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In the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favourable force distribution, i.e. the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16 th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS.

Introduction

There are many studies dealing with the singularity analysis of parallel manipulators and an overview of all the works seems almost impossible within the framework of this paper. Let us disclose the kinematic, kinetostatic and dynamic aspects of singularity through some of them. The analysis of singular configurations has been first discussed from a kinematic point of view [START_REF] Gosselin | Singularity Analysis of Closed-Loop Kinematic Chains[END_REF]- [START_REF] Briot | Self Motions of General 3-RPR Planar Parallel Robots[END_REF]. However, it is also known that, when parallel manipulators have Type 2 singularities [START_REF] Gosselin | Singularity Analysis of Closed-Loop Kinematic Chains[END_REF], they lose their stiffness and their quality of motion transmission, and as a result, their payload capability. Therefore, the singularity zones in the workspace of manipulators may be analyzed not only in terms of kinematic criterions, from the theoretically perfect model of manipulators without friction and force transmission action, but also in terms of kinetostatic performance [START_REF] Gosselin | The Optimum Design of Robotic Manipulators using Dexterity Indices[END_REF]- [START_REF] Ranganath | A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration[END_REF]. In this vein, the paper [START_REF] Ranganath | A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration[END_REF] proposes the analysis and design of a Stewart Platform based force-torque sensor in a near-singular configuration. It was shown in this study that various singular configurations can be obtained to get high sensitivity to various combinations of the six components of force and torque.

The further study of singularity in parallel manipulators has revealed an interesting problem that concerns the path planning of parallel manipulators under the presence of singular positions, i.e. the motion feasibility in the neighbourhood of singularities. In this case the dynamic conditions can be considered in the path planning process. One of the most evident solutions for the stable motion generation in the neighbourhood of singularities is to use redundant sensors and actuators [START_REF] Alvan | On the Control of the Spatial Parallel Manipulators with Several Degrees of Freedom, Mechanism and Machine Theory[END_REF]- [START_REF] Hesselbach | Aspects on the Design of High Precision Parallel Robots[END_REF]. However, it is an expensive solution to the problem because of the additional actuators and the complicated control of the manipulator caused by actuation redundancy. Another approach concerns with motion planning to pass through singularity [START_REF] Bhattacharya | Comparison of an Exact and Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators[END_REF]- [START_REF] Perng | Inverse Kinematic Solutions for a Fully Parallel Robot with Singularity Robustness[END_REF], i.e. a parallel manipulator may track a path through singular poses if its velocity and acceleration are properly constrained. This is a promising way for the solution of this problem. However, the studies devoted to this problem have addressed the path planning for obtaining a good tracking performance, but not the physical interpretation of dynamic aspects.

The condition of optimal force generation in rigid parallel manipulators for passing through the singular positions has been studied in [START_REF] Briot | Optimal Force Generation in Parallel Manipulators for Passing through the Singular Positions[END_REF]. It was shown that any parallel manipulator can pass through the singular positions without perturbation of motion if the wrench applied on the end-effector by the legs and external efforts of the manipulator are reciprocal to the twist along the direction of the uncontrollable motion. The obtained results were validated through experimental tests carried out on the prototype of four-DOF parallel manipulator PAMINSA [START_REF] Briot | Design and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator with High-Load Carrying Capacity[END_REF].

This approach has been generalised in the case of rigid-link flexible-joints parallel manipulators [START_REF] Briot | On the Dynamic Properties of Rigid-Link Flexible-Joint Parallel Manipulators in the Presence of Type 2 Singularities[END_REF]. It was shown that the degree of the polynomial law should be different, when the flexibility of actuated joints is introduced into condition of the optimal force generation in the presence of singularity. The numerical simulations carried out using the software ADAMS validated the obtained theoretical results.

The study presented in this paper is the continuation of our previous works [START_REF] Briot | Optimal Force Generation in Parallel Manipulators for Passing through the Singular Positions[END_REF], [START_REF] Briot | On the Dynamic Properties of Rigid-Link Flexible-Joint Parallel Manipulators in the Presence of Type 2 Singularities[END_REF]. The purpose of this paper is to study the dynamic properties of parallel manipulators having not only flexible joints, but also flexible links.

The paper is organized as follows. The next section presents theoretical aspects of the examined problem, which is analysed using the Lagrangian formulation. The condition of force distribution is defined, that allows the passing of any flexible parallel manipulator through the Type 2 singular positions. In section 3, the suggested solution is illustrated via a 5R planar parallel manipulator having flexible links and joints. Conclusions are presented at the end of the paper.

Optimal dynamic conditions for passing through Type singularity

Let us consider a non-redundant parallel manipulator of m links, n degrees of freedom and driven by n actuators. The general Lagrangian dynamic formulation for a non-rigid manipulator can be expressed as [START_REF] Bouzgarrou | New Approach for Dynamic Modelling of Flexible Manipulators[END_REF]:

a a L L q q τ                dt d , ( 1a 
) e e L L q q 0                dt d , (1b) 
where, -L is the Lagrangian of the manipulator; L = T-V, where T is the kinetic energy and V the potential energy due to gravitational forces, friction and elasticity; -

T a n a a a q q q ] ,..., , [ 2 1  q and T a n a a a q q q ] ,..., , [ 2 1      q
represent the vectors of position and velocity of the actuators, respectively; -T e n e e e q q q ] ,..., , [

 q and T e n e e e q q q ] ,..., , [

2 1      q
represent the vectors of position and velocity of the elastic coordinates (deformations of links and joints); - is the vector of the actuators efforts.

In general, for parallel manipulators, the potential and kinetic energies do not explicitly depend both of the actuated variables q a and elastic coordinates q e , but also from the positions x and velocities v of the payload. Therefore it is preferable to rewrite Eq. (1) using the Lagrange multipliers [START_REF] Bouzgarrou | New Approach for Dynamic Modelling of Flexible Manipulators[END_REF], as follows:
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)
where  is the Lagrange multipliers vector, which is related to the wrench W p applied on the platform by:

p W A   T ,                     x v W p L L dt d (3)
and, -

T z y x ] , , , , , [     x and T z y x ] , , , , , [           v
are vectors containing the end-effector trajectory parameters and their derivatives, respectively; x, y, z represent the position of the controlled point in the global frame and  and  the rotation of the platform about three axes a   , a  and a  . Vector x depends on both rigid coordinates q a and elastic coordinates q e . -A, B and C are three matrices relating the vectors v, e q  and a q  according to

e a q C q B Av    
. They can be found by differentiating the closure equations f i (x, q a , q e ) = 0 (taking into account the rigid as well as the elastic coordinates [START_REF] Bouzgarrou | New Approach for Dynamic Modelling of Flexible Manipulators[END_REF]) with respect to time. In the hypothesis of small elastic displacements ( 0 q  e ), matrices A and B may be found assuming that the robot is composed of rigid links only. -W p is the wrench applied on the platform by the legs and external forces expressed along axes a   , a  and a   [START_REF] Khalil | A Novel So-lution for the Dynamic Modeling of Gough-Stewart Manipu-lators[END_REF].

Expressing W p in the base frame, one can obtain:

p R q b W J W τ 0 T a   , ( 4a 
) p R q c W J W 0 0 T e   , (4b) 
where

  B A J R q 1 0   a
is the square Jacobian matrix between the twist t of the platform (expressed in the base frame) and the vector a q  of actuators velocities,

  C A J R q 1 0   e
is the non-square Jacobian matrix between twist t of the platform (expressed in the base frame) and the vector e q  of deformations velocities, D A A R  0 is the expression of matrix A in the base frame, where D is a transformation matrix, of which expression is given in [START_REF] Merlet | Parallel Robots[END_REF].

For any prescribed trajectory x(t), the values of vector q a can be found using the inverse kinematics and dynamics. Thus, taking into account that the manipulator is not in a Type 1 singularity [START_REF] Gosselin | Singularity Analysis of Closed-Loop Kinematic Chains[END_REF], i.e the mechanism is at a configuration where it loses one DOF, the terms W b , W c and p R W 0 can be computed [START_REF] Boyer | Simulation of Flexible Manipulators Using Newton-Euler Inverse Dynamic Model[END_REF]. However, for a trajectory passing through a Type 2 singularity, the determinant of matrix A R 0 vanishes. Numerically, the values of the efforts applied by the actuators become infinite. In practice, the manipulator either is locked in such a position of the end-effector or it can not follow the prescribed trajectory.

As it is mentioned above, in a Type 2 singularity, the determinant of matrix A R 0 vanishes. In other words, at least two of its columns are linearly dependant [START_REF] Merlet | Parallel Robots[END_REF]. So, one may obtain such a relationship:

0 0 R R T T T    s s A t 0 t A 0 , (5) 
where the vector t s represents the direction of the uncontrollable motion of the platform in a Type 2 singularity. Then, by dot-multiplying both sides of (3) by ts and taking into account (5), we obtain

0 0 R T T  s t A λ , (6) 
which also implies that

0 0 R T  s p t W , (7) 
Thus, [START_REF] Hunt | Special Configurations of Robot-Arms via Screw Theory[END_REF] corresponds to the scalar product of vectors t s and p R W 0 . Thus, in the presence of a Type 2 singularity, it is possible to satisfy conditions [START_REF] Hunt | Special Configurations of Robot-Arms via Screw Theory[END_REF] if the wrench applied on the platform by the legs and external efforts p R W 0 are reciprocal to the direction of the uncontrollable motion t s . Otherwise, the dynamic model is not consistent. Obviously, in the presence of a Type 2 singularity, the displacement of the endeffector of the manipulator has to be planned to satisfy [START_REF] Hunt | Special Configurations of Robot-Arms via Screw Theory[END_REF]. Therefore, our task will be to achieve a trajectory which will allow the manipulator passing trough the Type 2 singularities, i.e. which will allow the manipulator respecting condition [START_REF] Hunt | Special Configurations of Robot-Arms via Screw Theory[END_REF].

In the next section, an example illustrates the obtained results discussed above. This example presents a planar 5R flexible parallel manipulator.

Illustrative example

In the planar 5R parallel manipulator, as shown in Fig. 1, the output point is connected to the base by two legs, each of which consists of three revolute joints and two links. In each of the two legs, the revolute joint connected to the base is actuated. Thus, such a manipulator is able to position its output point in a plane.

As shown in Fig. 1, the input joints are denoted as A and E. The orientation of elements 1 and 2 are denoted e q 1 and e q 2 , respectively. The common joint of the two legs is denoted as C, which is also the output axis with controlled parameters x = [x, y] T . A fixed global reference system xOy is located at the middle of segment AE with the y-axis normal to AE and the xaxis directed along AE. The lengths of the links AB & DE and BC & CD, are respectively denoted as L p and L d .

Actuators 1 and 2 are connected to links 1 and 2, respectively, via Harmonic Drive® systems which are represented by a model similar to that given in [START_REF] Spong | An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots[END_REF]. The position of actuator i is denoted as a i q . It is assumed that the actuator i is capable to deliver a couple  i to the motor shaft, which is elastically coupled to the link i of the robot (i = 1 or 2). The flexibility of the drive system is modeled by a torsion spring with stiffness k 1 . The gear ratio is denoted n. I a is the axial moment of inertia of the motor i plus the Harmonic drive system. The deformations of the robot links 3 and 4 are modeled by adding virtual torsion springs at points R ij (i = 3, 4 and j = 1 to 3), such as elements 3 and 4 are decomposed into four subelements, denoted as elements iv (i = 3, 4 and v = 1 to 4), with identical lengths and inertia properties. The stiffness of these springs is denoted as k 2 . The displacement of the spring mounted at point R ij will be denoted as  ij .

The singularity analysis of this manipulator shows that the Type 2 singularities appear when links 3 and 4 are parallel [START_REF] Liu | Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanism[END_REF] (Fig. 2). In both cases, the gained degree of freedom is an infinitesimal translation perpendicular to the links 3 and 4.

Taking into account that the gravity is directed along z axis (perpendicular to the plane of motions), the expression of the potential energy V may be written as:

  1 2 0.5 ( / ) ( / ) T T a e a e V k n n k     q q q q ε ε . ( 8 
)
where

q a = [ a q 1 , a q 2 ] T , q e = [ e q 1 , e q 2 ] T and  = [ 31 , 2 , 3 ,  41 , 2 , 3 ] T .
The expression of the kinetic energy is

2 4 4 1 3 1 0.5( ( ( ) ( ) ( ) ( ) ( )( ) ) ) T T T T T a a a p e e d T T T p S i S i d S i j S i j i i j T I I I m m                          1 1 1 2 1 2 1 2 3 1 2 3 q q q q ψ ψ ψ ε ψ ε ψ ε ε ψ ε ε ψ ε ε ε ψ ε ε ε v v v v                         (9) 
where

- T ] , [ 2 1       ψ
is the vector of the angular velocities of elements 3 and 4, -

3 4 [ , ] T j j j    ε    , j = 1 to 3
-v Si is the translational velocity vector of the centre of masses of element i (i = 1, 2); the centre of masses is located at the middle of the considered segment. -v Sij is the translational velocity vector of the centre of masses of element ij (i = 3, 4 and j = 1 to 3); the centre of masses is located at the middle of the considered segment. m p is the mass of the proximal links (elements 1 and 2), m d is the mass of each sub-elements of the distal links (elements ij, (i = 3, 4 and j = 1 to 4)); -I p is the axial moment of inertia of the proximal links (elements 1 and 2), I d is the axial moment of inertia of each sub-elements of the distal links;

The expressions of vectors v Si are: sin 0.5 cos

e e i Si p i e i q L q q         v  , for i = 1, 2 (10a) 
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sin( ) sin ( ) cos( ) cos [START_REF] Merlet | Singular Configurations of Parallel Manipulators and Grassmann Geometry[END_REF] 8
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, for i = 1, 2 and j = 4 (10e)

Introducing (10a, b, c, d, e) into ( 9), the dynamic model can be obtained from ( 2) and (3):

2 T k    ε ε p W J W ε 0 , (11) 
 

1 / e e T a e k n     q q p W J W q q 0, (12) 
and

n n k I a e a a / ) / ( 1 q q q       . ( 13 
)
The terms that appear in this model are described in the appendix.

For given trajectory x(t), the deformations (t) may de deduced from [START_REF] Bandyopadhyay | Analysis of Configuration Space Singularities of Closed-Loop Mechanisms and Parallel Manipulators[END_REF]. However, this equations is difficult to solve analytically, therefore an iterative resolution of the system is used [START_REF] Boyer | Simulation of Flexible Manipulators Using Newton-Euler Inverse Dynamic Model[END_REF]. Once (t) is known, the displacements, velocities, accelerations and other time derivatives of the passive and active variables q e and  may be found using the dynamic model equations and the loop closure equations, which are given in the appendix. Then, from [START_REF] Briot | Self Motions of General 3-RPR Planar Parallel Robots[END_REF], the values of q a are found: 

q q p q W J W q . ( 14 
)
Finally, the input torques  can be computed using [START_REF] Gosselin | The Optimum Design of Robotic Manipulators using Dexterity Indices[END_REF]. From ( 11), it appears that the deformations depends on the position x, velocity x  and acceleration x   of the end-effector. As a result, ε  depends on the end-effector position x, velocity x  , acceleration x   , jerk x   and its first derivative ) 4 (

x . Thus, q a also depends on the same parameters. As a result, from [START_REF] Gosselin | The Optimum Design of Robotic Manipulators using Dexterity Indices[END_REF], it can be shown that the input torques depends on the end-effector position, velocity, acceleration, jerk and its first, second and third derivatives with respect to time. Therefore, a thirteen-degree polynomial has to be applied as a control law when the end-effector is not in singular configuration.

In order to avoid infinite values of the input torques when crossing a Type 2 singularity, Eq. ( 7) has to be satisfied. From matrix A (see appendix), one can find that the twist of the infinitesimal displacement in the singularity can be written under the form:

T ] cos , sin [ 1 1     s t (15) 
Thus, the examined manipulator can pass through the given singular positions if the wrench W p determined by ( 14) is reciprocal to the direction of the uncontrollable motion t s described by [START_REF] Merlet | Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots[END_REF]. However, the difficulty remains into the fact that, introducing W p (see appendix) into (7) leads to a condition, which depends not only on the end-effector position, velocity and acceleration, but also of variables , ε  and ε  , which at any computation step can only be iteratively found. Therefore, contrary to our previous papers [START_REF] Briot | Optimal Force Generation in Parallel Manipulators for Passing through the Singular Positions[END_REF] [START_REF] Briot | On the Dynamic Properties of Rigid-Link Flexible-Joint Parallel Manipulators in the Presence of Type 2 Singularities[END_REF] in which the polynomial laws able to achieve condition [START_REF] Hunt | Special Configurations of Robot-Arms via Screw Theory[END_REF] were defined analytically, in this case, this law can only be found by using numerical simulation algorithms. An example of the use of such algorithm is given below.

Let us now determine the trajectory, which makes it possible to satisfy condition (7) for the manipulator with following parameters of links: a = 0. With regard to the prescribed trajectory generation, the point C should reproduce a motion along a straight line between the initial position C 0 (x 0 , y 0 ) = C 0 (0.1, 0.345) and the final point C f (x f , y f ) = C f (-0.1, 0.145) in t f = 1 s (Fig. 3). However, the manipulator will pass by a Type 2 singular position at point C s (x s , y s ) = C s (0, 0.245) (Fig. 3). The trajectory can be expressed as follows:

                  ) ( ) ( ) ( ) ( ) ( ) ( 0 0 0 0 y y t s y x x t s x t y t x f f x ( 16 
)
where s(t) is a polynomial, that should respect the following conditions:

s (t 0 ) = 0, ( 17 
)
s (t f ) = 1, (18) 0 
) ( ) ( 0   f t s t s   , ( 19 
) 0 ) ( ) ( 0   f t s t s     , ( 20 
) 0 ) ( ) ( 0   f t s t s       , ( 21 
) 0 / )) ( ( / )) ( ( 0   dt t s d dt t s d f       , ( 22 
) 0 / )) ( ( / )) ( ( 2 2 2 0 2   dt t s d dt t s d f       , ( 23 
) 0 / )) ( ( / )) ( ( 3 3 3 0 3   dt t s d dt t s d f       , ( 24 
)
s (t s = 0.5 s) = 0.5, (25) 0 ) (  s t s  , ( 26 
)
and 0  p W t T s . ( 27 
)
There are seventeen conditions, therefore s(t) should be at least a sixteen-degree polynomial.

Boundary conditions [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF] to [START_REF] Bhattacharya | Comparison of an Exact and Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators[END_REF] are directly linked to the expression of the polynomial, whereas [START_REF] Dasgupta | Singularity-Free Path Planning for the Steward Platform Manipulator[END_REF] involve the computation of the entire dynamic model, therefore, one way to find the polynomial is to express conditions [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF][START_REF] Arakelian | Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators using Mechanisms of Variable Structure[END_REF][START_REF] Hubert | Singularity Analysis through Static Analysis[END_REF][START_REF] Ranganath | A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration[END_REF][START_REF] Alvan | On the Control of the Spatial Parallel Manipulators with Several Degrees of Freedom, Mechanism and Machine Theory[END_REF][START_REF] Dasgupta | Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues[END_REF][START_REF] Glazunov | Parallel Manipulator Control While Intersecting Singular Zones[END_REF][START_REF] Kotlarski | Singularity Avoidance of a Kinematically Redundant Parallel Robot by a Constrained Optimization of the Actuation Forces[END_REF][START_REF] Hesselbach | Aspects on the Design of High Precision Parallel Robots[END_REF][START_REF] Bhattacharya | Comparison of an Exact and Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators[END_REF][START_REF] Dasgupta | Singularity-Free Path Planning for the Steward Platform Manipulator[END_REF] as the following optimization problem:

a p W t a min ) (   T s f ( 28 
)
subject to constraints [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF][START_REF] Arakelian | Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators using Mechanisms of Variable Structure[END_REF][START_REF] Hubert | Singularity Analysis through Static Analysis[END_REF][START_REF] Ranganath | A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration[END_REF][START_REF] Alvan | On the Control of the Spatial Parallel Manipulators with Several Degrees of Freedom, Mechanism and Machine Theory[END_REF][START_REF] Dasgupta | Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues[END_REF][START_REF] Glazunov | Parallel Manipulator Control While Intersecting Singular Zones[END_REF][START_REF] Kotlarski | Singularity Avoidance of a Kinematically Redundant Parallel Robot by a Constrained Optimization of the Actuation Forces[END_REF][START_REF] Hesselbach | Aspects on the Design of High Precision Parallel Robots[END_REF][START_REF] Bhattacharya | Comparison of an Exact and Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators[END_REF], where a is a vector regrouping the coefficients of the polynomial s(t). It is obvious that such formulation does not imply a 100% guaranty that the function f(a) will be null at the end of the optimization step. However, in general, the simulations have shown that, even if the minimization problem ( 28) may not yield a zero result, it was possible to obtain a value close to zero.

A way to solve this problem is to use the goal attainment programming (function "fgoalattain" in Matlab). The goal attainment optimization allows generating specific Paretooptimal solutions. Let us apply the goal-attainment technique that yields the following nonlinear programming formulation:

a , min    (29) subject to i h h f w f i i i i     ; ) ( ; ) ( 0 0 a a  (30) where 0 ) ( i i h h  a
represents the constraints [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF][START_REF] Arakelian | Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators using Mechanisms of Variable Structure[END_REF][START_REF] Hubert | Singularity Analysis through Static Analysis[END_REF][START_REF] Ranganath | A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration[END_REF][START_REF] Alvan | On the Control of the Spatial Parallel Manipulators with Several Degrees of Freedom, Mechanism and Machine Theory[END_REF][START_REF] Dasgupta | Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues[END_REF][START_REF] Glazunov | Parallel Manipulator Control While Intersecting Singular Zones[END_REF][START_REF] Kotlarski | Singularity Avoidance of a Kinematically Redundant Parallel Robot by a Constrained Optimization of the Actuation Forces[END_REF][START_REF] Hesselbach | Aspects on the Design of High Precision Parallel Robots[END_REF][START_REF] Bhattacharya | Comparison of an Exact and Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators[END_REF]. Here,  is an unrestricted scalar variable, 0  i w are designer selected weighting coefficients, and 0 i f are the goal to be realized for each design objective. In this formulation, minimization of  tends to force the specifications to meet their goal. If, at the solution point,  is negative, the goals have been over-attained; if  is positive, then the goals have been under-attained. The method is appealing since it is possible for the user to specify unrealizable objectives and still obtain a solution which represents a compromise. More detailed information about the goal-attainment optimization can be found in [START_REF] Fleming | Computer Aided Control System Design Using a Multi-Objective Optimisation Approach, Control 1985 Conference[END_REF].

Using the "fgoalattain" function in Matlab, with specified constraints (17-26) and objective [START_REF] Ider | Inverse Dynamics of Parallel Ma-nipulators in the Presence of Drive Singularities[END_REF], the following polynomial has been found:   

          (31) 
This polynomial will be implemented into the dynamic model of the manipulator in order to verify that it allows the passing through the Type 2 singularity. The simulations have been carried out using the software ADAMS.

In order to compare the different cases of trajectory planning, in Figs. 4 and5 are given the values of the input torques obtained using the software ADAMS for the following numerical simulations: A: a trajectory between points C 0 and C' f (x' f , y' f ) = C' f (-0.1, 345) (Fig. 3) without meeting any singularity. For such a case, a thirteenth order polynomial law has been defined from conditions [START_REF] Alba-Gomez | Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion[END_REF][START_REF] Arakelian | Increase of Singularity-Free Zones in the Workspace of Parallel Manipulators using Mechanisms of Variable Structure[END_REF][START_REF] Hubert | Singularity Analysis through Static Analysis[END_REF][START_REF] Ranganath | A Force-Torque Sensor Based on a Stewart Platform in a Near-Singular Configuration[END_REF][START_REF] Alvan | On the Control of the Spatial Parallel Manipulators with Several Degrees of Freedom, Mechanism and Machine Theory[END_REF][START_REF] Dasgupta | Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues[END_REF][START_REF] Glazunov | Parallel Manipulator Control While Intersecting Singular Zones[END_REF][START_REF] Kotlarski | Singularity Avoidance of a Kinematically Redundant Parallel Robot by a Constrained Optimization of the Actuation Forces[END_REF]. The obtained   It is interesting to observe the manipulator's behaviour for the simulated cases. The first law, which is a thirteenth order polynomial, assumes the prescribed motion without perturbation of torques outside of the singular zone. The same law does not provide the stable motion in the presence of singularity. The sixteenth order polynomial law re-establishes the stable motion for passing trough the singular position. 

Conclusion

In our previous work, we have shown that any parallel manipulator can pass through the singular positions without perturbation of motion if the wrench applied on the end-effector by the legs and external efforts is reciprocal to the twist along the direction of the uncontrollable motion [START_REF] Briot | Optimal Force Generation in Parallel Manipulators for Passing through the Singular Positions[END_REF]. This condition was applied to the rigid-link manipulators. The obtained results showed that the planning of motion for assuming the optimal force generation can be carried out by an eight order polynomial law. In [START_REF] Briot | On the Dynamic Properties of Rigid-Link Flexible-Joint Parallel Manipulators in the Presence of Type 2 Singularities[END_REF] the rigid-link flexible-joint manipulators have been studied. It was shown that the degree of the polynomial law should be different, when the flexibility of actuated joints is introduced. The obtained results disclosed that the planning of motion for assuming the optimal force generation in the rigid-link flexible-joint manipulators must be carried out by a twelfth order polynomial law.

In this paper, we have expanded the information about the dynamic properties of parallel manipulators in the presence of Type 2 singularity by including in the studied problem the link flexibility. The obtained results have shown that the planning of motion for assuming the optimal force generation in the manipulators with flexible links must be now carried out by a sixteenth order polynomial law.

The suggested technique was illustrated by a 5R planar parallel manipulator. The obtained results have been validated by numerical simulations carried out using the software ADAMS.

Appendix

From Eqs. (2, 3), vectors W  , W qe , and W p can be found:

  e e T T T T T d L L dt                  p x ψ ε ε ψ q q ψ ψ W J J J J J W v x , (A-1)
  

               q q W q F q q   , (A-2) d d d L L I m dt               ε ε W E F ε ε  , (A-3) with   4 d d I m    ψ 1 2 3 4 ψ W ψ ε + ε + ε + ε F      , (A-4)
i i i i i e             , (A-6a) 2 2 3 2 2 i i i i e          , (A-6b) 3 3 i i i e       , (A-6c) d f f dt             ψ F ψ ψ  , 4 4 3 1 T Sij Sij i j f     v v (A-7) e e e d f f dt             q F q q  , (A-8) d f f dt             ε F ε ε  (A-9)
Matrices J  and J qe , of Eqs. (11-13) may be found from the loop closure equations between x,  and q e : 

          2 2 2 1 1 1 1 1 1 1 1 2 1 1 1 
L q L                                    (A-10a)           2 
L q L                                    (A-10b)
from which it comes: 

a y L q f a a x L q a y L q                                A x (A-11)
f L a q a q                   B q (A-12) 11 12 13 
24 25 26 0 0 0 0 0 0 8 i d c c c f L c c c                  C 0 ε (A-13) with, for i = 1, 2           1 1 1 2 1 2 3 1 2 1 2 3 1 2 3 sin sin sin 2sin 2 2sin 2 2sin 2 2 i i i i i i i i i i i i i i i c                             (A-14a)           2 1 2 1 2 3 1 2 1 2 3 1 2 3 sin sin sin 2 sin 2 2sin 2 2 i i i i i i i i i i i i i i c                           (A-14b)       3 1 2 3 1 2 3 1 2 3
sin sin 2 sin 2 2

i i i i i i i i i i c                   (A-14c)
As a result, it can be found that:

1 ( )

e ee       q ε v A Bq Cε J q J ε     (A-15)
and also that J of Eq. (A-1) may be found from loop closure equations between x, q e ,  and :

  

                       (A-17d)
from which it comes: 

1 0 1 0 0 1 0 1 i g                       ψ A x (A-18)
                            ψ B q (A-19)
                                        ψ C ε (A-20) 1 2 1 2 sin 0 0 sin cos 0 0 cos i d g D L                             ψ ε (A-21)
As a result, it can be found that: 

Figure 1 .

 1 Figure 1. Kinematic chain of the planar 5R parallel manipulator.

Figure 2 .

 2 Figure 2. Type 2 singular configurations of the planar 5R parallel manipulator.

  2 m, L p = L d = 0.25 m, m p = 1.75 kg, m d = 1.8 kg, I p = 1.18.10 -2 kg.m², I d = 1.5.10 -4 kg.m², I a = 0.064.10 -4 kg.m², k 1 = k 2 = 800 Nm/rad, n = 50.

Figure 3 .

 3 Figure 3. Initial, singular and final positions of the planar 5R parallel manipulator.

Figure 4 .

 4 the trajectory planning between C 0 and C f inside the singular zone of the manipulator. In this case the values of the input torques close to the singular positions tend to infinity. C: the sixteenth order polynomial law of Eq. (31) for the trajectory planning of the manipulator inside the singular zone. The obtained results show that the values of the input torques are finite. (a) Case A (b) Case B (c) Case C Torques values for the actuator 1.

Figure 5 .

 5 Torques values for the actuator 2.

  B q C ε A v B q C ε D ψ