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Abstract  
 
In the present paper, we expand information about the conditions for passing through Type 2 
singular configurations of a parallel manipulator. It is shown that any parallel manipulator can 
cross the singular configurations via an optimal control permitting the favourable force 
distribution, i.e. the wrench applied on the end-effector by the legs and external efforts must 
be reciprocal to the twist along the direction of the uncontrollable motion. The previous 
studies have proposed the optimal control conditions for the manipulators with rigid links and 
flexible actuated joints. The different polynomial laws have been obtained and validated for 
each examined case. The present study considers the conditions for passing through Type 2 
singular configurations for the parallel manipulators with flexible links. By computing the 
inverse dynamic model of a general flexible parallel robot, the necessary conditions for 
passing through Type 2 singular configurations are deduced. The suggested approach is 
illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 
16th order polynomial law is necessary for the optimal force generation. The obtained results 
are validated by numerical simulations carried out using the software ADAMS.  

 
Index terms – Singularity, dynamics, parallel manipulators, optimal motion generation, 
flexible links. 
 

 

1 Introduction  
 

There are many studies dealing with the singularity analysis of parallel manipulators and 
an overview of all the works seems almost impossible within the framework of this paper. Let 
us disclose the kinematic, kinetostatic and dynamic aspects of singularity through some of 
them. The analysis of singular configurations has been first discussed from a kinematic point 
of view [1]–[12]. However, it is also known that, when parallel manipulators have Type 2 
singularities [1], they lose their stiffness and their quality of motion transmission, and as a 
result, their payload capability. Therefore, the singularity zones in the workspace of 
manipulators may be analyzed not only in terms of kinematic criterions, from the theoretically 
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perfect model of manipulators without friction and force transmission action, but also in terms 
of kinetostatic performance [13]–[20]. In this vein, the paper [20] proposes the analysis and 
design of a Stewart Platform based force–torque sensor in a near-singular configuration. It 
was shown in this study that various singular configurations can be obtained to get high 
sensitivity to various combinations of the six components of force and torque. 

The further study of singularity in parallel manipulators has revealed an interesting 
problem that concerns the path planning of parallel manipulators under the presence of 
singular positions, i.e. the motion feasibility in the neighbourhood of singularities. In this case 
the dynamic conditions can be considered in the path planning process. One of the most 
evident solutions for the stable motion generation in the neighbourhood of singularities is to 
use redundant sensors and actuators [21]–[25]. However, it is an expensive solution to the 
problem because of the additional actuators and the complicated control of the manipulator 
caused by actuation redundancy. Another approach concerns with motion planning to pass 
through singularity [26]–[31], i.e. a parallel manipulator may track a path through singular 
poses if its velocity and acceleration are properly constrained. This is a promising way for the 
solution of this problem. However, the studies devoted to this problem have addressed the 
path planning for obtaining a good tracking performance, but not the physical interpretation of 
dynamic aspects.  

The condition of optimal force generation in rigid parallel manipulators for passing 
through the singular positions has been studied in [32]. It was shown that any parallel 
manipulator can pass through the singular positions without perturbation of motion if the 
wrench applied on the end-effector by the legs and external efforts of the manipulator are 
reciprocal to the twist along the direction of the uncontrollable motion. The obtained results 
were validated through experimental tests carried out on the prototype of four-DOF parallel 
manipulator PAMINSA [33]. 

This approach has been generalised in the case of rigid-link flexible-joints parallel 
manipulators [34]. It was shown that the degree of the polynomial law should be different, 
when the flexibility of actuated joints is introduced into condition of the optimal force 
generation in the presence of singularity. The numerical simulations carried out using the 
software ADAMS validated the obtained theoretical results.  

The study presented in this paper is the continuation of our previous works [32], [34]. The 
purpose of this paper is to study the dynamic properties of parallel manipulators having not 
only flexible joints, but also flexible links. 

The paper is organized as follows. The next section presents theoretical aspects of the 
examined problem, which is analysed using the Lagrangian formulation. The condition of 
force distribution is defined, that allows the passing of any flexible parallel manipulator 
through the Type 2 singular positions. In section 3, the suggested solution is illustrated via a 
5R planar parallel manipulator having flexible links and joints. Conclusions are presented at 
the end of the paper. 

 
 

2 Optimal dynamic conditions for passing through Type 2 singularity 
 

Let us consider a non-redundant parallel manipulator of m links, n degrees of freedom and 
driven by n actuators. The general Lagrangian dynamic formulation for a non-rigid 
manipulator can be expressed as [35]: 
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where,  
-  L is the Lagrangian of the manipulator; L = T−V, where T is the kinetic energy and V the 

potential energy due to gravitational forces, friction and elasticity; 
- Ta

n
aa

a qqq ],...,,[ 21q  and Ta
n

aa
a qqq ],...,,[ 21  q  represent the vectors of position and velocity 

of the actuators, respectively; 
- Te

n
ee

e qqq ],...,,[ 21q  and Te
n

ee
e qqq ],...,,[ 21  q  represent the vectors of position and velocity 

of the elastic coordinates (deformations of links and joints); 
-  is the vector of the actuators efforts. 

In general, for parallel manipulators, the potential and kinetic energies do not explicitly 
depend both of the actuated variables qa and elastic coordinates qe, but also from the positions 
x and velocities v of the payload. Therefore it is preferable to rewrite Eq. (1) using the 
Lagrange multipliers [35], as follows: 
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where  is the Lagrange multipliers vector, which is related to the wrench Wp applied on the 
platform by: 
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and, 
- Tzyx ],,,,,[ x  and Tzyx ],,,,,[  v  are vectors containing the end-effector 

trajectory parameters and their derivatives, respectively; x, y, z represent the position of the 
controlled point in the global frame and  and  the rotation of the platform about three 
axes a, a and a. Vector x depends on both rigid coordinates qa and elastic coordinates qe. 

- A, B and C are three matrices relating the vectors v, eq  and aq  according to 

ea qCqBAv   . They can be found by differentiating the closure equations fi(x, qa, qe) = 0 

(taking into account the rigid as well as the elastic coordinates [35]) with respect to time. In 
the hypothesis of small elastic displacements ( 0q e ), matrices A and B may be found 

assuming that the robot is composed of rigid links only.  
- Wp is the wrench applied on the platform by the legs and external forces expressed along 

axes a, a and a [36]. 
Expressing Wp in the base frame, one can obtain: 
 
 p

R
qb WJWτ 0T

a
 , (4a) 

 p
R

qc WJW0 0T

e
 , (4b) 
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where   BAJ R
q

1
0




a
 is the square Jacobian matrix between the twist t of the platform 

(expressed in the base frame) and the vector aq  of actuators velocities,   CAJ R
q

1
0




e
 is the 

non-square Jacobian matrix between twist t of the platform (expressed in the base frame) and 
the vector eq  of deformations velocities, DAAR 0  is the expression of matrix A in the base 

frame, where D is a transformation matrix, of which expression is given in [37]. 
For any prescribed trajectory x(t), the values of vector qa can be found using the inverse 

kinematics and dynamics. Thus, taking into account that the manipulator is not in a Type 1 
singularity [1], i.e the mechanism is at a configuration where it loses one DOF, the terms Wb, 
Wc and p

R W0  can be computed [38]. However, for a trajectory passing through a Type 2 

singularity, the determinant of matrix AR0  vanishes. Numerically, the values of the efforts 
applied by the actuators become infinite. In practice, the manipulator either is locked in such a 
position of the end-effector or it can not follow the prescribed trajectory.  

As it is mentioned above, in a Type 2 singularity, the determinant of matrix AR0  
vanishes. In other words, at least two of its columns are linearly dependant [37]. So, one may 
obtain such a relationship: 

 
 0 0R RT T T  s sA t 0 t A 0 , (5) 

 
where the vector ts represents the direction of the uncontrollable motion of the platform in a 
Type 2 singularity. 

Then, by dot-multiplying both sides of (3) by ts and taking into account (5), we obtain 
 
 0 0RT T st A λ , (6) 

which also implies that 
 0 0RT s pt W , (7) 

 
Thus, (7) corresponds to the scalar product of vectors ts and p

R W0 .  

Thus, in the presence of a Type 2 singularity, it is possible to satisfy conditions (7) if the 
wrench applied on the platform by the legs and external efforts p

R W0  are reciprocal to 

the direction of the uncontrollable motion ts. Otherwise, the dynamic model is not 
consistent. Obviously, in the presence of a Type 2 singularity, the displacement of the end-
effector of the manipulator has to be planned to satisfy (7). Therefore, our task will be to 
achieve a trajectory which will allow the manipulator passing trough the Type 2 singularities, 
i.e. which will allow the manipulator respecting condition (7). 

In the next section, an example illustrates the obtained results discussed above. This 
example presents a planar 5R flexible parallel manipulator. 

 
 

3 Illustrative example 
 

In the planar 5R parallel manipulator, as shown in Fig. 1, the output point is connected to 
the base by two legs, each of which consists of three revolute joints and two links. In each of 
the two legs, the revolute joint connected to the base is actuated. Thus, such a manipulator is 
able to position its output point in a plane. 
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As shown in Fig. 1, the input joints are denoted as A and E. The orientation of elements 1 
and 2 are denoted eq1  and eq2 , respectively. The common joint of the two legs is denoted as C, 
which is also the output axis with controlled parameters x = [x, y]T. A fixed global reference 
system xOy is located at the middle of segment AE with the y-axis normal to AE and the x-
axis directed along AE. The lengths of the links AB & DE and BC & CD, are respectively 
denoted as Lp and Ld. 

Actuators 1 and 2 are connected to links 1 and 2, respectively, via Harmonic Drive® 
systems which are represented by a model similar to that given in [39]. The position of 
actuator i is denoted as a

iq . It is assumed that the actuator i is capable to deliver a couple i to 

the motor shaft, which is elastically coupled to the link i of the robot (i = 1 or 2). The 
flexibility of the drive system is modeled by a torsion spring with stiffness k1. The gear ratio 
is denoted n. Ia is the axial moment of inertia of the motor i plus the Harmonic drive system. 

 

 
 

Figure 1. Kinematic chain of the planar 5R parallel manipulator.  
 

 
 

(a)1 = 2  (b)1 = 2 

 
Figure 2. Type 2 singular configurations of the planar 5R parallel manipulator.  

 
 
The deformations of the robot links 3 and 4 are modeled by adding virtual torsion springs 

at points Rij (i = 3, 4 and j = 1 to 3), such as elements 3 and 4 are decomposed into four sub-
elements, denoted as elements iv (i = 3, 4 and v = 1 to 4), with identical lengths and inertia 
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properties. The stiffness of these springs is denoted as k2. The displacement of the spring 
mounted at point Rij will be denoted as ij. 

The singularity analysis of this manipulator shows that the Type 2 singularities appear 
when links 3 and 4 are parallel [40] (Fig. 2). In both cases, the gained degree of freedom is an 
infinitesimal translation perpendicular to the links 3 and 4. 

Taking into account that the gravity is directed along z axis (perpendicular to the plane of 
motions), the expression of the potential energy V may be written as: 

 

  1 20.5 ( / ) ( / )T T
a e a eV k n n k   q q q q ε ε . (8) 

 
where qa = [ aq1 , aq2 ]T, qe = [ eq1 , eq2 ]T and  = [31,2,3, 41,2,3]

T. 
The expression of the kinetic energy is 
  

2 4 4
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1 1 1 2 1 2

1 2 3 1 2 3
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              

      
 (9) 

 
where  
- T],[ 21   ψ  is the vector of the angular velocities of elements 3 and 4,  

- 3 4[ , ]T
j j j ε    , j = 1 to 3 

- vSi is the translational velocity vector of the centre of masses of element i (i = 1, 2); the 
centre of masses is located at the middle of the considered segment. 

- vSij is the translational velocity vector of the centre of masses of element ij (i = 3, 4 and j = 1 
to 3); the centre of masses is located at the middle of the considered segment. 

- mp is the mass of the proximal links (elements 1 and 2), md is the mass of each sub-elements 
of the distal links (elements ij, (i = 3, 4 and j = 1 to 4)); 

- Ip is the axial moment of inertia of the proximal links (elements 1 and 2), Id is the axial 
moment of inertia of each sub-elements of the distal links; 

The expressions of vectors vSi are: 
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  (10e) 
 
Introducing (10a, b, c, d, e) into (9), the dynamic model can be obtained from (2) and (3): 
 

 2
T k  ε ε pW J W ε 0 , (11) 

 
  1 /

e e

T
a ek n   q q pW J W q q 0 , (12) 

 
and nnkI aea

a /)/(1 qqq   . (13) 

 
The terms that appear in this model are described in the appendix. 

For given trajectory x(t), the deformations (t) may de deduced from (11). However, this 
equations is difficult to solve analytically, therefore an iterative resolution of the system is 
used [38]. Once (t) is known, the displacements, velocities, accelerations and other time 
derivatives of the passive and active variables qe and  may be found using the dynamic 
model equations and the loop closure equations, which are given in the appendix. Then, from 
(12), the values of qa are found: 

 
 1( ) /

e e

T
a en k n  q q pq W J W q . (14) 

 
Finally, the input torques  can be computed using (13). 
From (11), it appears that the deformations depends on the position x, velocity x  and 

acceleration x  of the end-effector. As a result, ε  depends on the end-effector position x, 
velocity x , acceleration x , jerk x  and its first derivative )4(x . Thus, qa also depends on the 
same parameters. As a result, from (13), it can be shown that the input torques depends on the 
end-effector position, velocity, acceleration, jerk and its first, second and third derivatives 
with respect to time. Therefore, a thirteen-degree polynomial has to be applied as a control 
law when the end-effector is not in singular configuration. 

In order to avoid infinite values of the input torques when crossing a Type 2 singularity, 
Eq. (7) has to be satisfied. From matrix A (see appendix), one can find that the twist of the 
infinitesimal displacement in the singularity can be written under the form: 

 
 T]cos,sin[ 11 st  (15) 

 
Thus, the examined manipulator can pass through the given singular positions if the 

wrench Wp determined by (14) is reciprocal to the direction of the uncontrollable motion ts 
described by (15). However, the difficulty remains into the fact that, introducing Wp (see 
appendix) into (7) leads to a condition, which depends not only on the end-effector position, 
velocity and acceleration, but also of variables , ε  and ε , which at any computation step can 
only be iteratively found. Therefore, contrary to our previous papers [32][34] in which the 
polynomial laws able to achieve condition (7) were defined analytically, in this case, this law 
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can only be found by using numerical simulation algorithms. An example of the use of such 
algorithm is given below. 

Let us now determine the trajectory, which makes it possible to satisfy condition (7) for 
the manipulator with following parameters of links: a = 0.2 m, Lp = Ld = 0.25 m, mp = 1.75  
kg, md = 1.8  kg, Ip = 1.18.10-2 kg.m², Id = 1.5.10-4 kg.m², Ia = 0.064.10-4 kg.m², k1 = k2 = 800 
Nm/rad, n = 50.  

With regard to the prescribed trajectory generation, the point C should reproduce a motion 
along a straight line between the initial position C0 (x0, y0) = C0 (0.1, 0.345) and the final point 
Cf (xf, yf) = Cf (–0.1, 0.145) in tf = 1 s (Fig. 3). However, the manipulator will pass by a Type 
2 singular position at point Cs (xs, ys) = Cs (0, 0.245) (Fig. 3). 

 

 
 

Figure 3. Initial, singular and final positions of the planar 5R parallel manipulator. 
 
 
The trajectory can be expressed as follows: 
 

 
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where s(t) is a polynomial, that should respect the following conditions: 

 
 s (t0) = 0, (17) 
 
 s (tf) = 1, (18) 
 
 0)()( 0  ftsts  , (19) 

 
 0)()( 0  ftsts  , (20) 

 
 0)()( 0  ftsts  , (21) 

 
 0/))((/))(( 0  dttsddttsd f , (22) 

 
 0/))((/))(( 222

0
2  dttsddttsd f , (23) 

 
 0/))((/))(( 333

0
3  dttsddttsd f , (24) 
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 s (ts = 0.5 s) = 0.5, (25) 
 
 0)( sts , (26) 

 
and  0pWtT

s . (27) 

 
There are seventeen conditions, therefore s(t) should be at least a sixteen-degree 

polynomial. 
Boundary conditions (17) to (26) are directly linked to the expression of the polynomial, 

whereas (27) involve the computation of the entire dynamic model, therefore, one way to find 
the polynomial is to express conditions (17-27) as the following optimization problem: 
  

 
a

pWta min)(  T
sf  (28) 

 
subject to constraints (17-26), where a is a vector regrouping the coefficients of the 
polynomial s(t). It is obvious that such formulation does not imply a 100% guaranty that the 
function f(a) will be null at the end of the optimization step. However, in general, the 
simulations have shown that, even if the minimization problem (28) may not yield a zero 
result, it was possible to obtain a value close to zero. 

A way to solve this problem is to use the goal attainment programming (function 
“fgoalattain” in Matlab). The goal attainment optimization allows generating specific Pareto-
optimal solutions. Let us apply the goal-attainment technique that yields the following 
nonlinear programming formulation: 

 
 

a,
min


   (29) 

subject to 
 ihhfwf iiii  ;)(;)( 00 aa   (30) 

 
where 0)( ii hh a  represents the constraints (17-26). Here,  is an unrestricted scalar variable, 

0iw  are designer selected weighting coefficients, and 0
if  are the goal to be realized for 

each design objective. In this formulation, minimization of  tends to force the specifications 
to meet their goal. If, at the solution point,  is negative, the goals have been over-attained; if 
 is positive, then the goals have been under-attained. The method is appealing since it is 
possible for the user to specify unrealizable objectives and still obtain a solution which 
represents a compromise. More detailed information about the goal-attainment optimization 
can be found in [41]. 

Using the “fgoalattain” function in Matlab, with specified constraints (17-26) and 
objective (28), the following polynomial has been found:   

 

 
  7 8 9 10 11

12 13 14 15 16

7099.0 52152.8 160698.1 252912.5 173271.6

60944.0 217870.6 179095.5 68776.9 10605.7

s t t t t t t

t t t t t

    

    
 (31) 

 
This polynomial will be implemented into the dynamic model of the manipulator in order 

to verify that it allows the passing through the Type 2 singularity. The simulations have been 
carried out using the software ADAMS. 
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In order to compare the different cases of trajectory planning, in Figs. 4 and 5 are given 
the values of the input torques obtained using the software ADAMS for the following 
numerical simulations: 

A:  a trajectory between points C0 and C’f (x’f, y’f) = C’f (–0.1, 345) (Fig. 3) without meeting 
any singularity. For such a case, a thirteenth order polynomial law has been defined from 
conditions (17-24). The obtained    7 8 9 10 111716 9009 20020 24024 16380s t t t t t t      

12 136006 924t t   polynomial law is used for the trajectory planning out of the singular 
zone of the manipulator. In this case the values of the input torques are finite. 

B: the same thirteenth order polynomial law   7 8 9 101716 9009 20020 24024s t t t t t     
11 12 1316380 6006 924t t t    is used for the trajectory planning between C0 and Cf inside 

the singular zone of the manipulator. In this case the values of the input torques close to 
the singular positions tend to infinity. 

C: the sixteenth order polynomial law of Eq. (31) for the trajectory planning of the 
manipulator inside the singular zone. The obtained results show that the values of the 
input torques are finite. 
 

  
(a) Case A (b) Case B 

 
(c) Case C 

Figure 4. Torques values for the actuator 1. 
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It is interesting to observe the manipulator’s behaviour for the simulated cases. The first 
law, which is a thirteenth order polynomial, assumes the prescribed motion without 
perturbation of torques outside of the singular zone. The same law does not provide the stable 
motion in the presence of singularity. The sixteenth order polynomial law re-establishes the 
stable motion for passing trough the singular position.        

 
 

  
(a) Case A (b) Case B 

 
(c) Case C 

Figure 5. Torques values for the actuator 2. 
 
 

4 Conclusion 
 

In our previous work, we have shown that any parallel manipulator can pass through the 
singular positions without perturbation of motion if the wrench applied on the end-effector by 
the legs and external efforts is reciprocal to the twist along the direction of the uncontrollable 
motion [32]. This condition was applied to the rigid-link manipulators. The obtained results 
showed that the planning of motion for assuming the optimal force generation can be carried 
out by an eight order polynomial law. In [34] the rigid-link flexible-joint manipulators have 
been studied. It was shown that the degree of the polynomial law should be different, when 
the flexibility of actuated joints is introduced. The obtained results disclosed that the planning 
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of motion for assuming the optimal force generation in the rigid-link flexible-joint 
manipulators must be carried out by a twelfth order polynomial law.  

In this paper, we have expanded the information about the dynamic properties of parallel 
manipulators in the presence of Type 2 singularity by including in the studied problem the 
link flexibility. The obtained results have shown that the planning of motion for assuming the 
optimal force generation in the manipulators with flexible links must be now carried out by a 
sixteenth order polynomial law. 

The suggested technique was illustrated by a 5R planar parallel manipulator. The obtained 
results have been validated by numerical simulations carried out using the software ADAMS. 
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Appendix 
 
From Eqs. (2, 3), vectors W, Wqe, and Wp can be found: 
 

  
e e

T T T T Td L L

dt
          

p xψ ε εψ q q ψ ψW J J J J J W
v x

, (A–1) 

 

  2

e ep p p e d
e e

d L L
I m l m

dt

  
       

q qW q F
q q




, (A–2) 

 

 d d

d L L
I m

dt

        
ε εW E F

ε ε
, (A–3) 

with 
  4d dI m  ψ 1 2 3 4 ψW ψ ε + ε + ε + ε F     , (A–4) 

 
 11 12 13 21 22 23[ , , , , , ]Te e e e e eE , (A–5) 

where, for i = 3, 4 
 1 1 2 33 3 2i i i i ie           , (A–6a) 

 2 2 32 2i i i ie        , (A–6b) 

 3 3i i ie     , (A–6c) 
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d f f

dt

  
    

ψF
ψ ψ

, 
4 4

3 1

T
Sij Sij

i j

f
 

  v v  (A–7) 

 

 
e

e e

d f f

dt

  
    

qF
q q

,  (A–8) 

 

 
d f f

dt

      
εF

ε ε
 (A–9) 

 
Matrices J and Jqe, of Eqs. (11-13) may be found from the loop closure equations 

between x,  and qe: 
 

   
     

2 2 2
1 1 1 11 11 12 11 12 13

11 12 11 12 13 11 12 13

( cos ) ( sin ) (2 cos cos cos

cos 2 cos 2 cos 2 2 ) / 8 0

e e
p p df x a L q y L q L      

       

           

        
 

  (A–10a) 
 

   
     

2 2 2
2 2 2 21 21 22 21 22 23

21 22 21 22 23 21 22 23

( cos ) ( sin ) (2 cos cos cos

cos 2 cos 2 cos 2 2 ) / 8 0

e e
p p df x a L q y L q L      

       

           

        
 

  (A–10b) 
 
from which it comes: 
 

 11 12 1 1

21 22 2 2

cos sin
2

cos sin

e e
p pi

e e
p p

a a x L q a y L qf

a a x L q a y L q

                    
A

x
 (A–11) 

 

 12 1 11 1

22 2 21 2

cos sin 0

0 cos sin

e e
i

p e e
e

a q a qf
L

a q a q

   
         

B
q

 (A–12) 

 

 11 12 13

24 25 26

0 0 0

0 0 08
i d

c c cf L

c c c

         
C 0

ε
  (A–13) 

with, for i = 1, 2 

 
     

   
1 1 1 2 1 2 3 1 2

1 2 3 1 2 3

sin sin sin 2sin 2

2sin 2 2sin 2 2

i i i i i i i i i

i i i i i i

c        

     

       

     
  (A–14a) 

 
     

   
2 1 2 1 2 3 1 2

1 2 3 1 2 3

sin sin sin 2

sin 2 2sin 2 2

i i i i i i i i

i i i i i i

c       

     

      

     
  (A–14b) 

      3 1 2 3 1 2 3 1 2 3sin sin 2 sin 2 2i i i i i i i i i ic                    (A–14c) 

 
As a result, it can be found that: 
 
 1( )e e e

    q εv A Bq Cε J q J ε    (A–15) 

and also that 
 1( )e

  q B Av Cε  , 1( )e e
     q B Av Av Cε Cε Bq       (A–16) 



 16  

 
Matrices T

xψJ , T
εψJ  and 

e

T
q ψJ of Eq. (A–1) may be found from loop closure equations 

between x, qe,  and : 
 

 1 1 1 1 11 1 11 12 1 11 12 13cos cos cos( ) cos( ) cos( ) / 4 0e
p dg x a L q L                       

   (A–17a) 
 

 2 2 2 2 21 2 21 22 2 21 22 23cos cos cos( ) cos( ) cos( ) / 4 0e
p dg x a L q L                       

   (A–17b) 
 

 3 1 1 1 11 1 11 12 1 11 12 13sin sin sin( ) sin( ) sin( ) / 4 0e
p dg y L q L                         

  (A–17c) 
 

 4 2 2 2 21 2 21 22 2 21 22 23sin sin sin( ) sin( ) sin( ) / 4 0e
p dg y L q L                        

  (A–17d) 
 
from which it comes: 
 

 

1 0

1 0

0 1

0 1

ig
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ψC
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 (A–20) 
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2

1

2

sin 0

0 sin

cos 0

0 cos
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d
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D L






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ψ ε
 (A–21) 

 
As a result, it can be found that: 
 
 1( ) ( )

e

T T
e e

      ψ ψ ψ ψ ψ ψ xψ q ψ εψψ D D D A v B q C ε J v J q J ε     (A–22) 

and 
 1( ) ( )T T

e e
       ψ ψ ψ ψ ψ ψ ψ ψ ψ ψψ D D D A v B q C ε A v B q C ε D ψ        . (A–23) 

 
 


