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Abstract

Current understanding of reverberation chambers is firmly funded upon their being operated as overmoded cavities.
A proper definition of this condition has been lacking for a long time, while being regarded as automatically satisfied
as soon as a large (and unspecified) number of normal modes are set to resonate at the frequency of operation of the
chamber. In this paper we summarize the most important steps needed to introduce in a formal way a proper definition
of the overmoded condition, showing how, from a strict mathematical viewpoint, it is not related to any threshold
frequency, but rather requires a statistical framework.

1 Introduction

Reverberation chambers (RCs) are electrically large closed cavities characterized by very weak dissipation phe-
nomena over its boundaries (walls) and within their volume. Apart as a fundamental tool for experimental investiga-
tions in quantum chaos and other fundamental research topics, RCs are widely used as tests facilities in Electromag-
netic Compatibility (EMC), mostly in the case of radiated tests. The interested Reader can refer to [1, 2] as a useful
introduction on the way RCs are actually utilized in EMC and their physics. The topic of concern in this paper is
rather the fact that their use is based on a strong assumption, that they are capable of providing a diffused field. This
property is never directly invoked in RC theory as developed within the EMC community, though it is of fundamental
importance in the physics of cavities and the study of room acoustics [3]. Historical reasons are likely to blame for
this mismatch, as well as the fact that electrical engineers have long preferred to have a more practical and test-driven
approach to the understanding of these facilities. Still, the lack of the clear definition of a diffused field has been an
invisible obstacle, in our opinion, to the cross-fertilization that should have existed between the EMC community and
the acoustics one. Indeed, EMC engineers could benefit from the deeper understanding and modeling tools developed
in acoustics. In this respect, we will regard the concepts of overmoded RC and that of diffused field as synonyms,
as both refer to a cavity that ensures, asymptotically, to expect a very specific statistical behavior for field-related
quantities.

Yet, both fields lacked a proper physics-based model capable of explaining under what conditions a cavity can be
considered to allow a diffused field to establish. Acoustics, too, tends to consider the idea of a threshold frequency [3],
often referred to as Lowest Usable Frequency (LUF) in EMC. In a recent paper [4], we have proposed such a model,
establishing a direct link between the physics of an RC and the statistical properties of the field it supports. In this paper
we recall the most important steps and assumptions that have led to this result, and show how it can explain another
phenomenon with an unsatisfying description, that of local statistical non-compliancy of field-related quantities. Our
definition of an ovemoded cavity (and thus of a diffused field) is based on the use of a modal description of the
field excited within an RC, coupled to a statistical approach. The interest of this approach is that it allows avoiding
making non-physical assumptions on the need for a threshold on the modal density, as apparently assumed on the
EMC side, or on the sheer fact that a threshold frequency exists. Of particular importance is the prediction that losses
should not be regarded as a limitation or nuisance in the operation of RCs, but that they rather lie at the heart of its
functioning. Without losses, an RC would never be capable of supporting a diffused field, independently of the modal
density it supports: hence, our regarding the use of the term overmoded as a potentially treacherous habit, as the mere
availability of a high modal density is not a sufficient condition. In the following, it will be shown that an overmoded
RC is a cavity that supports a large number of overlapped modes, which is not the same as just supporting a large
number of modes, as estimated by looking at modal density alone. This fact was unacknowledged in EMC, while well
understood in acoustics: still, both have always considered that the idea of a threshold frequency be reasonable, a fact
that is disproved in this paper.



2 The overmoded condition as a statistical asymptotic condition

The common sense given to the concept of overmoded cavity is tightly linked to the fulfillment of the following
properties: 1) field statistics are independent of the position in space where they are tested, at least in a sub-volume of
the cavity; 2) the three orthogonal components of the electric (respectively, magnetic) field behave as independent and
identically (iid) distributed random variables; 3) they follow a Gaussian distribution law, with zero mean-value. It has
been shown that these hypothesis are met whenever the field distribution can be described by means of a continuous
random plane-wave spectrum, with specific statistical properties [5]. Although such type of model well approximates
the behavior of real-life RCs in their high-frequency range, it is well-known that there might exist some frequencies
where it is incapable of predicting a drift from it [6]. These disagreements are often explained through a stirrer
inefficiency or a sub-optimal alignment for the sources [7], though we are quite skeptical of these explanations [8],
whereas in the lower frequency range they are usually just fitted to alternative probability distribution functions [9].

It is, in our opinion, by far more interesting and useful to get back to the basics of the physics of cavities, while
taking on a more statistical approach from the beginning. To this end, we will consider a modal expansion for the
electric field distribution observed at the position r within an RC at the working frequency f [10]

E(r, f) =
∑

i∈M

γi(r, f)ψi(f)ξ̂i(r, f) , (1)

where the γi(r, f) reflect the excitation of each mode, depending on the nature of the source and its position relative
to the modal topographies, ψi(f) is the bell-shaped frequency response of each mode and ξ̂i(r, f) is the polarization
of the electric field contribution provided by each mode. The sum in (1) is taken over the set M of modes that are
effectively excited at the working frequency. A proper justification for this model has been provided in [4]. Rather
than attempting to apply (1) in a deterministic way, we will regard all of these modal quantities as random ones, with
statistical properties dictated (or suggested) by their physical properties.

In this respect, the modal weights {γi} can be expected to behave as centered random variables, as they are directly
related to the scalar projection of the equivalent currents representing a source and the modal topographies, which are
standing waves, thus characterized by a pseudo-periodic change in their sign over space. No further assumption is
needed on the nature of the probability law for the γi. The functions {ψi(f)} represent the responses of second-order
systems, defined as follows

ψi(f) =
1

f2

i (1 + j/2Qi)2 − f2
, (2)

where fi is the resonance frequency of the i-th mode and Qi its quality factor. As the presence of a stirring technique
implies, from an ideal perspective, that the frequencies of resonance of the modes are thoroughly mixed and swapped
about the working frequency, it is reasonable to assume that the variables {fi} be uniformly distributed. Moreover,
the quality factors {Qi} can be characterized by means of their average (or composite) value, as will be shown later.
This latter quantity can be experimentally assessed. Finally, the polarization unit vectors {ξ̂i} will be assumed to be
uniformly distributed over 4π steradian, again as a consequence of the assumption of an ideal stirring technique at
work. It is important to notice that assuming a perfect stirring is actually sensible, as we are interested in assessing
whether it is possible to explain the eventual non-compliancy of an RC even having enforced an ideal performance on
the stirring technique.

With this model at our disposal, we now aim at studying the first two statistical moments of the electric energy
density

W (r, f) = ǫ0‖E(r, f)‖2 , (3)

with ǫ0 the dielectric permittivity of the medium filling the cavity. The electric energy density can be described, in the
case of an ideally diffused field, as a random variable distributed as a χ2

6
law, as a consequence of the features recalled

at the beginning of this Section. As opposed to this hypothesis, by computing the first two moments of W (r, f) and
employing the previously introduced assumptions on the statistics of the modal quantities should allow to check under
what conditions the ideal behavior is actually met. The procedure for this calculation has been presented in details



0.5 1 1.5 2 2.5 3
−100

0

100

200

300

400

500

Frequency (GHz)

ε ς2 
(%

)

 

 

0.5 1 1.5 2 2.5 3
−100

0

100

200

300

400

500

Frequency (GHz)

ε ς2 
(%

)

 

 

Empty RC

Loaded RC

(a) (b)

Figure 1: Estimates of the standardized variance of the energy density W , as assessed from experimental results
obtained for : (a) an empty cavity (apart for the excitation antenna) and (b) one loaded with a set of 4 pyramidal
absorbers about 30 cm high.

in [4], and leads to the following standardized variance

ς2W =

(

σW
µW

)2

=
1

3
+

1

π

µ4

µ2

2

1

MM

, (4)

with MM = mBM the average number of modes overlapping within the average −3 dB bandwidth BM = f/Q
centered around the working frequency, for a modal density m(f) and an average composite quality factor Q. The
terms µn refer to the moments of the modal weights {γi}

µn = E [|γi|
n] , (5)

so that µ4/µ
2
2 = 2 for the case of normally distributed modal weights, which is the usual assumption applied for

these quantities. Other distribution laws do not have much of an effect on this ratio, so that the final result is weakly
dependent on any assumption on the nature of the modal weights.

Comparing (4) to the standardized variance ς2
χ2

6

= 1/3 obtained for the ideal diffused field scenario shows what
is needed for an RC to be as close as possible to the ideal case, i.e., presenting a large number of overlapped modes
MM . Whence, it is clear that there is no reason for assuming that any threshold frequency ensures an RC to support
a diffused field, as MM is actually a complex function of frequency, with a non monotonous trend. As a matter of
fact, both the composite quality factor Q and the modal density m are non-monotonous; attention must be paid to the
fact that the often used Weyl’s approximation is indeed a smooth fitting curve to the real m(f), which is generally not
known. Local variations around this smooth function can be far from negligible, leading to modal depletion or excess:
it can therefore be intuitively understood that MM follows a similar trend, whose range of variations is made further
wider and unpredictable by the dominant role of the composite quality factor Q.

As a result, the standardized variance ς2W can get quite larger than the 1/3 value expected in the ideal case. This
value is attained only asymptotically as MM → ∞, a condition that can be thought as well approximated as the
working frequency increases, since the modal density will increase (on average) quadratically with the frequency,
while the composite quality factor has typically a slower rate of growth. In any case, (4) links the rate of convergence
of the statistics of W to the average number of overlapped modes MM : hence, by settling on an acceptable error
between the real and ideal ς2, we can come up with a threshold on the minimum number of modes that should overlap
on each other bandwidth, as a way to ensure this maximum error.

SinceMM (f) can be reasonably expected to broadly increase with the frequency, (4) predicts that the standardized
variance of the energy density should converge to the asymptotic value 1/3 at high frequency. This fact is demonstrated



in Fig. 1a, where experimentally determined estimates of ς2W are shown over a wide frequency range, as obtained with
a 100-step mechanical stirrer in an RC with a volume of 13.8 m3. The RC was excited by means of a log-periodic
dipole antenna pointed at one corner, while the field samples were measured with an electro-optical probe positioned
at the center of the cavity. Fig. 1 confirms that indeed the relative error ǫς2 = (ς2W − 1/3)/(1/3) broadly decreases
with the frequency, while it is far from negligible in the lower frequency range. The thicker line in Fig. 1 has been
obtained by applying (4), using a loose estimate for MM . This latter quantity was derived by using the average modal
density predicted by Weyl’s formula and a smooth majorant of an experimentally-derived estimate of the composite
quality factor. This operation was aimed at assessing whether (4) is capable of providing a loose upper-bound for the
error observed in practice on the standardized variance ς2W . Indeed, a good agreement between the prediction of the
maximum error yielded by (4) and the experimental results is observed, with an envelop well identified by the former.
The case treated in Fig. 1b deals with the introduction of additional losses: in this case too our model predicts in a
fairly good way the reduction of the variability of W . Further details about the validity of (4) are provided in [4],
particularly about the role of losses in the statistical compliance of the energy density in an RC.

3 Conclusions

In this paper we have briefly recalled the reasons of our introducing a physically-motivated definition of the over-
moded condition for an RC. The use of a modal approach, though inevitably based on simplifying assumptions, has
led to pointing out that there is no threshold frequency for a real RC to behave as an ideal one. Local disagreements
for the statistics of field-related quantities can appear at any frequency, depending on eventual configurations featuring
a weak overlapping of modes. The probability for these events is intuitively expected to decrease for an increasing
frequency, and the proposed model indeed supports this idea. Therefore, it is uncorrect to consider that departures
from the asymptotic statistical behavior of the field statistics be due to an imperfect design of the RC setup, be it the
design of the cavity excitation or the stirring technique.
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