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Abstract

This paper gives an overview of automatic speak er recognition technology, with an emphasis on text-independent

recognition. Speak er recognition has been studied actively for several decades. W e give an overview of both the clas-

sical and the state-of-the-art methods. W e start with the fundamentals of automatic speak er recognition, concerning

feature extraction and speak er modeling. W e elaborate advanced computational techniques to address robustness and

session variability. The recent progress from vectors towards supervectors opens up a new area of exploration and

represents a technology trend. W e also provide an overview of this recent development and discuss the evaluation

methodology of speak er recognition systems. W e conclude the paper with discussion on future directions.

K ey words: Speak er recognition, text-independence, feature extraction, statistical models, discriminative models,

supervectors, intersession variability compensation

1. Introduction

Speaker recognition refers to recognizing persons

from their voice. No two individuals sound identical

because their vocal tract shapes, larynx sizes, and other

parts of their voice production organs are different. In

addition to these physical differences, each speak er has

his or her characteristic manner of speaking, including

the use of a particular accent, rhythm, intonation style,

pronounciation pattern, choice of vocabulary and so on.

State-of-the-art speak er recognition systems use a num-

ber of these features in parallel, attempting to cover

these different aspects and employing them in a com-

plementary way to achieve more accurate recognition.

An important application of speak er recognition tech-

nology is forensics. Much of information is exchanged

between two parties in telephone conversations, includ-

ing between criminals, and in recent years there has

been increasing interest to integrate automatic speak er
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recognition to supplement auditory and semi-automatic

analysis methods [3, 76, 174, 185, 223].

Not only forensic analysts but also ordinary persons

will benefit from speak er recognition technology. It has

been predicted that telephone-based services with in-

tegrated speech recognition, speak er recognition, and

language recognition will supplement or even replace

human-operated telephone services in the future. An ex-

ample is automatic password reset over the telephone1.

The advantages of such automatic services are clear -

much higher capacity compared to human-operated ser-

vices with hundreds or thousands of phone calls being

processed simultaneously. In fact, the focus of speak er

recognition research over the years has been tending to-

wards such telephony-based applications.

In addition to telephony speech data, there is a contin-

ually increasing supply of other spoken documents such

as TV broadcasts, teleconference meetings, and video

clips from vacations. Extracting metadata lik e topic

of discussion or participant names and genders from

1See e.g. http://www.pcworld.com/article/106142/

visa_gets_behind_voice_recognition.html
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these documents would enable automated information

searching and indexing. Speaker diarization [226], also

known as “who spoke when”, attempts to extract speak-

ing turns of the different participants from a spoken doc-

ument, and is an extension of the “classical” speaker

recognition techniques applied to recordings with mul-

tiple speakers.

In forensics and speaker diarization, the speakers can

be considered non-cooperative as they do not specif-

ically wish to be recognized. On the other hand, in

telephone-based services and access control, the users

are considered cooperative. Speaker recognition sys-

tems, on the other hand, can be divided into text-

dependent and text-independent ones. In text-dependent

systems [91], suited for cooperative users, the recogni-

tion phrases are fixed, or known beforehand. For in-

stance, the user can be prompted to read a randomly se-

lected sequence of numbers as described in [101]. In

text-independent systems, there are no constraints on

the words which the speakers are allowed to use. Thus,

the reference (what are spoken in training) and the test

(what are uttered in actual use) utterances may have

completely different content, and the recognition system

must take this phonetic mismatch into account. Text-

independent recognition is the much more challenging

of the two tasks.

In general, phonetic variability represents one ad-

verse factor to accuracy in text-independent speaker

recognition. Changes in the acoustic environment

and technical factors (transducer, channel), as well as

“within-speaker” variation of the speaker him/herself

(state of health, mood, aging) represent other undesir-

able factors. In general, any variation between two

recordings of the same speaker is known as session vari-

ability [111, 231]. Session variability is often described

as mismatched training and test conditions, and it re-

mains to be the most challenging problem in speaker

recognition.

This paper represents an overview of speaker recog-

nition technologies, including a few representative tech-

niques from 1980s until today. In addition, we give

emphasis to the recent techniques that have presented a

paradigm shift from the traditional vector-based speaker

models to so-called supervector models. This paper

serves as a quick overview of the research questions and

their solutions for someone who would like to start re-

search in speaker recognition. The paper may also be

useful for speech scientists to have a glance at the cur-

rent trends in the field. We assume familiarity with ba-

sics of digital signal processing and pattern recognition.

We recognize that a thorough review of the field with

more than 40 years of active research is challenging.

Figure 1: Components of a typical automatic speaker recognition sys-

tem. In the enrollment mode, a speaker model is created with the aid

of previously created background model; in recognition mode, both

the hypothesized model and the background model are matched and

background score is used in normalizing the raw score.

For the interested reader we therefore point to other use-

ful surveys. Campbell’s tutorial [33] includes in-depth

discussions of feature selection and stochastic model-

ing. A more recent overview, with useful discussions

of normalization methods and speaker recognition ap-

plications, can be found in [22]. Recent collection of

book chapters on various aspects of speaker classifica-

tion can also be found in [167, 168]. For an overview of

text-dependent recognition, refer to [91].

Section 2 provides fundamentals of speaker recogni-

tion. Sections 3 and 4 then elaborate feature extraction

and speaker modeling principles. Section 5 describes

robust methods to cope with real-life noisy and session

mismatched conditions, with the focus on feature and

score normalization. Section 6 is then devoted to the

current supervector classifiers and their session com-

pensation. In Section 7 we discuss the evaluation of

speaker recognition performance and give pointers to

software packages as well. Finally, possible future hori-

zons of the field are outlined in Section 8, followed by

conclusions in Section 9.

2. Fundamentals

Figure 1 shows the components of an automatic

speaker recognition system. The upper is the enrollment

process, while the lower panel illustrates the recognition

process. The feature extraction module first transforms
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the raw signal into feature vectors in which speaker-

specific properties are emphasized and statistical redun-

dancies suppressed. In the enrollment mode, a speaker

model is trained using the feature vectors of the target

speaker. In the recognition mode, the feature vectors

extracted from the unknown person’s utterance are com-

pared against the model(s) in the system database to

give a similarity score. The decision module uses this

similarity score to make the final decision.

Virtually all state-of-the-art speaker recognition sys-

tems use a set of background speakers or cohort speak-

ers in one form or another to enhance the robustness

and computational efficiency of the recognizer. In the

enrollment phase, background speakers are used as the

negative examples in the training of a discriminative

model [36], or in training a universal background model

from which the the target speaker models are adapted

[197]. In the recognition phase, background speakers

are used in the normalization of the speaker match score

[71, 101, 139, 193, 197, 206].

2.1. Selection of Features

Speech signal includes many features of which not

all are important for speaker discrimination. An ideal

feature would [201, 234]

• have large between-speaker variability and small

within-speaker variability

• be robust against noise and distortion

• occur frequently and naturally in speech

• be easy to measure from speech signal

• be difficult to impersonate/mimic

• not be affected by the speaker’s health or long-term

variations in voice.

The number of features should be also relatively low.

Traditional statistical models such as the Gaussian mix-

ture model [197, 198] cannot handle high-dimensional

data. The number of required training samples for re-

liable density estimation grows exponentially with the

number of features. This problem is known as the curse

of dimensionality [104]. The computational savings are

also obvious with low-dimensional features.

There are different ways to categorize the features

(Fig. 2). From the viewpoint of their physical interpre-

tation, we can divide them into (1) short-term spectral

features, (2) voice source features, (3) spectro-temporal

features, (4) prosodic features and (5) high-level fea-

tures. Short-term spectral features, as the name sug-

gests, are computed from short frames of about 20-30

Figure 2: A summary of features from viewpoint of their physical

interpretation. The choice of features has to be based on their dis-

crimination, robustness, and practicality. Short-term spectral features

are the simplest, yet most discriminative; prosodics and high-level

features have received much attention at high computational cost.

milliseconds in duration. They are usually descriptors

of the short-term spectral envelope which is an acous-

tic correlate of timbre, i.e. the “color” of sound, as

well as the resonance properties of the supralaryngeal

vocal tract. The voice source features, in turn, char-

acterize the voice source (glottal flow). Prosodic and

spectro-temporal features span over tens or hundreds of

milliseconds, including intonation and rhythm, for in-

stance. Finally, high-level features attempt to capture

conversation-level characteristics of speakers, such as

characteristic use of words (‘‘uh-huh”, “you know”, “oh

yeah”, etc.) [57].

Which features one should use? It depends on the

intended application, computing resources, amount of

speech data available (for both development purposes

and in run-time) and whether the speakers are co-

operative or not. For someone who would like to start

research in speaker recognition, we recommend to begin

with the short-term spectral features since they are easy

to compute and yield good performance [195]. Prosodic

and high-level features are believed to be more robust,

but less discriminative and easier to impersonate; for

instance, it is relatively well known that professional

impersonators tend to modify the overall pitch contour

towards the imitated speaker [10, 126]. High-level fea-

tures also require considerably more complex front-end,

such as automatic speech recognizer. To conclude, there

does not yet exist globally “best” feature but the choice

is a trade-off between speaker discrimination, robust-
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ness, and practicality.

2.2. Speaker Modeling

By using feature vectors extracted from a given

speaker’s training utterance(s), a speaker model is

trained and stored into the system database. In text-

dependent mode, the model is utterance-specific and it

includes the temporal dependencies between the feature

vectors. Text-dependent speaker verification and speech

recognition do share similarities in their pattern match-

ing processes, and these can also be combined [18, 93].

In text-independent mode we often model the fea-

ture distribution, i.e. the shape of the “feature cloud”

rather than the temporal dependencies. Note that, in

text-dependent recognition, we can temporally align the

test and training utterances because they contain (are as-

sumed to contain) the same phoneme sequences. How-

ever, in text-independent recognition, since there are lit-

tle or absolutely no correspondence between the frames

in the test and reference utterances, alignment at the

frame level is not possible. Therefore, segmentation

of the signal into phones or broad phonetic classes can

be used as a pre-processing step, or alternatively, the

speaker models can be structured phonetically. Such

approaches have been proposed in [61, 81, 79, 92, 180,

107]. It is also possible to use data-driven units instead

of the strictly linguistic phonemes as segmentation units

[80].

Classical speaker models can be divided into tem-

plate models and stochastic models [33], also known as

nonparametric and parametric models, respectively. In

template models, training and test feature vectors are

directly compared with each other with the assumption

that either one is an imperfect replica of the other. The

amount of distortion between them represents their de-

gree of similarity. V ector quantization (VQ) [213] and

dynamic time warping (DTW) [70] are representative

examples of template models for text-independent and

text-dependent recognition, respectively.

In stochastic models, each speaker is modeled as a

probabilistic source with an unknown but fixed proba-

bility density function. The training phase is to estimate

the parameters of the probability density function from

a training sample. Matching is usually done by evaluat-

ing the likelihood of the test utterance with respect to the

model. The Gaussian mixture model (GMM) [198, 197]

and the hidden Markov model (HMM) [19, 171] are

the most popular models for text-independent and text-

dependent recognition, respectively.

According to the training paradigm, models can also

be classified into generative and discriminative models.

The generative models such as GMM and VQ estimate

the feature distribution within each speaker. The dis-

criminative models such as artificial neural networks

(ANNs) [62, 94, 239] and support vector machines

(SVMs) [36], in contrast, model the boundary between

speakers. For more discussions, refer to [190].

In summary, a speaker is characterized by a speaker

model such as VQ, GMM or SVM. At run-time, a un-

known voice is first represented by a collection of fea-

ture vectors or a supervector - a concatenation of mul-

tiple vectors, then evaluated against the target speaker

models.

3. Feature Extraction

3.1. Short-Term Spectral Features

The speech signal continuously changes due to artic-

ulatory movements, and therefore, the signal must be

broken down in short frames of about 20-30 millisec-

onds in duration. Within this interval, the signal is as-

sumed to remain stationary and a spectral feature vector

is extracted from each frame.

Usually the frame is pre-emphasized and multiplied

by a smooth window function prior to further steps. Pre-

emphasis boosts the higher frequencies whose intensity

would be otherwise very low due to downward sloping

spectrum caused by glottal voice source [82, p. 168].

The window function (usually Hamming), on the other

hand, is needed because of the finite-length effects of

the discrete Fourier transform (DFT); for details, refer

to [83, 56, 177]. in practice, choice of the window func-

tion is not critical. Although the frame length is usually

fixed, pitch-synchronous analysis has also been studied

[172, 247, 75]. The experiments in [172, 247] indicate

that recognition accuracy reduces with this technique,

whereas [75] obtained some improvement in noisy con-

ditions. Pitch-dependent speaker models have also been

studied [9, 60].

The well-known fast Fourier transform (FFT), a fast

implementation of DFT, decomposes a signal into its

frequency components [177]. Alternatives to FFT-based

signal decomposition such as non-harmonic bases, ape-

riodic functions and data-driven bases derived from in-

dependent component analysis (ICA) have been studied

in literature [77, 103, 105]. The DFT, however, remains

to be used in practice due to its simplicity and efficiency.

Usually only the magnitude spectrum is retained, based

on the belief that phase has little perceptual importance.

However, [179] provides opposing evidence while [96]

described a technique which utilizes phase information.

The global shape of the DFT magnitude spectrum

(Fig. 3), known as spectral envelope, contains informa-

tion about the resonance properties of the vocal tract and

4
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Figure 3: Extraction of spectral envelope using cepstral analysis and

linear prediction (LP). Spectrum of NFFT = 512 points can be ef-

fectively reduced to only Nc = 12 cepstral coefficients or p = 12 LP

coefficients. Both the cepstral and LP features are useful and comple-

mentary to each other when used in speaker recognition.

has been found out to be the most informative part of

the spectrum in speaker recognition. A simple model of

spectral envelope uses a set of band-pass filters to do en-

ergy integration over neighboring frequency bands. Mo-

tivated by psycho-acoustic studies, the lower frequency

range is usually represented with higher resolution by

allocating more filters with narrow bandwidths [82].

Although the subband energy values have been used

directly as features [20, 21, 49, 205], usually the di-

mensionality is further reduced using other transforma-

tions. The so-called mel-frequency cepstral coefficients

(MFCCs) [50] are popular features in speech and audio

processing. MFCCs were introduced in early 1980s for

speech recognition and then adopted in speaker recog-

nition. Even though various alternative features, such

as spectral subband centroids (SSCs) [125, 221] have

been studied, the MFCCs seem to be difficult to beat in

practice.

MFCCs are computed with the aid of a psychoa-

coustically motivated filterbank, followed by logarith-

mic compression and discrete cosine transform (DCT).

Denoting the outputs of an M-channel filterbank as

Y(m),m = 1, . . . ,M, the MFCCs are obtained as fol-

lows:

cn =

M
∑

m=1

[

log Y(m)
]

cos

[

πn

M

(

m −
1

2

)

]

. (1)

Here n is the index of the cepstral coefficient. The fi-

nal MFCC vector is obtained by retaining about 12-15

lowest DCT coefficients. More details of MFCCs can

be found in [56, 102]. Alternative features that empha-

size speaker-specific information have been studied in

[43, 165, 113, 178]. For study of speaker-discriminative

information in spectrum, refer to [144]. Finally, some

new trends in feature extraction can be found in [6].

Linear prediction (LP) [152, 155] is an alternative

spectrum estimation method to DFT that has good intu-

itive interpretation both in time domain (adjacent sam-

ples are correlated) and frequency domain (all-pole

spectrum corresponding to the resonance structure). In

time domain, LP predictor equation is defined as,

s̃[n] =

p
∑

k=1

ak s[n − k]. (2)

Here s[n] is the observed signal, ak are the predictor co-

efficients and s̃[n] is the predicted signal. The prediction

error signal, or residual, is defined as e[n] = s[n]− s̃[n],

and illustrated in the middle panel of Fig. 4. The co-

efficients ak are usually determined by minimizing the

residual energy using the so-called Levinson-Durbin al-

gorithm [82, 102, 189]. The spectral model is defined

as,

H(z) =
1

1 −
∑p

k=1
akz−k

, (3)

and it consists of spectral peaks or poles only (dash-

dotted line in Fig. 3).

The predictor coefficients {ak} themselves are rarely

used as features but they are transformed into robust

and less correlated features such as linear predictive

cepstral coefficients (LPCCs) [102], line spectral fre-

quencies (LSFs) [102], and perceptual linear predic-

tion (PLP) coefficients [97]. Other, somewhat less suc-

cessful features, include partial correlation coefficients

(PARCORs), log area ratios (LARs) and formant fre-

quencies and bandwidths [189].

Given all the alternative spectral features, which one

should be used for speaker recognition and how should

the parameters (e.g. the number of coefficients) be se-

lected? Some comparisons can be found in [12, 114,

118, 198], and it has been observed that in general chan-

nel compensation methods are much more important

than the choice of the base feature set [198]. Differ-

ent spectral features, however, are complementary and

can be combined to enhance accuracy [28, 36, 118]. In

summary, for practical use we recommend any of the

following features: MFCC, LPCC, LSF, PLP.

3.2. Voice Source Features

Voice source features characterize the glottal excita-

tion signal of voiced sounds such as glottal pulse shape

and fundamental frequency, and it is reasonable to as-

sume that they carry speaker-specific information. Fun-

damental frequency, the rate of vocal fold vibration, is

5



ACCEPTED MANUSCRIPT 

0 50 100 150 200 250 300 350 400
−1

0

1
Speech signal

LP residual

Glottal flow estimated with IAIF
0 50 100 150 200 250 300 350 400

−0.5

0

0.5

1

0 50 100 150 200 250 300 350 400
−1

0

1

Time (samples)

A
m

pl
itu

de
 (a

rb
itr

ar
y 

un
its

)

Figure 4: Glottal feature extraction [116]. Speech frame (top), lin-

ear prediction (LP) residual (middle), and glottal flow estimated via

inverse filtering (bottom). c©2009 IEEE. Reprinted by permission.

popular and will be discussed in Section 3.4. Other pa-

rameters are related to the shape of the glottal pulse,

such as the degree of vocal fold opening and the du-

ration of the closing phase. These contribute to voice

quality which can be described for example, as modal,

breathy, creaky or pressed [59].

The glottal features are not directly measurable due to

the vocal tract filtering effect. By assuming that the glot-

tal source and the vocal tract are independent of each

other, vocal tract parameters can be first estimated us-

ing, for instance, the linear prediction model, followed

by inverse filtering of the original waveform to obtain an

estimate of the source signal [116, 170, 186, 188, 220,

242]. An alternative method uses closed-phase covari-

ance analysis during the portions when the vocal folds

are closed [78, 186, 208]. This leads to improved esti-

mate of the vocal tract but accurate detection of closed

phase is required which is difficult in noisy conditions.

As an example, Fig. 4 shows a speech signal together

with its LP residual and glottal flow estimated with a

simple inverse filtering method [4].

Features of the inverse filtered signal can be ex-

tracted, for instance, by using an auto-associative neural

network [188]. Other approaches have used paramet-

ric glottal flow model parameters [186], wavelet anal-

ysis [242], residual phase [170], cepstral coefficients

[78, 47, 116] and higher-order statistics [47] to mention

a few.

Based on the literature, voice source features are

not as discriminative as vocal tract features but fusing

these two complementary features can improve accu-

racy [170, 242]. Experiments of [42, 188] also sug-

gest that the amount of training and testing data for the

voice source features can be significantly less compared

to the amount of data needed for the vocal tract features

(10 seconds vs 40 seconds in [188]). A possible ex-

planation for this is that vocal tract features depend on

the phonetic content and thus require sufficient phonetic

coverage for both the training and test utterances. Voice

source features, in turn, depend much less on phonetic

factors.

3.3. Spectro-Temporal Features

It is reasonable to assume that the spectro-temporal

signal details such as formant transitions and energy

modulations contain useful speaker-specific informa-

tion. A common way to incorporate some temporal in-

formation to features is through 1st and 2nd order time

derivative estimates, known as delta (∆) and double-

delta (∆2) coefficients, respectively [70, 102, 214].

They are computed as the time differences between

the adjacent vectors feature coefficients and usually ap-

pended with the base coefficients on the frame level (e.g.

13 MFCCs with ∆ and ∆2 coefficients, implying 39 fea-

tures per frame). An alternative, potentially more ro-

bust, method fits a regression line [189] or an orthog-

onal polynomial [70] to the temporal trajectories, al-

though in practice simple differentiation seems to yield

equal or better performance [114]. Time-frequency prin-

cipal components [148] and data-driven temporal filters

[153] have also been studied.

In [115, 123], we proposed to use modulation fre-

quency [13, 98] as a feature for speaker recognition

as illustrated in Fig. 5. Modulation frequency repre-

sents the frequency content of the subband amplitude

envelopes and it potentially contains information about

speaking rate and other stylistic attributes. Modulation

frequencies relevant for speech intelligibility are ap-

proximately in the range 1-20 Hz [13, 98]. In [115], the

best recognition result was obtained by using a temporal

window of 300 milliseconds and by including modula-

tion frequencies in the range 0-20 Hz. The dimension-

ality of the modulation frequency vector depends on the

number of FFT points of the spectrogram and the num-

ber of frames spanning the FFT computation in the tem-

poral direction. For the best parameter combination, the

dimension of the feature vector was 3200 [115].

In [122] and [123] we studied reduced-dimensional

spectro-temporal features. The temporal discrete cosine

transform (TDCT) method, proposed in [122] and illus-

trated in Fig. 6, applies DCT on the temporal trajecto-

ries of the cepstral vectors rather than on the spectro-

gram magnitudes. Using DCT rather than DFT mag-

6
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Figure 5: Extracting modulation spectrogram features [123]. A time-

frequency context, including M short-term spectra over the interval

[n0 . . . n0 + M − 1], is first extracted. The DFT magnitude spectra

of all feature trajectories are then computed and stacked as a feature

vector with high dimensionality (here 129 × 65 = 8385 elements).

Figure 6: Temporal discrete cosine transform (TDCT) [122]. Short-

term MFCC features with their delta features are taken as input;

their low-frequency modulation characteristics are then represented

by computing discrete cosine transform (DCT) over a context of B

frames. The lowest DCT coefficients are retained as features.

nitude here has an advantage that it retains the relative

phases of the feature coefficient trajectories, and hence,

it can preserve both phonetic and speaker-specific in-

formation. This, however, requires more research. In

[123], DCT was used in a different role: reducing the di-

mensionality of the modulation magnitude spectra. The

best results in [115, 123] were obtained by using a time

context of 300-330 milliseconds, which is significantly

longer compared with the typical time contexts of the

delta features.

Even though we obtained some improvement over

the cepstral systems by fusing the match scores of the

cepstral and temporal features [115, 122], the gain was

rather modest and more research is required before these

features can be recommended for practical applications.

One problem could be that we have applied speaker

modeling techniques that are designed for short-term

features. Due to larger temporal context, the num-

ber of training vectors is usually less compared with

short-term features. Furthermore, as the short-term and

longer-term features have different frame rates, they

cannot be easily combined at the frame level. Perhaps

a completely different modeling and fusion technique is

required for these features.

An alternative to amplitude-based methods consid-

ers frequency modulations (FM) instead [222]. In FM-

based methods, the input signal is first divided into sub-

band signals using a bank of bandpass filters. The domi-

nant frequency components (such as the frequency cen-

troids) in the subbands then capture formant-like fea-

tures. As an example, the procedure described in [222]

uses 2nd order all-pole analysis to detect the dominant

frequency. The FM features are then obtained by sub-

tracting the center frequency of the subband from the

pole frequency, yielding a measure of deviation from the

“default” frequency of the bandpass signal. This feature

was applied to speaker recognition in [223], showing

promise when fused with conventional MFCCs.

3.4. Prosodic Features

Prosody refers to non-segmental aspects of speech,

including for instance syllable stress, intonation pat-

terns, speaking rate and rhythm. One important as-

pect of prosody is that, unlike the traditional short-term

spectral features, it spans over long segments like syl-

lables, words, and utterances and reflects differences

in speaking style, language background, sentence type,

and emotions to mention a few. A challenge in text-

independent speaker recognition is modeling the differ-

ent levels of prosodic information (instantaneous, long-

term) to capture speaker differences; at the same time,

the features should be free of effects that the speaker can

voluntarily control.

The most important prosodic parameter is the funda-

mental frequency (or F0). Combining F0-related fea-

tures with spectral features has been shown to be ef-

fective, especially in noisy conditions. Other prosodic

features for speaker recognition have included dura-

tion (e.g. pause statistics, phone duration), speaking

rate, and energy distribution/modulations among others

[2, 16, 195, 204]. Interested reader may refer to [204]

for further details. In that study, it was found out, among

a number of other observations, that F0-related features

yielded the best accuracy, followed by energy and dura-

tion features in this order. Since F0 is the predominant

prosodic feature, we will now discuss it in more detail.
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Reliable F0 determination itself is a challenging task.

For instance, in telephone quality speech, F0 is often

outside of the narrowband telephone network passband

(0.3–3.4 kHz) and the algorithms can only rely on the

information in the upper harmonics for F0 detection.

For a detailed discussion of classical F0 estimation ap-

proaches, refer to [100]. More recent comparison of F0

trackers can be found in [48]. For practical use, we rec-

ommend the YIN method [51] and the autocorrelation

method as implemented in Praat software [26].

For speaker recognition, F0 conveys both physiolog-

ical and learned characteristics. For instance, the mean

value of F0 can be considered as an acoustic correlate

of the larynx size [201], whereas the temporal varia-

tions of pitch are related to the manner of speaking. In

text-dependent recognition, temporal alignment of pitch

contours have been used [11]. In text-independent stud-

ies, long-term F0 statistics - especially the mean value -

have been extensively studied [39, 117, 158, 176, 209,

210]. The mean value combined with other statistics

such as variance and kurtosis can be used as speaker

model [16, 39, 117], even though histograms [117], la-

tent semantic analysis [46] and support vector machines

[204] perform better. It has also been found through a

number of experiments that log(F0) is a better feature

than F0 itself [117, 210].

F0 is a one-dimensional feature, therefore mathemat-

ically, not expected to be very discriminative. Multi-

dimensional pitch- and voicing-related features can be

extracted from the auto-correlation function without ac-

tual F0 extraction as done in [131, 146, 233] for exam-

ple. Another way to improve accuracy is modeling both

the local and long-term temporal variations of F0.

Capturing local F0 dynamics can be achieved by ap-

pending the delta features with the instantaneous F0

value. For longer-term modeling, F0 contour can be

segmented and presented by a set of parameters asso-

ciated with each segment [1, 2, 160, 204, 209]. The

segments may be syllables obtained using automatic

speech recognition (ASR) system [204]. An alterna-

tive, ASR-free approach, is to divide the utterance into

syllable-like units using, for instance, vowel onsets

[161] or F0/energy inflection points [1, 55] as the seg-

ment boundaries.

For parameterization of the segments, prosodic fea-

ture statistics and their local temporal slopes (tilt)

within each segment are often used. In [2, 209], each

voiced segment was parameterized by a piece-wise lin-

ear model whose parameters formed the features. In

[204], the authors used N-gram counts of discretized

feature values as features to an SVM classifier with

promising results. In [55], prosodic features were ex-

tracted using polynomial basis functions.

3.5. High-Level Features

Speakers differ not only in their voice timbre and ac-

cent/pronounciation, but also in their lexicon - the kind

of words the speakers tend to use in their conversations.

The work on such “high-level” conversational features

was initiated in [57] where a speaker’s characteristic vo-

cabulary, the so-called idiolect, was used to characterize

speakers. The idea in “high-level” modeling is to con-

vert each utterance into a sequence of tokens where the

co-occurrence patterns of tokens characterize speaker

differences. The information being modeled is hence

in categorical (discrete) rather than in numeric (contin-

uous) form.

The tokens considered have included words [57],

phones [8, 35], prosodic gestures (rising/falling

pitch/energy) [2, 46, 204], and even articulatory tokens

(manner and place of articulation) [137]. The top-1

scoring Gaussian mixture component indices have also

been used as tokens [147, 225, 235].

Sometimes several parallel tokenizers are utilized

[35, 106, 147]. This is partly motivated by the success

of parallel phone recognizers in state-of-the-art spo-

ken language recognition [248, 145]. This direction is

driven by the hope that different tokenizers (e.g. phone

recognizers trained on different languages or with dif-

ferent phone models) would capture complementary as-

pects of the utterance. As an example, in [147] a set of

parallel GMM tokenizers [225, 235] were used. Each

tokenizer was trained from a different group of speakers

obtained by clustering.

The baseline classifier for token features is based on

N-gram modeling. Let us denote the token sequence

of the utterance by {α1, α2, . . . , αT }, where αt ∈ V and

V is a finite vocabulary. An N-gram model is con-

structed by estimating the joint probability of N con-

secutive tokens. For instance, N = 2 gives the bigram

model where the probabilities of token pairs (αt, αt+1)

are estimated. A trigram model consists of triplets

(αt, αt+1, αt+2), and so forth. As an example, the bi-

grams of the token sequence hello_world are (h,e),

(e,l), (l,l), (l,o), (o,_), (_,w), (w,o), (o,r),

(r,l) and (l,d).

The probability of each N-gram is estimated in the

same way as N-gram in statistical language models in

automatic speech recognition [173]. It is the maximum

likelihood (ML) or maximum a posteriori (MAP) esti-

mate of the N-gram in the training corpus [137]. The N-

gram statistics have been used in vector space [35, 147]

and with entropy measures [7, 137] to assess similarity

between speakers.
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Figure 7: Codebook construction for vector quantization using the K-

means algorithm. The original training set consisting of 5000 vectors

is reduced to a set of K = 64 code vectors (centroids).

4. Speak er Modeling: Classical Approaches

This section describes some of the popular models in

text-independent speaker recognition. The models pre-

sented here have co-evolved with the short-term spectral

features such as MFCCs in the literature.

4.1. Vector Quantization

Vector quantization (VQ) model [32, 88, 90, 109,

120, 213, 214], also known as centroid model, is one

of the simplest text-independent speaker models. It was

introduced to speaker recognition in the 1980s [32, 213]

and its roots are originally in data compression [73].

Even though VQ is often used for computational speed-

up techniques [142, 120, 199] and lightweight practical

implementations [202], it also provides competitive ac-

curacy when combined with background model adapta-

tion [88, 124]. We will return to adaptation methods in

Subsection 4.2.

In the following, we denote the test utterance feature

vectors byX = {x1, . . . , xT } and the reference vectors by

R = {r1, . . . , rK}. The average quantization distortion is

defined as,

DQ(X,R) =
1

T

T
∑

t=1

min
1≤k≤K

d(xt, rk), (4)

where d(·, ·) is a distance measure such as the Eu-

clidean distance ‖xt − rk‖. A smaller value of (4) in-

dicates higher likelihood for X and R originating from

the same speaker. Note that (4) is not symmetric [109]:

DQ(X,R) , DQ(R,X).

In theory, it is possible to use all the training vectors

directly as the reference template R. For computational

reasons, however, the number of vectors is usually re-

duced by a clustering method such as K-means [140].

This gives a reduced set of vectors known as codebook

(Fig. 7). The choice of the clustering method is not as

important as optimizing the codebook size [121].

4.2. Gaussian Mixture Model

Gaussian mixture model (GMM) [197, 198] is a

stochastic model which has become the de facto refer-

ence method in speaker recognition. The GMM can be

considered as an extension of the VQ model, in which

the clusters are overlapping. That is, a feature vector is

not assigned to the nearest cluster as in (4), but it has a

nonzero probability of originating from each cluster.

A GMM is composed of a finite mixture of multivari-

ate Gaussian components. A GMM, denoted by λ, is

characterized by its probability density function:

p(x|λ) =

K
∑

k=1

Pk N(x|µk,Σk). (5)

In (5), K is the number of Gaussian components, Pk is

the prior probability (mixing weight) of the kth Gaussian

component, and

N(x|µk,Σk) = (2π)−
d
2 |Σk |

− 1
2 exp

{

−
1

2
(x−µk)T

Σ
−1
k (x−µk)

}

(6)

is the d-variate Gaussian density function with mean

vector µk and covariance matrix Σk. The prior proba-

bilities Pk ≥ 0 are constrained as
∑K

k=1 Pk = 1.

For numerical and computational reasons, the covari-

ance matrices of the GMM are usually diagonal (i.e.

variance vectors), which restricts the principal axes of

the Gaussian ellipses in the direction of the coordinate

axes. Estimating the parameters of a full-covariance

GMM requires, in general, much more training data and

is computationally expensive. As an example for esti-

mating the parameters of a full-covariance GMM, refer

to [241].

Monogaussian model uses a single Gaussian compo-

nent with a full covariance matrix as the speaker model

[21, 20, 23, 33, 246]. Sometimes only the covari-

ance matrix is used because the cepstral mean vector

is affected by convolutive noise (e.g. due to the mi-

crophone/handset). The monogaussian and covariance-

only models have a small number of parameters and are

therefore computationally efficient, although their accu-

racy is clearly behind GMM.

Training a GMM consists of estimating the param-

eters λ = {Pk,µk,Σk}
K
k=1

from a training sample X =

{x1, . . . , xT }. The basic approach is maximum likelihood

(ML) estimation. The average log-likelihood of X with

respect to model λ is defined as,

LLavg(X, λ) =
1

T

T
∑

t=1

log

K
∑

k=1

Pk N(xt |µk,Σk). (7)
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The higher the value, the higher the indication that the

unknown vectors originate from the model λ. The pop-

ular expectation-maximization (EM) algorithm [24] can

be used for maximizing the likelihood with respect to a

given data. Note that K-means [140] can be used as an

initialization method for EM algorithm; a small num-

ber or even no EM iterations are needed according to

[124, 128, 181]. This is by no means a general rule, but

the iteration count should be optimized for a given task.
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Figure 8: Examples of GMM adaptation using maximum a posteri-

ori (MAP) principle. The Gaussian components of a universal back-

ground model (solid ellipses) are adapted to the target speaker’s train-

ing data (dots) to create speaker model (dashed ellipses).

In speech applications, adaptation of the acoustic

models to new operating conditions is important be-

cause of data variability due to different speakers, en-

vironments, speaking styles and so on. In GMM-

based speaker recognition, a speaker-independent world

model or universal background model (UBM) is first

trained with the EM algorithm from tens or hundreds

of hours of speech data gathered from a large number

of speakers [197]. The background model represents

speaker-independent distribution of the feature vectors.

When enrolling a new speaker to the system, the param-

eters of the background model are adapted to the feature

distribution of the new speaker. The adapted model is

then used as the model of that speaker. In this way, the

model parameters are not estimated from scratch, with

prior knowledge (“speech data in general”) being uti-

lized instead. Practice has shown that it is advantageous

to train two separate background models, one for female

and the other one for male speakers. The new speaker

model is then adapted from the background model of

the same gender as the new speaker. Let us now look

how the adaptation is carried out.

As indicated in Fig. 8, it is possible to adapt all

the parameters, or only some of them from the back-

ground model. Adapting the means only has been found

to work well in practice [197] (this also motivates for

a simplified adapted VQ model [88, 124]). Given the

enrollment sample, X = {x1, . . . , xT }, and the UBM,

λUBM = {Pk,µk,Σk}
K
k=1

, the adapted mean vectors (µ′
k
)

in the maximum a posteriori (MAP) method [197] are

obtained as weighted sums of the speaker’s training data

and the UBM mean:

µ
′
k = αkx̃k + (1 − αk)µk, (8)

where

αk =
nk

nk + r
(9)

x̃k =
1

nk

T
∑

t=1

P(k|xt)xt (10)

nk =

T
∑

t=1

P(k|xt) (11)

P(k|xt) =
PkN(xt |µk,Σk)

∑K
m=1 PmN(xt |µm,Σm)

. (12)

The MAP adaptation is to derive a speaker-specific

GMM from the UBM. The relevance parameter r, and

thus αk, controls the effect of the training samples on

the resulting model with respect to the UBM.

In the recognition mode, the MAP-adapted model

and the UBM are coupled, and the recognizer is com-

monly refered to as Gaussian mixture model - univer-

sal background model, or simply “GMM-UBM”. The

match score depends on both the target model (λtarget)

and the background model (λUBM) via the average log

likelihood ratio:

LLRavg(X, λtarget, λUBM)

= 1
T

∑T
t=1

{

log p(xt |λtarget) − log p(xt |λUBM)
}

, (13)

which essentially measures the difference of the target

and backround models in generating the observations

X = {x1, . . . , xT }. The use of a common background

model for all speakers makes the match score ranges

of different speakers comparable. It is common to ap-

ply test segment dependent normalization [14] on top of

UBM normalization to account for test-dependent score

offsets.

There are alternative adaptation methods to MAP, and

selection of the method depends on the amount of avail-

able training data [150, 157]. For very short enroll-

ment utterances (a few seconds), some other methods

have shown to be more effective. Maximum likelihood

linear regression (MLLR) [135], originally developed

for speech recognition, has been successfully applied

to speaker recognition [108, 150, 157, 216]. Both the

MAP and MLLR adaptations form a basis for the recent

supervector classifiers that we will cover in Section 6.
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Gaussian mixture model is computationally inten-

sive due the frame-by-frame matching. In the GMM-

UBM framework [197], the score (13) can be evaluated

fast by finding for each test utterance vector the top-

C (where usually C ≈ 5) scoring Gaussians from the

UBM [197, 203, 227]. Other speed-up techniques in-

clude reducing the numbers of vectors, Gaussian com-

ponent evaluations, or speaker models [15, 120, 143,

163, 183, 199, 203, 236, 238].

Unlike the hidden Markov models (HMM) in speech

recognition, GMM does not explicitly utilize any pho-

netic information - the training set for GMM simply

contains all the spectral features of different phonetic

classes pooled together. Because the features of the test

utterance and the Gaussian components are not phonet-

ically aligned, the match score may be biased due to

different phonemes in training and test utterances.

This phonetic mismatch problem has been attacked

with phonetically-motivated tree structures [44, 92] and

by using a separate GMM for each phonetic class

[40, 61, 81, 180] or for parts of syllables [25]. As an ex-

ample, phonetic GMM (PGMM) described in [40] used

neural network classifier for 11 language independent

broad phone classes. In the training phase, a separate

GMM was trained for each phonetic class and in run-

time the GMM corresponding to the frame label was

used in scoring. Promising results were obtained when

combining PGMM with feature-level intersession com-

bination and with conventional (non-phonetic) GMM.

Phonetic modeling in GMMs is clearly worth further

studying.

Figure 9: Principle of support vector machine (SVM). A maximum-

margin hyperplane that separates the positive (+1) and negative (-1)

training examples is found by an optimization process. SVMs have

excellent generalization performance.

4.3. Support Vector Machine

Support vector machine (SVM) is a powerful dis-

criminative classifier that has been recently adopted in

speaker recognition. It has been applied both with spec-

tral [36, 38], prosodic [204, 67], and high-level fea-

tures [35]. Currently SVM is one of the most robust

classifiers in speaker verification, and it has also been

successfully combined with GMM to increase accuracy

[36, 38]. One reason for the popularity of SVM is

its good generalization performance to classify unseen

data.

The SVM, as illustrated in Fig. 9, is a binary clas-

sifier which models the decision boundary between two

classes as a separating hyperplane. In speaker verifi-

cation, one class consists of the target speaker training

vectors (labeled as +1), and the other class consists of

the training vectors from an “impostor” (background)

population (labeled as -1). Using the labeled training

vectors, SVM optimizer finds a separating hyperplane

that maximizes the margin of separation between these

two classes.

Formally, the discriminant function of SVM is given

by [36],

f (x) =

N
∑

i=1

αitiK(x, xi) + d. (14)

Here ti ∈ {+1,−1} are the ideal output values,
∑N

i=1 αiti = 0 and αi > 0. The support vectors xi, their

corresponding weights αi and the bias term d, are deter-

mined from a training set using an optimization process.

The kernel function K(·, ·) is designed so that it can be

expressed as K(x, y) = φ(x)Tφ(y), where φ(x) is a map-

ping from the input space to kernel feature space of high

dimensionality. The kernel function allows computing

inner products of two vectors in the kernel feature space.

In a high-dimensional space, the two classes are easier

to separate with a hyperplane. Intuitively, linear hyper-

plane in the high-dimensional kernel feature space cor-

responds to a nonlinear decision boundary in the origi-

nal input space (e.g. the MFCC space). For more infor-

mation about SVM and kernels, refer to [24, 169].

4.4. Other Models

Artificial neural networks (ANNs) have been used

in various pattern classification problems, including

speaker recognition [62, 94, 130, 239]. A potential ad-

vantage of ANNs is that feature extraction and speaker

modeling can be combined into a single network, en-

abling joint optimization of the (speaker-dependent)

feature extractor and the speaker model [94]. They are

also handy in fusing different subsystems [195, 224].
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Speaker-specific mapping has been proposed in [153,

164]. The idea is to extract two parallel feature streams

with the same frame rate: a feature set representing

purely phonetic information (speech content), and a fea-

ture set representing a mixture of phonetic and speaker-

specific information. The speaker modeling is thus es-

sentially to find a mapping from the “phonetic” spec-

trum to the “speaker-specific” spectrum by using sub-

space method [153] or neural network [164].

Representing a speaker relative to other speakers is

proposed in [154, 218]. Each speaker model is pre-

sented as a combination of some reference models

known as the anchor models. The combination weights

- coordinates in the anchor model space - compose the

speaker model. The similarity score between the un-

known speech sample and a target model is determined

as the distance between their coordinate vectors.

4.5. Fusion

Like in other pattern classification tasks, combining

information from multiple sources of evidence - a tech-

nique called fusion - has been widely applied in speaker

recognition [5, 80, 45, 49, 63, 69, 118, 149, 166, 190,

200, 207]. Typically, a number of different feature sets

are first extracted from the speech signal; then an in-

dividual classifier is used for each feature set; follow-

ing that the sub-scores or decisions are combined. This

implies that each speaker has multiple speaker models

stored in the database.

It is also possible to obtain fusion through modelling

the same features using different classifier architectures,

feature normalizations, or training sets [28, 63, 124,

166]. A general belief is that successful fusion system

should combine as independent features as possible -

low-level spectral features, prosodic features and high-

level features. But improvement can also be obtained

by fusion of different low-level spectral features (e.g.

MFCCs and LPCCs) and different classifiers for them

[28, 36, 118]. Fusing dependent (correlated) classifiers

can enhance the robustness of the score due to variance

reduction [187].

Simplest form of fusion is combining the classifier

output scores by weighted sum. That is, given the sub-

scores sk, where k indices the classifier, the fused match

score is s =
∑Nc

n=1
wnsn. Here Nc is the number of clas-

sifiers and wn is the relative contribution of the nth clas-

sifier. The fusion weights wn can be optimized using a

development set, or they can be set as equal (wn = 1/Nc)

which does not require weight optimization – but is

likely to fail if the accuracies of the individual classifiers

are diverse. In cases where the classifier outputs can be

interpreted as posterior probability estimates, product

can be used instead of sum. However, the sum rule is the

preferred option since the product rule amplifies estima-

tion errors [127]. A theoretically elegant technique for

optimizing the fusion weights based on logistic regres-

sion has been proposed in [28, 29]. An implementation

of the method is available in the Fusion and Calibration

(FoCal) toolkit2. This method, being simple and robust

at the same time, is usually the first choice in our own

research.

By considering outputs from the different classifiers

as another random variable, score vector, a backend

classifier can be built on top of the individual classifiers.

For instance, a support vector machine or a neural net-

work can be trained to separate the genuine and impos-

tor score vectors (e.g. [86, 195, 224, 68]). Upon verify-

ing a person, each of the individual classifiers gives an

output score and these scores are in turn arranged into a

vector. The vector is then presented to the SVM and the

SVM output score is compared against the verification

threshold.

Majority of fusion approaches in speaker recognition

are based on trial-and-error and optimization on given

datasets. The success of a particular combination de-

pends on the performance of the individual systems, as

well as their complementariness. Whether the combiner

yields improvement on an unseen dataset depends on

how the optimization set matches the new dataset (in

terms of signal quality, gender distribution, lengths of

the training and test material, etc.).

Recently, some improvements to fusion methodology

have been achieved by integrating auxiliary side infor-

mation, also known as quality measures, into the fusion

process [66, 72, 129, 211]. Unlike the traditional meth-

ods where the fusion system is trained on development

data and kept fixed during run-time, the idea in side-

information fusion is to adapt the fusion on each test

case. Signal-to-noise ratio (SNR) [129] and nonnative-

ness score of the test segment [66] have been used as

the auxiliary side information, for instance. Another re-

cent enhancement is to model the correlations between

the scores of individual subsystems, since intuitively un-

correlated systems fuse better than correlated ones [68].

Both the auxiliary information and correlation model-

ing were demonstrated to improve accuracy and are cer-

tainly worth further studying.

5. Robust Speaker Recognition

As a carrier wave of phonetic information, affec-

tive attributes, speaker characteristics and transmission

2http://www.dsp.sun.ac.za/~nbrummer/focal/
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Figure 10: Voice activity detector (VAD) based on periodicity [89].

It is known that voiced speech sounds (vowels, nasals) are more dis-

criminative than fricative and stop sounds. By using periodicity rather

than energy may lead to better performance in noisy environments.

path information, the acoustic speech signal is subject

to much variations, most of which are undesirable. It

is well-known that any mismatch between the training

and testing conditions dramatically decreases the accu-

racy of speaker recognition. The main focus of speaker

recognition research has been in tackling this mismatch.

Normalization and adaptation methods have been ap-

plied to all the parts of speaker recognition systems.

5.1. Voice Activity Detection

Voice activity detector (VAD), as illustrated in Fig.

10, aims at locating the speech segments from a given

audio signal [17]. The problem is analogous to face de-

tection from images: we wish to locate the objects of

interest before any further processing. VAD is an im-

portant sub-component for any real-world recognition

system. Even though a seemingly simple binary clas-

sification task, it is, in fact, rather challenging to im-

plement a VAD that works consistently across different

environments. Moreover, short-duration utterances (few

seconds) require special care [64].

A simple solution that works satisfactorily on typical

telephone-quality speech data, uses signal energy to de-

tect speech. As an example, we provide a Matlab code

fragment in the following:

E = 20*log10(std(Frames’)+eps); % Energies

max1 = max(E); % Maximum

I = (E>max1-30) & (E>-55); % Indicator

Here Frames is a matrix that contains the short-term

frames of the whole utterance as its row vectors (it is

also assumed that the signal values are normalized to

the range [−1, 1]). This VAD first computes the energies

of all frames, selects the maximum, and then sets the

detection threshold as 30 dB below the maximum. An-

other threshold (-55 dB) is needed for canceling frames

with too low an absolute energy. The entire utterance

(file) is required before the VAD detection is carried

out. A real-time VAD, such as the long-term spectral

divergence (LTSD) method [191] is required in most

real-world systems. Periodicity-based VAD (Fig. 10),

an alternative to energy-based methods, was studied in

[89].

5.2. Feature Normalization

In principle, it is possible to use generic noise sup-

pression techniques to enhance the quality of the origi-

nal time-domain signal prior to feature extraction. How-

ever, signal enhancement as an additional step in the en-

tire recognition process will increase the computational

load. It is more desirable to design a feature extractor

which is itself robust [155], or to normalize the features

before feeding them onto the modeling or matching al-

gorithms.

The simplest method of feature normalization is to

subtract the mean value of each feature over the en-

tire utterance. With the MFCC and LPCC features,

this is known as cepstral mean subtraction (CMS) or

cepstral mean normalization (CMN) [12, 70]. In the

log-spectral and cepstral domains, convolutive channel

noise becomes additive. By subtracting the mean vec-

tor, the two feature sets obtained from different channels

both become zero-mean and the effect of the channel is

correspondingly reduced. Similarly, the variances of the

features can be equalized by dividing each feature by its

standard deviation. When VAD is used, the normaliza-

tion statistics are usually computed from the detected

speech frames only.

The utterance-level mean and variance normalization

assume that channel effect is constant over the entire ut-

terance. To relax this assumption, mean and variance

estimates can be updated over a sliding window [228].

The window should be long enough to allow good es-

timates for the mean and variance, yet short enough to

capture time-varying properties of the channel. A typi-

cal window size is 3-5 seconds [182, 237].

Feature warping [182] and short-term Gaussianiza-

tion [237] aim at modifying the short-term feature dis-

tribution to follow a reference distribution. This is

achieved by “warping” the cumulative distribution func-

tion of the features so that it matches the reference dis-

tribution function, for example a Gaussian. In [182],

each feature stream was warped independently. In [237]

the independence assumption was relaxed by applying

a global linear transformation prior to warping, whose
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purpose was to achieve short-term decorrelation or in-

dependence of the features. Although Gaussianization

was observed to improve accuracy over feature warping

[237], it is considerably more complex to implement.

RelAtive SpecTrAl (RASTA) filtering [99, 153] ap-

plies a bandpass filter in the log-spectral or cepstral do-

main. The filter is applied along the temporal trajectory

of each feature, and it suppresses modulation frequen-

cies which are outside of typical speech signals. For in-

stance, a slowly varying convolutive channel noise can

be seen as a low-frequency part of the modulation spec-

trum. Note that the RASTA filter is signal-independent,

whereas CMS and variance normalization are adaptive

in the sense that they use statistics of the given signal.

For useful discussions on data-driven temporal filters

versus RASTA, refer to [153].

Mean and variance normalization, Gaussianization,

feature warping and RASTA filtering are unsupervised

methods which do not explicitly use any channel infor-

mation. Feature mapping (FM) [194] is a supervised

normalization method which transforms the features ob-

tained from different channel conditions into a channel-

independent feature space so that channel variability

is reduced. This is achieved with a set of channel-

dependent GMMs adapted from a channel-independent

root model. In the training or operational phase, the

most likely channel (highest GMM likelihood) is de-

tected, and the relationship between the root model and

the channel-dependent model is used for mapping the

vectors into channel-independent space. A generaliza-

tion of the method which does not require detection of

the top-1 Gaussian component was proposed in [245].

Often different feature normalizations are used in

combination. A typical robust front-end [196] con-

sists of extracting MFCCs, followed by RASTA filter-

ing, delta feature computation, voice activity detection,

feature mapping and global mean/variance normaliza-

tion in that order. Different orders of the normalization

steps are possible; in [31] cepstral vectors were first pro-

cessed through global mean removal, feature warping,

and RASTA filtering, followed by adding first-, second-,

and third-order delta features. Finally, voice activity de-

tector and dimensionality reduction using heteroscedas-

tic linear discriminant analysis (HLDA) were applied.

Graph-theoretic compensation method was proposed

in [87]. This method considered the training and test ut-

terances as graphs where the graph nodes correspond

to “feature points” in the feature space. The match-

ing was then carried out by finding the correspond-

ing feature point pairs from the two graphs based on

graph isomorphism, and used for global transformation

of the feature space, followed by conventional match-

ing. The graph structure was motivated by invariance

against the affine feature distortion model for cepstral

features (e.g. [151, 155]). The method requires fur-

ther development to validate the assumptions of the fea-

ture distortion model and to improve computational ef-

ficiency.

5.3. Speaker Model Compensation

Model-domain compensation involves modifying the

speaker model parameters instead of the feature vec-

tors. One example is speaker model synthesis (SMS)

[219], which adapts the target GMM parameters into a

new channel condition, if this condition has not been

present in the enrollment phase. This is achieved

with the help of transformations between a channel-

independent background model and channel-dependent

adapted models. Roughly, speaker model synthesis is

a model-domain equivalent of feature mapping (FM)

[194]. Feature mapping can be considered more flexible

since the mapped features can be used with any classi-

fier and not only with the GMM.

Both SMS and FM require a labeled training set with

training examples from a variety of different channel

conditions. In [162], an unsupervised clustering of the

channel types was proposed so that labeling would not

be needed. The results indicate that feature mapping

based on unsupervised channel labels achieves equal or

better accuracy compared with supervised labeling. It

should be noted, however, that state-of-the-art speaker

modeling with supervectors use continuous intersession

variability models and therefore extend the SMS and

FM methods to handle with unknown conditions. The

continuous model compensation methods have almost

completely surpassed the SMS and FM methods, and

will be the focus of Section 6.

5.4. Score Normalization

In score normalization, the “raw” match score is nor-

malized relative to a set of other speaker models known

as cohort. The main purpose of score normalization is

to transform scores from different speakers into a simi-

lar range so that a common (speaker-independent) veri-

fication threshold can be used. Score normalization can

correct some speaker-dependent score offsets not com-

pensated by the feature and model domain methods.

A score normalization of the form

s′ =
s − µI

σI

(15)

is commonly used. In (15), s′ is the normalized score,

s is the original score, and µI and σI are the esti-

mated mean and standard deviation of the impostor
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score distribution, respectively. In zero normalization

(“Z-norm”), the impostor statistics µI and σI are tar-

get speaker dependent and they are computed off-line in

the speaker enrollment phase. This is done by match-

ing a batch of non-target utterances against the target

model, and obtaining the mean and standard deviation

of those scores. In test normalization (“T-norm”) [14],

the parameters are test utterance dependent and they are

computed “on the fly” in the verification phase. This is

done by matching the unknown speaker’s feature vec-

tors against a set of impostor models and obtaining the

statistics.

Usually the cohort models are common for all speak-

ers, however, speaker-dependent cohort selection for T-

norm has been studied in [192, 217]. Z-norm and T-

norm can also be combined. According to [229], Z-

norm followed by T-norm does produce good results.

Score normalization can be improved by using side

information such as channel type. Handset-dependent

background models were used in [95]. The hand-

set type (carbon button or electret) through which the

training utterance is channeled was automatically de-

tected, and the corresponding background model was

used for score normalization in the verification phase.

In [197], handset-dependent mean and variance of the

likelihood ratio were obtained for each target speaker.

In the matching phase, the most likely handset was

detected and the corresponding statistics were used

to normalize the likelihood ratio. In essence, this

approach is a handset-dependent version of Z-norm,

which the authors call “H-norm”. In a similar way,

handset-dependent T-norm (“HT-norm”) has been pro-

posed [58]. Note that the handset-dependent normal-

ization approaches [58, 95, 197] require an automatic

handset labeler which inevitable makes classification er-

rors.

Although Z-norm and T-norm can be effective in re-

ducing speaker verification error rates, they may seri-

ously fail if the cohort utterances are badly selected,

that is, if their acoustic and channel conditions differ too

much from the typical enrollement and test utterances

of the system. According to [31], score normalization

may not be needed at all if the other components, most

notable eigenchannel compensation of speaker models,

are well-optimized. However, Z- and T-norms and their

combinations seem to be an essential necessity for the

more complete joint factor analysis model [112]. In

summary, it remains partly a mystery when score nor-

malization is useful, and would deserve more research.

Figure 11: The concept of modern sequence kernel SVM. Variable-

length utterances are mapped into fixed-dimensional supervectors,

followed by intersession variability compensation and SVM training.

6. Superv ector Methods: a Recent Research T rend

6.1. What is a Supervector?

One of the issues in speaker recognition is how to rep-

resent utterances that, in general, have a varying number

of feature vectors. In early studies [158] speaker mod-

els were generated by time-averaging features so that

each utterance could be represented as a single vector.

The average vectors would then be compared using a

distance measure [119], which is computationally very

efficient but gives poor recognition accuracy. Since the

1980s, the predominant trend has been creating a model

of the training utterance followed by “data-to-model”

type of matching at run-time (e.g. likelihood of an utter-

ance with respect to a GMM). This is computationally

more demanding but gives good recognition accuracy.

Interestingly, the speaker recognition community has

recently re-discovered a robust way to present utter-

ances using a single vector, a so-called supervector.

On one hand, these supervectors can be used as inputs

to support vector machine (SVM) as illustrated in Fig.

11. This leads to sequence kernel SVMs, where the
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utterances with variable number of feature vectors are

mapped to a fixed-length vector using the sequence ker-

nel; for review and useful insights, refer to [141, 232].

On the other hand, conventional adapted Gaussian mix-

ture speaker model [197] can also be seen as a supervec-

tor. Combinations of generative models and SVM have

also lead to good results [38].

Often “supervector” refers to combining many

smaller-dimensional vectors into a higher-dimensional

vector; for instance, by stacking the d-dimensional

mean vectors of a K-component adapted GMM into a

Kd-dimensional Gaussian supervector [38]. In this pa-

per, we understand supervector in a broader sense as any

high- and fixed-dimensional representation of an utter-

ance. It is important that the supervectors of different ut-

terances arise from a “common coordinate system” such

as being adapted from a universal background model,

or being generated using a fixed polynomial basis [36].

In this way the supervector elements are meaningfully

aligned and comparable when doing similarity compu-

tations in the supervector space. With SVMs, normal-

izing the dynamic ranges of the supervector elements is

also crucial since SVMs are not scale invariant [232].

An important recent advance in speaker recognition

has been the development of explicit inter-session vari-

ability compensation techniques [31, 112, 231]. Since

each utterance is now presented as a single point in the

supervector space, it becomes possible to directly quan-

tify and remove the unwanted variability from the su-

pervectors. Any variation in different utterances of the

same speaker, as characterized by their supervectors –

be it due to different handsets, environments, or pho-

netic content – is harmful.

Does this mean that we will need several training

utterances recorded through different microphones or

enviroments when enrolling a speaker? Not necessar-

ily. Rather, the intersession variability model is trained

on an independent development data and then removed

from the supervectors of a new speaker. The inters-

ession variability model itself is continuous, which is

in contrast with speaker model synthesis (SMS) [219]

and feature mapping (FM) [194] discussed in Section

5. Both SMS and FM assume a discrete collection of

recording conditions (such as mobile/landline channels

or carbon button/electrec handsets). However, the ex-

plicit inter-session variability normalization techniques

enable modeling channel conditions that “fall in be-

tween” some conditions that are not seen in training

data.

Various authors have independently developed differ-

ent session compensation methods for both GMM- and

SVM-based speaker models. Factor analysis (FA) tech-

niques [110] are designed for the GMM-based recog-

nizer and take explicit use of stochastic properties of

the GMM, whereas the methods developed for SVM

supervectors are often based on numerical linear alge-

bra [212]. To sum up, two core design issues with the

modern supervector based recognizers are 1) how to cre-

ate the supervector of an utterance, 2) how to estimate

and apply the session variability compensation in the

supervector space. In addition, the question of how to

compute the match score with the session-compensated

models needs to be solved [74].

6.2. GLDS Kernel SVM

One of the simplest SVM supervectors is general-

ized linear discriminant sequence (GLDS) kernel [36].

The GLDS method creates the supervector by ex-

plicit mapping into kernel feature space using a poly-

nomial expansion [34], denoted here as b(x). As

an example, 2nd order polynomial expansion for a 2-

dimensional vector x = (x1, x2)T is given by b(x) =

(1, x1, x2, x2
1
, x1x2, x2

2
)T. During enrollment, all

the background speaker and target speaker utterances

X = {x1, x2, . . . , xT } are represented as average ex-

panded feature vectors:

bavg =
1

T

T
∑

t=1

b(xt). (16)

The averaged vectors are further variance-normalized

using the background utterances, and assigned with the

appropriate label for SVM training (+1=target speaker

vectors; -1=background speaker vectors). The SVM op-

timization (using standard linear kernel) yields a set of

support vectors bi, their corresponding weights αi and a

bias d. These are collapsed into a single model vector

as,

w =

L
∑

i=1

αitibi + d, (17)

where d = (d, 0, 0, . . . , 0)T and ti ∈ {+1,−1} are the

ideal outputs (class labels of the support vectors), and

L is the number of support vectors. In this way, the

speaker model can be presented as a single supervector.

The collapsed model vector w is also normalized using

background utterances, and it serves as the model of the

target speaker.

The match score in the GLDS method is computed as

an inner product s = wT
targetbtest, where wtarget denotes

the normalized model vector of the target speaker and

btest denotes the normalized average expanded feature

vector of the test utterance. Since all the speaker models

and the test utterance are represented as single vectors,
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the verification phase is computationally efficient. The

main drawback of the GLDS method is that it is diffi-

cult to control the dimensionality of the supervectors; in

practice, the polynomial expansion includes either 2nd

or 3rd order monomials before the dimensionality gets

infeasible.

6.3. Gaussian Supervector SVM

Since the universal background model (UBM) is

included as a part in most speaker recognition sys-

tems, it provides a natural way to create supervectors

[38, 52, 132]. This leads to hybrid classifier where the

generative GMM-UBM model is used for creating “fea-

ture vectors” for the discriminative SVM.

In [38] the authors derive the Gaussian supervec-

tor (GSV) kernel by bounding the Kullback-Leibler

(KL) divergence measure between GMMs. Suppose

that we have the UBM, λUBM = {Pk,µk,Σk}
K
k=1

, and

two utterances a and b which are described by their

MAP-adapted GMMs (Subsection 4.2). That is, λa =

{Pk,µ
a
k
,Σk}

K
k=1

and λb = {Pk,µ
b
k
,Σk}

K
k=1

(note that the

models differ only in their means). The KL divergence

kernel is then defined as,

K(λa, λb) =

K
∑

k=1

(

√

PkΣ
−(1/2)

k
µ

a
k

)T(
√

PkΣ
−(1/2)

k
µ

b
k

)

. (18)

From the the implementation point of view, this just

means that all the Gaussian means µk need to be nor-

malized with
√

PkΣ
−(1/2)

k
before feeding them into SVM

training. Again, this is a form of variance normaliza-

tion. Hence, even though only the mean vectors of the

GMM are included in the supervector, the variance and

weight information of the GMM is implicitly present in

the role of normalizing the Gaussian supervector. It is

also possible to normalize all the adapted GMM super-

vectors to have a constant distance from the UBM [53].

As in the GLDS kernel, the speaker model obtained via

SVM optimization can be compacted as a single model

supervector.

A recent extension to Gaussian supervectors is based

on bounding the Bhattacharyya distance [240]. This

leads to a GMM-UBM mean interval (GUMI) kernel to

be used in conjunction with SVM. The GUMI kernel ex-

ploits the speaker’s information conveyed by the mean

of GMM as well as those by the covariance matrices in

an effective manner. Another alternative kernel known

as probabilistic sequence kernel (PSK) [132, 133] uses

output values of the Gaussian functions rather than the

Gaussian means to create a supervector. Since the in-

dividual Gaussians can be assumed to present phonetic

classes [198], the PSK kernel can be interpreted as pre-

senting high-level information related to phone occur-

rence probabilities.

6.4. MLLR Supervector SVM

In [108, 216], the authors use Maximum likelihood

linear regression (MLLR) transformation parameters as

inputs to SVM. MLLR transforms the mean vectors of

a speaker-independent model as µ′
k
= Aµk + b, where

µ
′
k

is the adapted mean vector, µk is the world model

mean vector and the parameters A and b define the lin-

ear transform. The parameters A and b are estimated

by maximizing the likelihood of the training data with

a modified EM algorithm [135]. Originally MLLR was

developed for speaker adaptation in speech recognition

[135] and it has also been used in speaker recognition

as an alternative to maximum a posterior (MAP) adap-

tation of the universal background model (UBM) [150].

The key differences between MLLR and Gaussian su-

pervectors are in the underlying speech model - pho-

netic hidden Markov models versus GMMs, and the

adaptation method employed - MLLR versus maximum

a posteriori (MAP) adaptation. MLLR is motivated to

benefit from more detailed speech model and the ef-

ficient use of data through transforms that are shared

across Gaussians [216]. Independent studies [41, 136]

have shown that detailed speech model improve the

speaker characterization ability of supervectors.

A similar work to MLLR supervectors is to use fea-

ture transformation (FT) parameters as inputs to SVM

[243], where a flexible FT function clusters transforma-

tion matrices and bias vectors with different regression

classes. The FT framework is based on GMM-UBM

rather than hidden Markov model, therefore, does not

require a phonetic acoustic system. The FT parameters

are estimated with the MAP criteria that overcome pos-

sible numerical problems with insufficient training. A

recent extension of this framework [244] includes the

joint MAP adaptation of FT and GMM parameters.

6.5. High-Level Supervector SVM

The GLDS-, GMM- and MLLR-supervectors are

suitable for modeling short-term spectral features. For

the prosodic and high-level features (Subsections 3.4

and 3.5), namely, features created using a tokenizer

front-end, it is customary to create a supervector by

concatenating the uni-, bi- and tri-gram (N = 1, 2, 3)

frequencies into a vector or bag-of-N-grams [35, 204].

The authors of [35] developed term frequency log likeli-

hood ratio (TFLLR) kernel that normalizes the original

N-gram frequency by 1/
√

fi, where fi is the overall fre-

quency of that N-gram. Thus the value of rare N-grams
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is increased and the value of frequent N-grams is de-

creased, thereby equalizing their contribution in kernel

computations.

The high-level features created by a phone tokenizer,

or by quantization of prosodic feature values by binning

[204], are inherently noisy: tokenizer error (e.g. phone

recognizer error) or small variation in the original fea-

ture value may cause the feature to fall into a wrong cat-

egory (bin). To tackle this problem, the authors of [67]

proposed to use soft binning with the aid of Gaussian

mixture model and use the weights of the Gaussians as

the features for SVM supervector.

6.6. Normalizing SVM Supervectors

Two forms of SVM supervector normalizations are

necessary: normalizing the dynamic range of features

and intersession variability compensation. The first one,

normalizing the dynamic range, is related to the inher-

ent property of the SVM model. SVM is not invari-

ant to linear transformations in feature space and some

form of variance normalization is required so that cer-

tain supervector dimensions do not dominate the inner

product computations. Often variance normalization is

included in the definition of the kernel function and spe-

cific to a given kernel as seen in the previous subsec-

tions. Kernel-independent rank normalization has also

been successfully applied [215]. Rank normalization re-

places each feature by its relative position (rank) in the

background data. For useful insights on normalization,

refer to [215, 232]. Let us now turn our focus to the

other necessary normalization, the intersession variabil-

ity compensation.

Nuisance attribute projection (NAP) is a successful

method for compensating SVM supervectors [37, 212].

It is not specific to some kernel, but can be applied to

any kind of SVM supervectors. The NAP transforma-

tion removes the directions of undesired sessions vari-

ability from the supervectors before SVM training. The

NAP transformation of a given supervector s is [28],

s
′
= s − U(UT

s), (19)

where U is the eigenchannel matrix. The eigenchan-

nel matrix is trained using a development dataset with

a large number of speakers, each having several train-

ing utterances (sessions). The training set is prepared

by subtracting the mean of the supervectors within each

speaker and pooling all the supervectors from differ-

ent speakers together; this removes most of the speaker

variability but leaves session variability. By perform-

ing eigen-analysis on this training set, one captures the

principal directions of channel variability. The under-

lying assumption is that the session variability lies in

a speaker-independent low-dimensional subspace; after

training the projection matrix, the method can be ap-

plied for unseen data with different speakers. The equa-

tion (19) then just means subtracting the supervector

that has been projected on the channel space. For prac-

tical details of NAP, refer to [28, 65].

removed by NAP may contain speaker-specific in-

formation [230]. Moreover, session compensation and

SVM optimization processes are treated independently

from each other. Motivated with these facts, discrim-

inative variant of NAP has been studied in [30, 230].

In [230], scatter difference analysis (SDA), a simi-

lar method to linear discriminant analysis (LDA), was

used for optimizing the NAP projection matrix, and in

[30], the session variability model was directly inte-

grated within the optimization criterion of the SVM; this

leaves the decision about usefulness of the supervec-

tor dimensions for the SVM optimizer. This approach

improved recognition accuracy over the NAP baseline

in [30], albeit introducing a new control parameter that

controls the contribution of the nuisance subspace con-

straint. Nevertheless, discriminative session compensa-

tion is certainly an interesting new direction for future

studies.

W ithin-class covariance normalization (WCCN), an-

other SVM supervector compensation method similar

to NAP, was proposed in [85]. The authors considered

generalized linear kernels of the form K(s1, s2) = s1Rs2,

where s1 and s2 are supervectors and R is a positive

semidefinite matrix. With certain assumptions, a bound

of a binary classification error metric can be minimized

by choosing R =W
−1, where W is the expected within-

class (within-speaker) covariance matrix. The WCCN

was then combined with principal component analysis

(PCA) in [84] to attack the problem of estimating and

inverting W to large data sets. The key difference be-

tween NAP and WCCN is the way how they weight the

dimensions in the supervector space [216]. The NAP

method completely removes some of the dimensions

by projecting the supervectors to a lower-dimensional

space, whereas WCCN weights rather than completely

removes the dimensions.

6.7. F actor Analysis T echniques

In the previous subsection we focused on compensat-

ing SVM supervectors. We will now discuss a different

technique based on generative modeling, that is, Gaus-

sian mixture model (GMM) with factor analysis (FA)

technique. Recall that the MAP adaptation technique

for GMMs [197], as described in Section 4.2, adapts
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the mean vectors of the universal background model

(UBM) while the weights and covariances are shared

between all speakers. Thus a speaker model is uniquely

represented as the concatenation of the mean vectors,

which can be interpreted as a supervector.

For a given speaker, the supervectors estimated from

different training utterances may not be the same espe-

cially when these training samples come from different

handsets. Channel compensation is therefore necessary

to make sure that test data obtained from different chan-

nel (than that of the training data) can be properly scored

against the speaker models. For channel compensation

to be possible, the channel variability has to be mod-

elled explicitly. The technique of joint factor analysis

(JFA) [110] was proposed for this purpose.

The JFA model considers the variability of a Gaus-

sian supervector as a linear combination of the speaker

and channel components. Given a training sample, the

speaker-dependent and channel-dependent supervector

M is decomposed into two statistically independent

components, as follows

M = s + c, (20)

where s and c are referred to as the speaker and chan-

nel supervectors, respectively. Let d be the dimension

of the acoustic feature vectors and K be the number of

mixtures in the UBM. The supervectors M, s and c live

in a Kd-dimensional parameter space. The channel vari-

ability is explicitly modeled by the channel model of the

form,

c = Ux, (21)

where U is a rectangular matrix and x are the chan-

nel factors estimated from a given speech sample. The

columns of the matrix U are the eigenchannels esti-

mated for a given dataset. During enrollment, the chan-

nel factors x are to be estimated jointly with the speaker

factors y of the speaker model of the following form:

s = m + Vy + Dz. (22)

In the above equation, m is the UBM supervector, V is

a rectangular matrix with each of its columns referred

to as the eigenvoices, D is Kd × Kd diagonal matrix

and z is a Kd × 1 column vector. In the special case

y = 0, s = m+Dz describes exactly the same adaptation

process as the MAP adaptation technique (Section 4.2).

Therefore, the speaker model in the JFA technique can

be seen as an extension to the MAP technique with the

eigenvoice model Vy included, which has been shown

to be useful for short training samples.

The matrices U, V and D are called the hyperparame-

ters of the JFA model. These matrices are estimated be-

forehand on large datasets. One possible way is to first

estimate V followed by U and D [110, 112]. For a given

training sample, the latent factors x and y are jointly es-

timated and followed by estimation of z. Finally, the

channel supervector c is discarded and the speaker su-

pervector s is used as the speaker model. By doing

so, channel compensation is accomplished via the ex-

plicit modeling of the channel component during train-

ing. For detailed account of estimation procedure the

reader should refer to [110, 112]. For comparing vari-

ous scoring methods, refer to [74].

The JFA model dominated the latest NIST 2008

speaker recognition evaluation (SRE) [175] and it was

pursued further in the Johns Hopkins University (JHU)

summer 2008 workshop [30]. Independent evaluations

by different research groups have clearly indicated the

potential of JFA. The method has a few practical de-

ficiencies, however. One is sensitivity to training and

test lengths (and their mismatch), especially for short

utterances (10–20 seconds). The authors of [30] hy-

pothesized that this was caused by within-session vari-

ability (due to phonemic variability) rather than inter-

session variability captured by the baseline JFA. The au-

thors then extended the JFA model by explicitly adding

a model of the within-session variability. Other choices

to tackle the JFA dependency on utterance length were

studied as well - namely, utilizing variable length devel-

opment utterances to create stacked channel matrix. The

extended JFA and the stacking approach both showed

improvement over the baseline JFA when the training

and test utterance lengths were not matched, hence im-

proving the generalization of JFA for unknown utter-

ance lengths. The within-session variability modeling,

however, has a price: a phone recognizer was used for

generating data for within-session modeling. It may be

worthwhile to study simplified approach – segmenting

the data into fixed-length chunks – as proposed in [30].

Given the demonstrated excellent performance of

the JFA compensation and Gaussian supervector SVMs

[38], it seems appropriate to ask how they compare

with each other, and whether they could be combined?

These questions were recently addressed in [53, 54].

In [53] the authors compared JFA and SVM both with

linear and nonlinear kernels, compensated with nui-

sance attribute projection (NAP). They concluded that

JFA without speaker factors gives similar accuracy to

SVM with Gaussian supervectors; however, JFA out-

performed SVM when speaker factors were added. In

[54] the same authors used the speaker factors of the

JFA model as inputs to SVM. Within-class covariance
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normalization (WCCN) [216] was used instead of NAP.

The results indicated that using the speaker factors in

SVM is effective but the accuracy was not improved

over the JFA-compensated GMM. The combined JFA-

SVM method, however, results in faster scoring.

6.8. Summary: Which Supervector Method to Use?

Given the multiple choices to create a supervector and

to model intersession variability, which one to choose

for practical use? It is somewhat difficult to compare the

methods in literature due to differences in data set selec-

tions, parameter settings and other implementation de-

tails. However, there are some common practice that we

can follow. To facilitate discussion, we present here the

results of the latest NIST 2008 speaker recognition eval-

uation submission by the I4U consortium [138]. All the

classifiers of I4U used short-term spectral features and

the focus was in the supervectors classifiers. Three well-

known methods - Gaussian mixture model-universal

background model (GMM-UBM) [197], generalized

linear discriminant sequence (GLDS) kernel SVM [36]

and Gaussian supervector (GSV) kernel SVM (GSV-

SVM) [38] were studied. In addition, three novel SVM

kernels were proposed: feature transformation kernel

(FT-SVM) [244], probabilistic sequence kernel (PSK-

SVM) [132, 133] and Bhattacharyya kernel (BK-SVM)

[240].

Table 1 reports the performance of individual sys-

tems, together with the weighted summation fusion of

the classifiers. The accuracy is measured in equal error

rate (EER), a verification error measure that gives the

accuracy at decision threshold for which the probabili-

ties of false rejection (miss) and false acceptance (false

alarm) are equal (see Section7).

From the results in Table 1 it is clear that intersession

compensation significantly improves the accuracy of the

GMM-UBM system. It can also be seen that the best in-

dividual classifier is the GMM-UBM system with JFA

compensation, and that JFA outperforms the eigenchan-

nel method (which is a special case of JFA). Finally,

fusing all the session-compensated classifiers improves

accuracy as expected.

Even though JFA outperforms the SVM-based meth-

ods, for practitioners we recommend to start with the

two simplest approaches at this moment: GLDS-SVM

and GSV-SVM. The former does not require much op-

timization whereas the latter comes almost as a by-

product when a GMM-UBM system is used. Further-

more, they do not require as many datasets as JFA does,

are simple to implement and fast in computation. They

should be augmented with nuisance attribute projection

(NAP) [28] and test normalization (T-norm) [14].

Table 1: Performance of individual classifiers and their fusion of I4U

system on I4U’s telephone quality development dataset [138]. UNC

= Uncompensated, EIG = Eigenchannel, JFA = Joint factor analy-

sis, GLDS = Generalized linear discriminant sequence, GSV = Gaus-

sian supetvector, FT = Feature transformation, PSK = Probabilistic

sequence kernel, BK = Bhattacharyya kernel. All the SVM-based

systems use nuisance attribute projection (NAP) compensation.

Tuning set Eval. set

EER (%) EER (%)

Gaussian mixture model

1. GMM-UBM (UNC) 8.45 8.10

2. GMM-UBM (EIG) [112] 5.47 5.22

3. GMM-UBM (JFA) [112] 3.19 3.11

Support v ector machine with different kernels

4. GLSD-SVM [36] 4.30 4.44

5. GSV-SVM [38] 4.47 4.43

6. FT-SVM [243] 4.20 3.66

7. PSK-SVM [132] 5.29 4.77

8. BK-SVM [240] 4.46 5.16

Fusing systems 2 to 8 2.49 2.05

7. P erformance Ev aluation and Software P ackages

7.1. Performance Evaluation

Assessing the performance of new algorithms on a

common dataset is essential to enable meaningful per-

formance comparison. In early studies, corpora con-

sisted of a few or at the most a few dozen speakers,

and data was often self-collected. Recently, there has

been significant effort directed towards standardizing

the evaluation methodology in speaker verification.

The National Institute of Standards and Technology

(NIST)3 provides a common evaluation framework for

text-independent speaker recognition methods [156].

NIST evaluations include test trials under both matched

conditions such as telephone only, and unmatched con-

ditions such as language effects (matched languages vs

unmatched languages), cross channel and two-speaker

detection. NIST has conducted speaker recognition

benchmarking on an annual basis since 1997, and reg-

istration is open to all parties interested in participating

in this benchmarking activity. During the evaluation,

NIST releases a set of speech files as the development

data to the participants. At this initial phase, the partic-

ipants do not have access to the “ground truth”, that is,

the speaker labels. Each participating group then runs

their algorithms “blindly” on the given data and submits

the recognition scores and verification decisions. NIST

then evaluates the performances of the submissions and

3http://nist.gov/
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the results are discussed in a follow-up workshop. The

use of “blind” evaluation data makes it possible to con-

duct an unbiased comparison of the various algorithms.

These activities would be difficult without a common

evaluation dataset or a standard evaluation protocol.

Visual inspections of the detection error trade-off

(DET) curves [159] and equal error rate (EER) are

commonly used evaluation tools in the speaker verifi-

cation literature. The problem with EER is that it corre-

sponds to an arbitrary detection threshold, which is not

a likely choice in a real application where it is critical to

maintain the balance between user convenience and se-

curity. NIST uses a detection cost function (DCF) as the

primary evaluation metric to assess speaker verification

performance:

DCF(Θ) = 0.1 × Pmiss(Θ) + 0.99 × Pfa(Θ). (23)

Here Pmiss(Θ) and Pfa(Θ) are the probabilities of miss

(i.e. rejection of a genuine speaker) and false alarm (i.e.

acceptance of an impostor), respectively. Both of them

are functions of a global (speaker-independent) verifica-

tion threshold Θ.

Minimum DCF (MinDCF), defined as the DCF value

at the threshold for which (23) is smallest, is the opti-

mum cost. When the decision threshold is optimized

on a development set and applied to the evaluation cor-

pus, this produces actual DCF. Therefore, the differ-

ence between the minimum DCF and the actual DCF

indicates how well the system is calibrated for a cer-

tain application and how robust is the threshold set-

ting method. For an in-depth and thorough theoreti-

cal discussion as well as the alternative formulations

of application-independent evaluation metrics, refer to

[29].

While the NIST speaker recognition benchmark-

ing considers mostly conversational text-independent

speaker verification in English, there have been a few

alternative evaluations, for instance the NFI-TNO eval-

uation4 which considered authentic forensic samples

(mostly in Dutch), including wiretap recordings. An-

other evaluation, specifically for Chinese, was orga-

nized in conjunction with the 5th International Sympo-

sium on Chinese Spoken Language Processing (ISC-

SLP’06)5. This evaluation included open-set speaker

identification and text-dependent verification tasks in

addition to text-independent verification.

Some of the factors affecting speaker recognition ac-

curacy in the NIST and NFI-TNO evaluations have been

4http://speech.tm.tno.nl/aso/
5http://www.iscslp2006.org/

  0.1   0.2  0.5   1   2   5   10   20   40

  0.1 

  0.2 

 0.5

  1

  2

  5

  10

  20

  40

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (i
n 

%
)

NIST 2008, Short2−Short3
pooled telephone, interview 

and microphone trials

Sub−system 1 (EER = 12.74, MinDCF = 4.41)
Sub−system 2 (EER = 9.89, MinDCF = 4.16)
Sub−system 3 (EER = 13.24, MinDCF = 4.46)
Sub−system 4 (EER = 12.28, MinDCF = 4.74)
Sub−system 5 (EER = 5.48, MinDCF = 2.60)
Sub−system 6 (EER = 8.00, MinDCF = 3.81)
Sub−system 7 (EER = 7.83, MinDCF = 3.46)
Sub−system 8 (EER = 12.43, MinDCF = 5.18)
Fusion (EER = 4.66, MinDCF = 2.02)
Actual DCF
Min DCF

Figure 12: Example of detection error trade-off (DET) plot presenting

various subsystems and a combined system using score-level fusion.

analyzed in [134]. It is widely known that cross-channel

training and testing display a much lower accuracy com-

pared to that with same channel. Including different

handsets in the training material also improves recog-

nition accuracy. Another factor significant to perfor-

mance is the duration of training and test utterances.

The greater the amount of speech data used for train-

ing and/or testing, the better the accuracy. Training ut-

terance duration seems to be more significant than test

segment duration.

7.2. Software Packages for Speaker Recognition

As can be seen throughout this article, the state-of-

the-art speaker recognition methods are getting more

and more advanced and they often combine several

complementary techniques. Implementing a full system

from scratch may not be meaningful. In this sub-section

we point out a few useful software packages that can be

used for creating a state-of-the-art speaker recognition

system.

Probably the most comprehensive and up-to-date

software package is ALIZE toolkit6, an open-source

software developed at Université d’Avignon, France.

For more details, the interested reader is referred to [65].

6Now under “Mistral” platform for biometrics authentication.

Available at: http://mistral.univ-avignon.fr/en/
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For research purposes, it is possible to build up a

complete speaker recognition system using various dif-

ferent software packages. The Matlab software by

MathWorks Inc. is excellent especially for developing

new feature extraction methods. Octave7 is an open-

source alternative to Matlab is, and there are a plenty

of free toolboxes for both of them such as Statisti-

cal Pattern Recognition Toolbox8 and NetLab9. Aside

from Matlab/Octave, the Hidden Markov Model Toolkit

(HTK)10 is also popular in statistical modeling, whereas

Torch11 software represents state-of-the-art SVM im-

plementation.

For score fusion of multiple sub-systems, we recom-

mend the FoCal toolkit12. For evaluation purposes, such

as plotting DET curves, we recommend the DETware

toolbox (for Matlab) by NIST 13. A similar tool but with

more features is SRETools14.

8. Future Horizons of Speaker Recognition

During the past ten years, speaker recognition com-

munity has made significant advances in the technology.

In summary, we have selected a few of the most influen-

tial techniques that have been proven to work in practice

in independent studies, or shown significant promise in

the past few NIST technology evaluation benchmarks:

• Universal background modeling (UBM) [197]

• Score normalization, calibration, fusion [14, 31]

• Sequence kernel SVMs [36, 38]

• Use of prosodics and high-level features with SVM

[35, 204, 216]

• Phonetic normalization using ASR [41, 216]

• Explicit session variability modeling and compen-

sation [28, 41, 84, 112].

Even though effective, these methods are highly data-

driven and massive amounts of data are needed for train-

ing the background models, cohort models for score

7http://www.gnu.org/software/octave/
8http://cmp.felk.cvut.cz/cmp/software/stprtool/
9http://www.ncrg.aston.ac.uk/netlab/index.php

10http://htk.eng.cam.ac.uk/
11http://www.torch.ch/
12http://niko.brummer.googlepages.com/focal
13http://www.itl.nist.gov/iad/mig/tools/DETware_

v2.1.targz.htm
14http://sretools.googlepages.com/

normalization, and modeling session and speaker vari-

abilities. The data sets need to be labeled and organized

in a controlled manner requiring significant human ef-

forts. It is not trivial to decide how to split the system

development data for UBM training, session modeling,

and score normalization. If the development data con-

ditions do not match to those of the expected operation

environment, the accuracy will drop significantly, some-

times to unusable level. It is clear that laborious de-

sign of data set splits cannot be expected, for instance,

from forensic investigators who just want to use speaker

recognition software in “turnkey” fashion.

For transferring the technology into practice, there-

fore, in future it will be important to focus on making

the methods less sensitive to selection of the data sets.

The methods also require computational simplifications

before they can be used in real-world applications such

as in smart cards or mobile phones, for instance. Finally,

the current techniques require several minutes of train-

ing and test data to give satisfactory performance, that

presents a challenge for applications where real-time

decision is desired. For instance, the core evaluation

condition in recent NIST benchmarkings uses about 2.5

minutes of speech data. New methods for short train-

ing and test utterances (less than 10 seconds) will be

needed. The methods for long data do not readily gener-

alize to short-duration tasks as indicated in [27, 30, 64].

The NIST speaker recognition evaluations [156, 134]

have systematized speaker recognition methodology de-

velopment and constant positive progress has been ob-

served in the past years. However, the NIST evalua-

tions have mostly focused on combating technical er-

ror sources, most notably that of training/test channel

mismatch (for instance, using different microphones in

training and test material). There are also many other

factors that have impacts on the speaker recognition per-

formance. We should also address human-related error

sources, such as the effects of emotions, vocal organ ill-

ness, aging, and level of attention. Furthermore, one of

the most popular questions asked by laymen is “what

if someone or some machine imitates me or just plays

previously recorded signal back?”. Before considering

speaker recognition in large-scale commercial applica-

tions, the research community must answer such ques-

tions. These questions have been considered in some

studies, mostly in the context of phonetic sciences, but

always for a limited number of speakers and using non-

public corpora. As voice transformation technique ad-

vances, low cost voice impersonation becomes possible

[27, 184]. This opens up a new horizon to study attack

and defense in voice biometrics.
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Much of the recent progress in speaker recognition is

attributed to the success in classifier design and session

compensation, which largely rely on traditional short-

term spectral features. These features were introduced

nearly 30 years ago for speech recognition [50]. Despite

there is a strong belief that temporal, prosodic and high

level features are salient speaker cues, we have not ben-

efited much from them. So far, they are playing a sec-

ondary role complementary to short-term spectral fea-

tures. This warrants further investigation, especially as

to how temporal and prosodic features can capture high-

level phenomena (robust) without using computation-

ally intensive speech recognizer (practical). It remains

a great challenge in the near future to understand what

features to exactly look for in speech signal.

9. Summary

We have presented an overview of the classical and

new methods of automatic text-independent speaker

recognition. The recognition accuracy of current

speaker recognition systems under controlled condi-

tions is high. However, in practical situations many

negative factors are encountered including mismatched

handsets for training and testing, limited training data,

unbalanced text, background noise and non-cooperative

users. The techniques of robust feature extraction, fea-

ture normalization, model-domain compensation and

score normalization methods are necessary. The tech-

nology advancement as represented by NIST evalua-

tions in the recent years has addressed several technical

challenges such as text/language dependency, channel

effects, speech durations, and cross-talk speech. How-

ever, many research problems remain to be addressed,

such as human-related error sources, real-time imple-

mentation, and forensic interpretation of speaker recog-

nition scores.
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tion measure for speaker recognition. In Proc. 9th Int. Conf.

Speech and Computer (SPECOM 2004) (St. Petersburg, Rus-

sia, September 2004), pp. 366–370.

[110] Kenny, P. Joint factor analysis of speaker and session variabil-

ity: theory and algorithms. technical report CRIM-06/08-14,

2006.

[111] Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P.

Speaker and session variability in GMM-based speaker veri-

fication. IEEE Trans. Audio, Speech and Language Processing

15, 4 (May 2007), 1448–1460.

[112] Kenny, P., Ouellet, P., Dehak, N., Gupta, V., and Dumouchel,

P. A study of inter-speaker variability in speaker verification.

IEEE Trans. Audio, Speech and Language Processing 16, 5

(July 2008), 980–988.

[113] Kinnunen, T. Designing a speaker-discriminative adaptive filter

bank for speaker recognition. In Proc. Int. Conf. on Spoken

Language Processing (ICSLP 2002) (Denver, Colorado, USA,

September 2002), pp. 2325–2328.

[114] Kinnunen, T. Spectral Features for Automatic Text-

Independent Speaker Recognition. Licentiate’s thesis, Univer-

sity of Joensuu, Department of Computer Science, Joensuu,

Finland, 2004.

[115] Kinnunen, T. Joint acoustic-modulation frequency for speaker

recognition. In Proc. Int. Conf. on Acoustics, Speech, and

Signal Processing (ICASSP 2006) (Toulouse, France, 2006),

vol. I, pp. 665–668.

[116] Kinnunen, T., and Alku, P. On separating glottal source and

vocal tract information in telephony speaker verification. In

Proc. Int. conference on acoustics, speech, and signal process-

ing (ICASSP 2009) (Taipei, Taiwan, April 2009), pp. 4545–

4548.

[117] Kinnunen, T., and González-Hautamäki, R. Long-term
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