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Formation of void lattices is observed in a number of metals and alloys under high-energy 
particle bombardment.    Here we derive the conditions for destabilisation of homogeneous void 
arrangement using an approach developed for the description of lane formation in pedestrian 
crowds.  The model is based on the Foreman’s mechanism of void alignment due to one-
dimensionally-migrating clusters of self-interstitial atoms.  The results show that spatial 
correlations between voids should exist above some very small size, unless correlations with 
other defects prevail.  It is shown that spatial correlations of voids with dislocations and second-
phase precipitates should also evolve and provide a powerful driving force for further swelling. 
 
Key words: void swelling, void lattice, displacement cascades, interstitial clusters.  
*Author for correspondence. E-mail: a.barashev@liv.ac.uk. 
 
 
1. Introduction 

 
The formation of a void lattice was first reported in 1971 by Evans [1] in molybdenum under 
nitrogen ion irradiation, by Kulchinski, Brimhall and Kissinger [2] in nickel under selenium ion 
bombardment and by Wiffen [3] in molybdenum, niobium and tantalum under neutron 
irradiation.  Since then it was observed in bcc tungsten, the fcc Al, the hcp Mg, and some alloys.  
Jäger and Trinkaus [4] reviewed the characteristics of defect ordering, where many original 
references can be found, and analysed the theories proposed, including those based on the elastic 
interaction between voids, phase instability theory and low-dimensional atomic transport.  They 
concluded that in cubic metals the void ordering is probably due to the one-dimensional (1-D) 
glide of self-interstitial atom (SIA) clusters along close-packed crystallographic directions.  Two 
features of void ordering support this conclusion.  First, that the symmetry and crystallographic 
orientation of a void lattice are always the same as those of the host lattice.  And second, that the 
void lattices are formed under neutron and heavy-ion but not electron irradiation, i.e. when the 
primary damage is produced in displacement cascades.  The only exception of void ordering 
during electron irradiation in a stainless steel containing a high concentration of nitrogen [5] was 
proposed to be most probably due to SIA loop punching from small nitrogen bubbles 
preferentially absorbing SIAs.  Voids in hcp Mg (and bubbles in hcp Ti, Co, Zr and some Zr 
alloys) can order in planes parallel to the basal plane with variable void plane separation [6,7].  
Jäger and Trinkaus concluded that for hcp metals a decision between 1-D or 2-D SIA transport 
proposed by Evans [8-10] was not possible at the moment due to the lack of a sufficient body of 
information.  Now we know from molecular dynamics (MD) simulations using empirical 
potentials for the inter-atomic interaction that SIA clusters bigger than four SIAs in hcp Zr 
migrate one-dimensionally in the basal plane [11].  Hence, the observed planar void ordering in 
must also be accounted for using the same mechanism as for the void lattices in cubic metals. 
 It is worth noting that already in 1972 Foreman [12] suggested that voids are aligned 
along close-packed directions by 1-D SIA fluxes.  Dubinko et al. [13] were first to study the 
effect of the glide of perfect interstitial loops due to interaction with voids on void lattice 
formation.  Then, in 1992, Foreman et al. [14] discovered 1-D mobility of small SIA clusters in 
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MD studies of displacement cascades in copper.  This finding resolved a serious problem of the 
theory called ‘Singh-Foreman catastrophe’ [15], that is, accumulation of a high density of 
immobile SIA clusters produced in displacement cascades that is not observed in experiments, 
and promoted formulation of the ‘Production Bias Model’ of radiation damage in its modern 
form.  The model succeeds in explaining several striking observations, for example, enhanced 
swelling rates near grain boundaries [16] and in materials with small grain size [17], and under 
neutron compared to electron irradiation [18,19].  This is due to the recognition of two 
distinguishing features of defect production by high-energy recoils: first, the formation of SIA 
clusters directly in displacement cascades, as shown both experimentally [20] and in MD 
simulations [14,21,22] (see also review [23]); and, second, the 1-D mobility of SIA clusters 
[14,24-27].  
 After the review by Jäger and Trinkaus [4], several papers were published which 
exploited the Foreman’s idea for the description of the void lattice.  Some of them used Monte 
Carlo method to simulate void lattice formation (e.g. [28-30]).  In our view, these attempts have 
not added much to the very Foreman’s idea.  This is mainly because they suffer from an intrinsic 
deficiency of the small box size compared to the mean-free path of the SIA clusters, which 
introduces methodological errors in the simulations, as partly discussed at the end of this paper.  
Two attempts were made to describe analytically the void lattice formation, but both failed in our 
view.  In the analysis by Walgraef and Ghoniem [31], reactions of the 1-D diffusing SIA clusters 
with voids were incorporated incorrectly into the basic equation system (compare, e.g. equation 
system (1) in [31] with equations (5) and (6) in [18]).  Another attempt was made by Semenov 
and Woo [32,33].  Their analysis was based on the assumption of the existence of the stationary 
size-distribution function of voids.  This led to a conclusion that the formation of a void lattice is 
only possible if the fraction of the SIAs in the form of 1-D mobile clusters is less than 1% and 
thus less than the dislocation bias.  However, as shown in [34], the stationary state does not exist 
for such a small fraction.  In addition, the value of 1% is at least an order of magnitude smaller 
than that obtained in MD simulations [22]. 
 In this paper we consider the void ordering in the framework of a model developed for 
the lane formation in pedestrian crowds [35].  It suits naturally to the description of the 
phenomenon, since, according to experiments, voids are first nucleated in a random arrangement 
and only then form a lattice, the perfection of which increases with increasing irradiation dose 
[4].  The main aim of the present work is to derive general conditions for the onset of void 
ordering, after which the conventional rate equations should not apply. 
 
 
2. Analysis 

 
2.1. Basic equations 
 
We assume that the displacement cascades produce 3-D mobile single vacancies and SIAs and 1-

D mobile SIA clusters.  The fraction of the clustered SIAs is denoted by ε i

g .  We also assume 

that the void nucleation stage is over and the mobile defects interact only with already existing 
voids of the number density N  and dislocations of the density ρ .  The swelling rate is then [17] 

 

  
dS

dφ
= pv − (1− ε i

g )pi − ε i

g pcl =   

   =
4πrN

4πrN + Zvρ
− (1− ε i

g )
4πrN

4πrN + Ziρ
− ε i

g πr
2
N

πr
2
N + πρrd / 2

,  (1) 
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where S = 4πr
3
N / 3 , r  is the mean void radius, φ  is the irradiation dose in displacements per 

atom, which accounts for intra-cascade recombination, p j  is the probability that a j-type defect 

is absorbed by a void, Zv  and Zi  are the capture efficiencies of dislocations for vacancies and 

single SIAs, respectively, and rd  is the dislocation capture radius for SIA clusters.  The main 

purpose of writing equation (1) is to describe the reaction scheme and introduce probabilities p j . 

 We use a mathematical model similar to that developed for the description of lane 
formation in pedestrian crowds [35].  With the total void density to be constant, the local density 
changes due to voids moving in and out of the local area and hence obeys a continuity equation 
 

  
∂N

∂φ
= −div(NV − D∇N ) ,       (2) 

 
where V  is the mean velocity and D  is the diffusion coefficient of voids, defined locally:  
 

  V = 〈 ν j ∆ jj∑ 〉 ,        (3) 

  D =
1

6
〈 ν j ∆ j

2

j∑ 〉 .        (4) 

 
Here, j = v,i,cl  for the components corresponding to void collisions with vacancies, single SIAs 

and SIA clusters, respectively, ∆ j  are the vectors of void displacements after collisions and the 

averaging is performed over voids in the local region.  The collision frequencies are 

νv = pv / ΩN , ν i = 1− ε i

g( )pi / ΩN  and νcl = ε i

g pcl / mΩN , where Ω  is the atomic volume and 

m  is the mean number of SIAs in a cluster.  In the following two sections, we derive the void 
velocity and diffusion coefficient as functions of microstructure parameters. 
 
 
2.2. Diffusion coefficient of void 
 

A void of radius r  contains Ω= 3/4 3rM π  vacancies and arrival of an additional vacancy to it 

should displace its centre of mass by a vector, which is approximately equal to  
 

  ∆v =
rn

M +1
≈

3Ω

4π r
2

n ,       (5) 

 
where n  is a unit vector normal to the void surface at the point of defect absorption.  Here we 
use a conventional assumption that a defect is absorbed by a void at the point they touch each 
other and that the local surface diffusion is sufficient to keep void spherical (see, e.g. kinetic 
Monte Carlo simulations [28,30] and analytical treatment [36]).  This issue was generally 
discussed by Balluffi [37] and the assumption seems reasonable for a small void at low 
temperature, when the void surface represents a highly distorted region and the surface diffusion 
is limited to distances of the order of a facet size.  Arrival of an SIA to the same point should 

shift the void by the same distance but in the opposite direction ∆ i = −∆v , while a cluster of m 

SIAs should cause a proportionally larger displacement ∆cl = −m∆v .  Substituting these into 

equation (4), with the aid of equation (1) and taking pi ≈ pv , one obtains 
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  D =
3

2N

Ω

4πr
2( )2

mε i

g
pcl + (2 − ε i

g )pv
  .     (6) 

 
 
2.3. Void velocity 
 
The void velocity is determined by anisotropy of void collisions with mobile defects, hence by a 
nonzero ∇ν j .  Here, we assume that this anisotropy is due to existence of a gradient of void 

concentration ∇ν j ∝∇N .  An additional driving force due to gradient of void radius is ignored 

here for simplicity, to preserve the visual transparency of the original model of lane formation in 
pedestrian crowds (see also discussion in section 2.4 after equation (19)).  Then, a component of 
the void velocity due to interaction with j-type defects can be calculated as an average over 
defects arrived to different points of the void surface  
 

  Vj =
r

σ
dσ

∂ν j

∂N
n∇N( )∆ j∫

L j

.      (7) 

 

Here, σ = 4π r2  for 3-D and σ = π r2  for 1-D migrating defects (separately for each cluster 

Burgers vector kb , k = 1  to n, n=4 for the bcc and n=6 for the fcc crystal lattice), dσ  is the 

corresponding surface element and L j  is a characteristic size of the volume for averaging, which 

has replaced the averaging over different voids in the mean-field approach.  For 3-D migrating 
vacancies and SIAs, this size is of the order of the mean-free path  
 

  Lv,i ≈ L3D ≈ 4πrN + Zvρ( )−1/2
.       (8) 

 
For 1-D migrating clusters, for each Burgers vector, it is of the order of the projection of the 

mean-free path L1D  on the direction of ∇N : 

 

  Lcl

k = L1D

k ≈ L1D cos bk ,∇N( ) ,       (9) 

  L1D = πr2N + πρrd / 2( )−1

.       (10) 

 
By performing the integration indicated in equation (7), one can obtain the following equations 
for the partial velocities: 
 

  NVi = (1− ε i

g )Ai ∇N
L3D

,       (11) 

  NVv = −Av ∇N
L3D

,        (12) 

  NVcl = ε i

g
Acl

3

4n
∇N + ek ,∇N( )ek

L1D
k

k=1

n

∑ ,     (13) 

 

where Aj = p j( )2 / 4π rN  and ek = bk / b .  As can be seen from equations (11) and (12), 3-D 

migrating SIAs and vacancies move voids towards regions of higher and lower void 
concentration, respectively, thus maximising their growth rate.  The effect of SIA clusters is 
double fold.  The first term in equation (13) is analogous to equation (11) for single SIAs and 
describes movement of voids along the void concentration gradient.  The last term in the right-
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hand side of equation (13) describes movement of voids in the directions of the cluster Burgers 
vectors. 
 
 
2.4. Conditions for the onset of void ordering: a linear stability analysis 
 
Let us substitute equations (6) and (11)-(13) into equation (2) and analyse its stability to small 

variations of the void number density.  Obviously, a homogeneous solution, N hom , satisfies 

equation (2).  To derive the basic conditions for its destabilisation, we apply the linear stability 

analysis and insert the ansatz 
 
N = N hom + %N exp(iqR + aφ) , where R  is the radius vector, q  is a 

wave vector and a  is the amplification factor.  This results in the following equation 
 

  
a

q
2

e
iqR = ε i

g
Acl

3

4n
1+ cos2

bk ,q( )  〈e
iqR 〉

L1D
k

k=1

n

∑ +  

  + (1− ε i

g )Ai 〈e
iqR 〉

L3D

− Av 〈e
iqR 〉

L3D

− De
iqR .    (14) 

 

We note that 3 cos2 (bk ,q)
k∑ = n  in cubic structures, hence, for long waves, such that 

q−1 >> L1D , equation (14) is reduced to (taking pi = pv  for simplicity) 

 

  
a

q
2
=

ε i

g

4π rN
pcl

2 − pv

2( )− D < 0 ,      (15) 

 

which is always negative since pcl ≤ pv  (voids do not shrink).  For shorter wavelengths, we 

notice that the amplification factor a  can be positive provided that two conditions are satisfied at 
the same time: (i) the third term in the right-hand side of equation (14) is zero and (ii) some of 

the terms of the sum are nonzero.  The condition (i) requires q−1 << L3D .  The condition (ii) 

introduces limitations for both the magnitude and the direction of the wave vector.  First, one 

needs rq >>−1 , otherwise all terms in the sum vanish.  And, second, it requires 

L1D cos bk ,∇N( ) << r  for at least one k, i.e. the wave vector should be perpendicular to bk .  The 

maximum a  is achieved for a wave vector perpendicular to a plane containing any two Burgers 
vectors.  In this case, two terms of the sum are nonzero, while the terms with other Burgers 
vectors are equal to zero, because their averaging is performed over distances 

L1D cos(bk ,∇N ) ≥ L3D . 

 Summarising the analysis presented above, we conclude that the most favourable 
conditions for destabilisation of the homogeneous solution are realised when 
  

  r << q−1 << L3D ,        (16) 

  q [bk ,bk ' ] ,         (17) 

 

where kb and 'kb  ( 'kk ≠ ) are any two of n different Burgers vectors of the SIA clusters.  These 

conditions define the void movement leading to formation of close-packed planes bk ,bk '   of 

voids, and this is consistent with the observed isomorphism of the finally evolved void lattices 
and the host lattice structure.  Substituting conditions (16) and (17) into equation (14), one 
obtains the destabilisation condition as  
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  a = q
2 3ε i

g
Acl / 2n − D( )> 0 .       (18) 

 
Or, in a more explicit form, as 
 

  
4π r 3

3Ω
>

nm

3
1+

ρrd

2r
2
N







1+
2 − ε i

g

ε i

g
m

pv

pcl







.     (19) 

 
 Figure 1 shows the dependence of a critical void radius, above which voids start to order, 
on the void number density, given by equation (19).  The calculations were performed for the 

bcc lattice (n=4), m=10, ε i

g =0.5, Zi = Zv = 1 and two values of rd  and dislocation density shown 

in the figure.  As can be seen from the figure, the critical void radius is very small, much smaller 
than the void saturation radius ~ 2πrd / Zv , predicted by equation (1) [16].  (The latter can readily 

be derived in the limiting case when the production bias is much higher than the dislocation bias: 

ε i

g >> B = Zi / Zv −1.  For a comprehensive analysis, see an accompanying paper [38].)   

 
 [Insert figure 1 about here] 
 
 It is worth mentioning that the analysis presented here is similar to that used by Hähner 
and Frank [36].  The main difference is in consideration of a realistic mechanism for the lattice 
formation, which is supported by MD and first principal calculations, and is a requirement for 
explanation of some experimental data.  Some better mathematical transparency of the present 
analysis is achieved by using several simplifying assumptions, for example that void velocity, 
equation (7), is proportional to the void concentration, while the contribution of the gradient of 
void radius is neglected.  There are several reasons why gradients of void radius are not as 
important, but we have not found any concise explanation of this.  Note, however, that according 
to the results obtained by Hähner and Frank, the fluctuations of void radii do not initiate 
instability, which supports our assumption.  As far as we are concerned, Hähner and Frank were 
also the first to conclude that the void spacing in void lattices is likely to be determined by that in 
the disordered state, rather than be an ‘intrinsic material parameter’.  Although they used 
unrealistic mechanism for void ordering based on radiation-produced SIAs in metastable 
crowdion configuration, the main conclusion obtained in the present paper that void lattice 
should start for very small voids can be derived from their results in the limiting case, when the 
mean time before conversion of a crowdion to a dumbbell configuration is infinitely long: 

τC → ∞ .  So, assuming that the sink strength of dislocations is negligible as compared to that of 

voids, which agrees with the experimental observations of void lattices, it can be obtained that 
void ordering should start at any void size and such wave vectors that perpendicular to the close-
packed planes (e.g. {110} in the bcc crystal lattice) and which modulus satisfies the condition: 

q−1 < L3D .  This is similar, but less stronger condition than the right-hand part of equation (16).  

The restriction corresponding to equation (19), which originates in diffusion of voids, is absent 
in the analysis by Hähner and Frank.  Finally, the main important conclusion of the present work 
that the void ordering due to clusters of SIAs should start at very small voids is supported by 
their work, too. 
 Thus, the conditions for the onset of void ordering show that spatial correlations between 
voids should always be present, except for very early stages of irradiation, when voids are too 
small.  Essentially, the real question is not why voids sometimes form super-lattices, but why 
they do not form them.  We believe that we know the answer to the first question, although not 
all aspects of the process are yet understood.  We suppose the answer to the latter question to be 
as follows.  Spatial correlations always develop under cascade damage conditions.  The void 
lattices represent only one type of such correlations, which is realised when the void number 
density is high enough.  At lower void density, spatial correlations with other defects, e.g. 
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second-phase precipitates and dislocations, are formed.  Which correlations should prevail 
depends on the densities of different defects.  In the analysis presented above we assumed that 
voids are correlated with each other rather than with other elements of microstructure.  This is 
taken into account by assuming that the void velocity is caused by the gradient of void number 
density. 
 Let us derive applicability of this assumption for a system containing voids and edge 
dislocations.  In the framework of the model considered, the probability that an SIA cluster has 

voids at both ends of its path is pcl

2  and the probability that it has a void at one of the ends and a 

dislocation at the other end is 2 pcl(1− pcl ) .  A void lattice should evolve if the former is much 

greater than the latter, i.e. when  
 

  r2N >> ρrd .         (20) 

 
Note that the dependence of the amplification factor on the defect densities in equation (18) is 
rather weak, hence it is most probable that this requirement determines the observed conditions 
for the void lattice formation, that is, high void and low dislocation density.  The very absence of 
a void lattice, i.e. spatial correlations between voids, must be an indication that correlations of 
voids with other defects prevail. 
 
 
2.5. On spatial correlations between voids and other lattice defects 
 
It follows from the analysis that other microstructural features, e.g. dislocations and second-
phase precipitates, must also be involved in shadowing of voids from the SIA clusters and 
establish spatial correlations with voids.  So, for example, an existence of a gradient of 
dislocation density, should cause a void movement with the velocity given by equation (17), 
where N  is replaced by ρ .  The following analysis would be similar to that for void ordering 

and, if the inhomogeneity of the dislocation density is taken in the form 
 
ρ = ρhom + %ρ exp(iqdR) , 

the equation (18) for the amplification factor becomes 
 

  
 

a =
%ρ
%N

qd

2
Ad

2 exp i qd − q( )R  − q
2
D ,      (21) 

 

where Ad = 3ε i

grdAcl / 4nr2 .  As can be seen, the first term in the right-hand side of equation (21) 

is real and positive if q = qd , i.e. when spatial positions of voids correlate with dislocations. 

 

 

3. Concluding remarks 

 
The conditions for the onset of void ordering have been analysed in the framework of a model 
developed for the lane formation in pedestrian crowds and Foreman’s mechanism of void 
alignment due to 1-D migrating SIA clusters.  The results show that spatial correlations between 

voids should almost always be present unless correlations with other lattice defects of a higher 

density prevail.  The condition of high void / low dislocation density is thus necessary for void 
ordering, since it ensures the development of correlations between voids rather than between 
voids and other lattice defects, such as edge dislocations and second-phase precipitates.  The very 

absence of a void lattice must be an indication of the existence of correlations of voids with other 

defects.  An accompanying paper [38] is devoted to study the consequences of these correlations 
on void swelling and generally defect accumulation.  
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 Importantly, the critical void size for the onset of void ordering is much smaller than the 
void saturation radius predicted by the theory for voids distributed randomly.  Hence, the 
saturation of swelling observed in void lattices cannot be a consequence of this, as was thought 
before [8,9].  This statement is also supported by a previous finding that the formation of the free 
channels between voids in void lattices provides the escape routes for the SIA clusters to 
dislocations and leads to a significant increase of the void saturation radius [39].  In addition it is 
shown in [35] that, in conditions when void ordering is observed, i.e. a high void density, the 
irradiation dose required for an ensemble of randomly distributed voids to reach the steady state 
is very large, about several hundred dpa, thus much higher than in experiments, which is ~10 
dpa. 
 It is important that such spatial correlations provide a powerful mechanism for void 
growth and in an accompanying paper we argue that spatial correlations of voids with 
dislocations and second-phase precipitates should be a common feature under cascade-produced 

irradiation [38].  Association of large voids with various precipitates (G, η, Laves etc.) [40-45] 
and growth of voids in the compression side of edge dislocations [46,47] is well-known for a 
long time.  Recently, an evidence for the correlations between voids and other defects has been 
observed by Kozlov, Portnykh et al. [48,49] in 20% cold-worked 16Cr–15Ni–2Mo–2Mn 
austenitic steel irradiated up to ~100 dpa in a BN-600 fast reactor in the temperature range 410 to 
600ºC.  The transmission electron microscopy has revealed voids of three main types: a-type 
associated with dislocations, b-type associated with G-phase precipitates and c-type, which were 
formed homogeneously in the matrix.  The c-type voids were the smallest and made the smallest 
contribution to swelling, while the a-type voids were the largest. 
 It is relevant here to give arguments against apparently wrong interpretation of 
experimental data and some Monte Carlo results on void ordering by Evans [50], which led him 
to conclude that 2-D rather than 1-D SIA migration should be responsible for the void lattice 
formation.  First, it is evident that a correct modelling of void ordering must use simulation 
boxes bigger than the mean-free path of 1-D migrating SIA clusters.  This can be estimated using 
equation (10) and is typically of the order of micrometers, thus an order of magnitude longer 
than for 2-D diffusing objects.  Evans used much smaller box size, which was suitable for 2-D 
but not for 1-D migrating defects, and his observation of an existence of a barrier for the precise 
alignment of voids due to 1-D motion of SIAs likely originates from this methodological error.  
Second, according to equations (16) and (17) of the present analysis, during early stages of void 
ordering, voids form close-packed planes rather than close-packed lines, in exact correspondence 
with experiments.  Hence, Evans’ expectation of ‘the local ordering to be either along the 
relevant close-packed planes of along close-packed directions, depending on whether the SIA 
transport is planar or linear’ is invalid.  We also emphasise that, generally, substantial modelling 
and experimental evidence collected to date support 1-D rather than 2-D SIA transport. 
 Finally, we note that the considered spatial correlations tend to decrease the void-SIA 
collision frequency.  The condition of the minimum of interaction intensity in the evolving 
structures is common in self-organisation processes and is considered as a generalisation of the 
Onsager principle of the minimal dissipation of entropy [35]. 
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Figure captions 

 
Figure 1.  Dependence of the critical void radius for the onset of void ordering on the void 

number density. 
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