
- G_1 controller transfer function for loop 1 (e.g. PI controller)

Equation 5 shows that in the high gain limit:

- The free-running slave phase noise is suppressed,
- The performance is limited by sensor noise ϵ_1 ,
- The slave laser tracks the master laser phase noise with accuracy $\frac{G_1}{1+G_1}$ (≈ 1 in the high gain limit).

Figure 2. Simplified system layout. The interferometer readout labeled $\phi_{\rm R}$ exists in the current LISA optical bench design. The interferometer readout labeled $\phi_{\rm F}$ is the readout for the proposed additional interferometer for measuring and actively suppressing the laser frequency noise.

Offset phase locking the slave laser fixes the beatnote frequency for both the $\phi_{\rm R}$ and $\phi_{\rm F}$ interferometers to the chosen frequency offset, but does not have any effect on the frequency of the master laser. The master laser can be freely tuned, while the slave laser tracks these changes. Thus the first loop only controls the frequency difference between the two lasers.

2.1. Master laser frequency control loop

Measuring the phase of the beatnote for the $\phi_{\rm F}$ interferometer produces the following error signal for the second control loop (used to stabilise the master laser frequency):

$$E_2 = \epsilon_2 - P_{\rm M} \exp\left(-j\omega\tau\right) + P_{\rm s|cl} \tag{6}$$

This assumes that the length (propagation delay) for the slave laser to ϕ_F is identical to the delay for ϕ_R . The master laser has an additional propagation delay of $\tau = \Delta L/c$ for ϕ_F compared to ϕ_R .

Subtracting the residual error point of slave laser control loop (E1) from the error point of the second control loop for the master laser (E2) results in the following combined error signal

$$E_2 - E_1 = \left[1 - e^{-j\omega\tau}\right] P_M + \epsilon_2 - \epsilon_1 \tag{7}$$

which is independent of the slave laser controller, simplifying the design of the controller for the master laser.

For frequencies below the inverse delay time τ^{-1} the transducer gain of the mismatched pathlength interferometer is

$$\frac{\delta \Phi_F}{\delta \nu_M} \approx \frac{2\pi \Delta L}{c} = 2\pi\tau,\tag{8}$$

thus providing an error signal which can be used to control the frequency of the master laser. The error signal for the master laser frequency is immediately available for any operating point. The closed-loop master laser noise is then given by:

$$P_{\rm M|cl} = \frac{P_{\rm M|fr}}{1+L_2} + \frac{G_2}{1+L_2}\epsilon_1 - \frac{G_2}{1+L_2}\epsilon_2 \tag{9}$$

where G_2 is the controller transfer function for the master laser controller and $L_2 = G_2 [1 - exp(-j\omega\tau)]$ is the loop gain.

Introducing an offset, ϵ_2 , to the error point of the master laser control loop can be used to tune the master laser frequency (which the slave laser tracks due to the offsetphase lock). For large controller gain and frequencies low compared to the inverse delay time the frequency tuning response is

$$\frac{\partial \nu_{\rm M|cl}}{\partial \epsilon_2} \approx \frac{-1}{2\pi\tau} \quad [{\rm Hz/rad}]$$
 (10)

2.2. Performance estimation

Like an optical cavity the performance is ultimately limited by the stability of the reference, in this case the pathlength stability of the Mach-Zehnder. Figure 3 shows the predicted system performance assuming a 50 cm pathlength mismatch and a typical free-running NPRO laser frequency noise $(10 \text{ kHz}/\sqrt{\text{Hz}} \text{ at } 1 \text{ Hz with } 1/f \text{ noise shape})$. The assumed combined phasemeter and pathlength noise is

$$\epsilon_i = \frac{2\pi}{\lambda} \times 1 \,\mathrm{pm}/\sqrt{\mathrm{Hz}} \times \sqrt{1 + \left(\frac{2.8 \,\mathrm{mHz}}{f \,\mathrm{Hz}}\right)^4} \tag{11}$$

The phasemeter/pathlength noise of the two channels is assumed to be uncorrelated.

The closed loop frequency noise level intersects the free running noise level at approximately 10 Hz for typical Nd:YAG NPRO lasers. For closed loop bandwidths above this frequency the closed loop noise level would be higher than the free running laser which has a potential impact on the performance of other subsystems (e.g. phasemeter). Therefore in the proposed design the bandwidth of the second loop is restricted to approximately 20 Hz.

In this simple model the closed loop frequency is limited primarily by the phasemeter noise of the two phasemeter channels used and results in a closed loop frequency noise level for the master laser of approximately $800 \dots 830 \text{ Hz}/\sqrt{\text{Hz}}$ in the 10 mHz to 1 Hz range.

The performance shown in Figure 3 almost meets the $4 \text{ pm}/\sqrt{\text{Hz}}$ requirement for 1 m ranging accuracy (2 m effective arm length difference) even without arm locking. In combination with arm locking the frequency noise is several orders of magnitude below the requirement [17]. The performance could potentially be improved by increasing the arm length mismatch or by improving the phasemeter performance.

2.3. Frequency tunability

Figure 4 shows the frequency tuning response for injecting offsets into the master laser frequency control loop (solid blue curve). Notice that for this input the bandwidth is restricted by the limited loop bandwidth used in order reduce the degradation of the laser noise above 10 Hz. The dashed green curve shows the frequency tuning response for the input labelled Z in Figure 2, scaled by a factor of $1/(2\pi\tau)$ in order to compensate for the gain of the interferometer. The sum is shown as the dashed red curve which is flat. Thus injecting the same signal into the offset and directly

Figure 3. Closed loop frequency noise (solid blue trace) assuming a $50 \,\mathrm{cm}$ pathlength mismatch.

to the laser (compensating for the interferometer gain) provides a high bandwidth frequency actuation for implementing arm locking. The achievable tuning bandwidth with this approach is limited by the laser frequency actuators and processing delay of the phasemeter and controller electronics.

3. Conclusion

An analysis of an LTP-style unequal arm length Mach-Zehnder interferometer as alternative frequency pre-stabilisation system for LISA was presented. The ultimate performance of the technique with LISA-like hardware remains to be experimentally verified.

Acknowledgments

The authors thank the LISA Frequency Control Study Team for useful discussions. We acknowledge support by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) (reference 50 OQ 0601) and QUEST (Centre for Quantum Engineering and Space-Time Research).

Figure 4. Frequency tuning response.

References

- [1]Danzmann K and Rüdiger A 2003 Class. Quantum Grav. 20 S1-S9
- [2] Povoleri A et al 2006 AIP Conf. Proc. 873 702-706
- [3] Heinzel G et al 2006 Class. Quantum Grav. 23 S119-S124
- Shaddock D et al 2006 AIP Conf. Proc. 873 654-660 [4]
- [5] Wand V et al 2006 AIP Conf. Proc. 873 689-696
- [6] [7] Tinto M and Armstrong J W et al 1999 Phys. Rev. D 59 102003
- Tinto M et al 2004 Phys. Rev. D 69 082001
- Esteban Delgado J J et al 2009 (submitted to J Phys.: Conf. Series) [8]
- [9] Tinto M et al 2005 Phys. Rev. D 71 041101(R)
- [10]Spero R et al 2009 Range measurement for LISA 8th Edoardo Amaldi Conference, Columbia University
- [11]Leonhardt V and Camp J B 2006 Appl. Opt. 45 4142
- [12] McNamara P W et al 1997 Class. Quantum Grav. 14 1543-1547
- [13] Sutton A and Shaddock D A 2008 Phys. Rev. D 78 082001
- Livas J C et al 2009 Class. Quantum Grav. 26 094016 [14]
- [15] Heinzel G et al 2003 Class. Quantum Grav. 20 S153-S161
- [16] Heinzel G et al 2004 Class. Quantum Grav. 21 S581-S587
- [17] The LISA Frequency Control Study Team 2009 LISA Frequency Control Whitepaper (unpublished).