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A version of the Elfving problem with random

starting time

Anna Krasnosielska 1

Faculty of Mathematics and Information Science, Warsaw University of
Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland

Abstract

An optimal stopping time problem with a Poisson process, discount function and
random starting time is considered. Generalizations to a problem with random hori-
zon and to a multi-person stopping game with priorities are presented.

Key words: stopping game, Poisson process, random starting time, random
horizon

1 Introduction

An agent, who is waiting for some permit to run the business, is interested in
some projects. He will obtain the permit at some random time M . Until M , he
observes the market and learns which project should be accepted. The projects
appear according to a Poisson process and have assigned values Y1, Y2, . . .,
which are i.i.d. random variables. At each time only one project is presented.
The agent is allowed to accept only one project at the time of its appearance
and he is interested in accepting the most profitable one. The profit from the
accepted project with value Yn at time τn is g(Ynr(τn)) if τn ≥ M , and 0
otherwise, where r(·) and g(·) express the change of the value of the projects
in time and the agent’s subjective value of projects, respectively.

The results of the paper extend those obtained in the paper by Elfving (1967)
and Ferenstein and Krasnosielska (2009a, 2009b). Elfving (1967) considered
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the problem of selling a commodity where offers Y1, Y2, . . . appear according
to a Poisson process. The offers Yi are i.i.d. random variables independent of
the jump times τ1, τ2, . . . of the Poisson process. The owner obtains a reward
Ynr(τn) if he accepts the offer Yn at time τn, where r(·) is a discount func-
tion. Siegmund (1967) removed several additional assumptions from Elfving
solution. Ferenstein and Krasnosielska (2009a) generalized the Elfving prob-
lem to the case of a multi-person stopping game with priorities. A model with
random horizon based on the Elfving problem was considered in Ferenstein
and Krasnosielska (2009b). Stadje (1987) generalized the Elfving problem to
a multi stopping time problem. Kühne and Rüschendorff (2000) obtained the
approximations for the stopping of i.i.d. sequences in the domain of max-stable
laws. Cowan and Zabczyk (1978) considered a continuous-time version of the
secretary problem in which the offers appear at jump times of the Poisson
process up to fixed time T . Bruss (1987) extended the model of Cowan and
Zabczyk (1978) to the case of a compound Poisson process. Szajowski (2007)
generalized the problem considered by Bruss (1987) to the case of a two-person
game with random priority. A full-information best choice problem with ran-
dom starting point was considered by Porosiński and Szajowski (2000). The
starting point (an observation which cannot be chosen) is a positive random
variable independent of observations which are i.i.d. random variables. The
observations appear according to a renewal process. A decision maker obtains
some imperfect information about the random starting point. The aim of the
decision maker is to choose the largest observation. Sakaguchi (1986) analyzed
the full information secretary problem with Poisson stream of offers arriving
in a time interval of random length. Samuel-Cahn (1996) considered an opti-
mal stopping time problem with independent random horizon M and a known
number of offers. The problem has been translated to a problem with discount-
ing. Multi-person games with offers having uniform distribution and appearing
according to a Poisson process were considered in Dixon (1993). A two-person
game with random priority and two Poisson streams of offers was considered in
Sakaguchi (1991). In this game player i has higher priority at the times when
the observations are from stream i. General models of multi-person discrete-
time games with priorities were analyzed in Enns and Ferenstein (1987). A
multi-person stopping game with a known and finite number of observations
was considered in Ramsey and Szajowski (2000). A game with a large number
of offers and players was analyzed in Ramsey (2008).

In the paper the notations and the solution of the Elfving problem follow those
of Chow et al. (1971, pp. 113-118).
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2 Optimal stopping time problems with random starting time

Let (Ω, F , P) be a probability space on which all random variables are con-
sidered. Let Y1, Y2, . . . be independent, non-negative random variables with
continuous distribution function F , 0 < τ1 < τ2 < · · · be the jump times of a
homogeneous Poisson process with intensity 1, Y0 = 0, τ0 = 0. Let M be a non-
negative random variable with known distribution function FM . We assume
that the sequences {Yn} and {τn} are independent and they are independent of
M . Let us introduce various σ-fields of events dependent on available observa-
tions: Fn = σ(Y1, . . . , Yn, τ1, . . . , τn), F ∗

n = σ(Fn, I(M ≤ τ0), . . . , I(M ≤ τn)),
n = 1, 2, . . ., F0 = { ∅, Ω}, F ∗

0 = σ(F0, I(M ≤ τ0)), where I(A) is the indicator
function of the event A. Let T and T ∗ be the sets of Markov times adapted
to { Fn} ∞

n=0 and { F ∗
n } ∞

n=0, respectively. Write R+
0 = R+ ∪ {0}. Our aim is to

find supt∗ ∈T ∗ EX∗
t∗ , where

X∗
n = g(Ynr(τn))I(M ≤ τn), (1)

X∗
∞ = lim supn→ ∞ X∗

n and r : R+
0 → R+

0 and g : R+
0 → R+

0 are Borel functions.
We assume that r is bounded, continuous from the right, g is increasing,
continuous, g(0) = 0, and there exist functions g1 and g2 such that |g(yr(x1))−
g(yr(x2))| ≤ |g1(y)g2(x1, x2)| for x1, x2 ≥ 0 and y ∈ supp Y1, E|g1(Y1)| < ∞,
g1(0) = 0,

∫ ∞
0 |g2(x1 + t, x2 + t)|dt < c|x1 − x2| for some constant c ≥ 0.

Moreover, we assume that there exist constants m and U such that U > m ≥ 0,
FM(U) > 0, r(s) = 0 for s ∈ [0, m) ∪ [U, ∞) and r(s) > 0 for s ∈ [m, U). If
m > 0, then U < ∞, and if m = 0, then U ≤ ∞. Let g−1 denote the inverse
function for g. Let S be the set of all points of discontinuity of the functions r(·)
and FM(·) and all points of non-differentability of the function FM(·). Assume
that S ∩ (m, U) = {s1, . . . , sk}, k < ∞, s1 < · · · < sk, s0 = m, sk+1 = U and∫ ∞
0 h(x)dx < ∞, where h(x) = E(g(Y1r(x))). Denote F̄ (y) = 1 − F (y).

Note that the conditions concerning the functions r and g are satisfied if r is
increasing at most on a finite number of intervals and either g(x) = axp, p > 0,
a > 0, E(Y p

1 ) < ∞,
∫ ∞
0 (r(x))pdx < ∞ or E(Y1) < ∞ and g(x) is a Lipschitz

function. For example g(x) = ln(x+1), x ≥ 0, r(x) = x for x ∈ [0, 8), r(x) = 1
for x ∈ [8, U), and 0 elsewhere.

Remark 2.1 From Equation (1), the fact that g(·) is nonnegative and the def-
inition of h(·) we get E(

∑∞
n=1 X∗

n) ≤ E(
∑∞

n=1 g(Ynr(τn))) =
∑∞

n=1 E(h(τn)) <
∞ and consequently X∗

∞ = limn→ ∞ X∗
n = 0 and E(sup(X∗

n)) < ∞.

Note that m may be interpreted as the time up to which we plan to observe
the market and learn, max{M, m} as the time up to which we will actually
learn, r as the discount function if it is non-increasing and r(0) = 1, g as the
utility function.
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To solve the above problem we need to find a solution of a generalization of
the Elfving problem without random starting time.

2.1 The generalization of the Elfving problem

Let the above assumptions be satisfied and let our goal be to find supt∈T EXt(u),
where Xn(u) = g(Ynr(u + τn)), u ≥ 0. We have E(supn Xn(u)) < ∞ and
X∞(u) = 0. Note that {Zn,u} ∞

n=0, Zn,u = (Yn, u+τn), is a homogeneous Markov
chain with respect to { Fn} ∞

n=0, and Xn(u) is the function of Zn,u only. More-
over, since Yi are i.i.d. random variables, E(ess supt∈Tn+1

E(Xt(u) | Fn+1) | Fn)
is a function of u + τn only, say V (u + τn). Moreover, the Markov time
σ(u) = inf{n ≥ 0 : Xn(u) ≥ V (u + τn)} is optimal in T , where inf ∅ = +∞.
Since X0(u) = 0, it follows that σ(u) = inf{n ≥ 1 : Xn(u) ≥ V (u + τn)} and
supt∈T E(Xt(u)) = E max{X0(u), V (u + τ0)} = V (u). From the inequality
supt∈T |E(Xt(u1)) − E(Xt(u2))| ≥ | supt∈T E(Xt(u1)) − supt∈T E(Xt(u2))| and
the properties of the functions g and r we deduce that V (·) is continuous (for
more details see Appendix A). Set

y(s) =
g−1(V (s))

r(s)
for s ∈ [m, U) (2)

and y(s) = 0 elsewhere. Define fu(v) = P (τσ(u) > v). Note that fu(·) is
continuous. Moreover, the assumptions on r(·), g(·) and the form of σ(u)
ensure that fu(m) = 1. Hence, fu(v) = exp(− ∫ u+v

u+m F̄ (y(v′))dv′) for m ≤ v <
U − u and 0 ≤ u ≤ U − m (see Chow et al. (1971, pp. 114-115)). Note that
fu(v) is differentiable with respect to v in each of the intervals (si −u, si+1 −u),
i = j + 1, . . . , k, where u ∈ (sj − m, sj+1 − m), j = 0, . . . , k.

The optimal mean reward V (u) may be expressed as follows:

V (u) = E(Xσ(u)(u)) = E(E(g(Yσ(u)r(u + τσ(u))) | τσ(u), σ(u))).

Note that for τσ(u) ∈ [m, U − u) and u ∈ [0, U − m) the conditional distri-
bution of g(Yσ(u)r(u + τσ(u))) given τσ(u), σ(u) is the same as the conditional
distribution of g(Yσ(u)r(u + τσ(u))) given {Y ≥ y(u + τσ(u))}, where Y, τσ(u) are
independent and Y has the distribution function F . Hence, using the formula
for fu(v) we obtain for u ∈ (sj − m, sj+1 − m), j = 0, . . . , k,

V (u) =

U∫

u+m

∞∫

y(v)

g(xr(v))dF (x) exp
(

−
v∫

u+m

F̄ (y(v′))dv′
)
dv. (3)

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Equation (3) is differentiable with respect to u in each of the intervals (sj −
m, sj+1 − m), j = 0, . . . , k, hence for u ∈ (sj − m, sj+1 − m) we have

d

du
V (u) = F̄ (y(m + u))V (u) −

∞∫

y(m+u)

g(xr(m + u))dF (x). (4)

Remark 2.2 Equation (4) can be solved by recursion. Note that V (u) = 0 for
u ∈ [U − m, ∞). Hence, using the boundary condition V (U − m) = 0 and the
fact that V (u) is continuous, we obtain V (u) for u ∈ (U − 2m, U − m). In
the same way, we can compute V (u) for u ∈ (max{U − nm, 0}, U − nm + m),
n = 3, 4, . . . . Hence, from continuity of V (u), we obtain V (u) for u ∈ [0, ∞).

The proof of the theorem below is based on Chow et al. (1971, pp. 115-118).

Theorem 2.1 (i) A continuous function Ṽ (·) satisfies (3) if and only if Ṽ (·)
satisfies (4) and Ṽ (u) → 0 as u → U − m.
(ii) If a continuous function Ṽ (·) satisfies (3) on [0, U − m) and Ṽ (·) = 0
elsewhere, then Ṽ (·) = V (·) and σ(u) = inf{n ≥ 1 : Xn(u) ≥ Ṽ (u + τn)}.

Proof. (i) The fact that Ṽ (·) satisfying (3) has to satisfy (4) has been
shown above. Moreover, note that the right-hand side of (3) is non-negative,
exp(− ∫ v

u+m F̄ (ỹ(v′))dv′) ≤ 1 and 0 ≤ ∫ ∞
ỹ(v) g(xr(v))dF (x) ≤ E(g(Y1r(v))) =

h(v), where ỹ(s) = g−1(Ṽ (s))/r(s) for s ∈ [m, U) and ỹ(s) = 0 elsewhere.
Hence Ṽ (u) → 0 as u → U − m. Now, suppose that a continuous function
Ṽ (·) satisfies (4) and Ṽ (u) → 0 as u → U − m. For u ∈ [0, U − m), define
V1(·) by

V1(u) =

U∫

u+m

∞∫

ỹ(v)

g(xr(v))dF (x) exp
(

−
v∫

u+m

F̄ (ỹ(v′))dv′
)
dv (5)

and V1(u) = 0 for u ≥ U − m. Note that V1(u) is continuous for u ≥ 0 and
V1(u) = Ṽ (u) = 0 for u ≥ U − m. We wish to show that V1(u) = Ṽ (u) for
u ∈ [0, U − m]. Note that V1(u) → 0 as u → U − m. Moreover, differentiating
(5) in each of the intervals (sj − m, sj+1 − m), j = 0, . . . , k, we obtain

d

du
V1(u) = F̄ (ỹ(m + u))V1(u) −

∞∫

ỹ(m+u)

g(xr(m + u))dF (x). (6)

Assume that V1(u0) 6= Ṽ (u0) at some point u0 ∈ (sk −m, U −m). Let u1 be the
first point after u0 such that u1 ∈ (sk − m, U − m) and V1(u1) = Ṽ (u1). If such
a u1 does not exist we set u1 = U − m. From (6) and the assumption that Ṽ (·)
satisfies (4) we obtain d(V1(u)−Ṽ (u))/du = F̄ (ỹ(m+u))(V1(u)−Ṽ (u)). Hence,

5
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for u ∈ (u0, u1) we have ln |V1(u) − Ṽ (u)| = ln |V1(u0) − Ṽ (u0)| +
∫ u
u0

F̄ (ỹ(m +
u′))du′. For u → u1 the left-hand side of the above equation goes to −∞ while
the right-hand side is finite. This contradiction showes that V1(u) = Ṽ (u) for
u ∈ (sk − m, U − m). From the continuity of the functions V1(u) and Ṽ (u) we
obtain V1(u) = Ṽ (u) for u ∈ [sk − m, U − m]. Now by recursion we conclude
that V1(u) = Ṽ (u) for u ≥ 0.
(ii) Let u ≥ 0 be fixed. Suppose that there exists a continuous function Ṽ (u+z)
such that for u + z ∈ (sj − m, sj+1 − m), z ≥ 0, j = 0, . . . , k,

Ṽ (u + z) =

U∫

u+z+m

∞∫

ỹ(v)

g(xr(v))dF (x) exp
(

−
v∫

u+z+m

F̄ (ỹ(v′))dv′
)
dv, (7)

where ỹ(s) = g−1(Ṽ (s))/r(s) for s ∈ [m, U) and ỹ(s) = 0 elsewhere, and
Ṽ (u+z) = 0 for u+z ≥ U . Define σ̃1(u+z) = inf{n ≥ 1 : Yn ≥ ỹ(u+z+τn)}.
Considerations similar to those above show that E(Xσ̃1(u+z)(u + z)) is equal
to the right-hand side of (7). Let Hv = σ(N(v′), v′ ≤ v, Y1, . . . , YN(v)), where
N(v), v ≥ 0, is a homogeneous Poisson process with intensity 1. Then Hτn =
Fn for n ≥ 1, where Hτn = {A ∈ F : A ∩ {τn ≤ v} ∈ Hv for all v ≥ 0}. From
the properties of the exponential distribution we see that the conditional joint
distribution of (YN(v)+1, τN(v)+1), (YN(v)+2, τN(v)+2), . . . given Hv is the same as
the unconditional joint distribution of (Y1, v + τ1), (Y2, v + τ2), . . . . Hence,

P (Xσ̃(u+z)(u + z) ≤ t, σ̃(u + z) > N(v) | Hv)

= I(σ̃(u + z) > N(v))P (Xσ̃(u+z+v)(u + z + v) ≤ t).

Therefore, for all u + z ∈ [0, U − m), v ∈ [0, U − u − z), z ≥ 0, we have
I(σ̃(u + z) > N(v))Ṽ (u + z + v) = I(σ̃(u + z) > N(v))E(Xσ̃(u+z)(u + z) | Hv).
Hence,

Ṽ (u + z) = E(Xσ̃(u+z)(u + z))

= E(E(X1(u + z)I(X1(u + z) ≥ Ṽ (u + z + τ1))

+Xσ̃(u+z)(u + z)I(X1(u + z) < Ṽ (u + z + τ1)) | F1))

= E(max{X1(u + z), Ṽ (u + z + τ1)}).

Define Γ̃(y, u + z) = max{g(yr(u + z)), Ṽ (u + z)} for y ∈ [0, ∞), u + z ∈
[0, U − m), z ≥ 0. Then E(Γ̃(Y1, u + z + τ1)) = Ṽ (u + z). Hence, using
the facts that the sequences {Yn} and {τn} are independent and Yi are i.i.d.
random variables, we see that E(Γ̃(Yn+1, u+ τn+1) | Fn) = Ṽ (u+ τn). Defining

6
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γ̃n(u) = Γ̃(Yn, u + τn) for n ≥ 1, we get E(γ̃n+1(u) | Fn) = Ṽ (u + τn). Hence,

γ̃n(u) = max{Xn(u), E(γ̃n+1(u) | Fn)}. (8)

Let Tn = {t ∈ T : t ≥ n}, γn(u) = ess supt∈Tn
E(Xt(u) | Fn) for n ≥ 1,

T N
n = {t ∈ Tn : t ≤ N }, γN

n (u) = ess supt∈T N
n

E(Xt(u) | Fn) for n = 1, . . . , N ,

γ′
n(u) = limN → ∞ γN

n (u) for n ≥ 1. From (8), we have γ̃n(u) ≥ Xn(u) and
γ̃∞(u) = 0, because limn→ ∞ Ṽ (u + τn) = 0 and X∞(u) = 0. Define W (u) =∑∞

n=1 Xn(u). Then from Remark 2.1 we have E(W (u)) < ∞. Since γ̃n(u) ≤
Xn(u) + E(

∑∞
k=n+1 Xk(u) | Fn) for n ≥ 1, we have γ̃n(u) ≤ E(W (u)| Fn).

Therefore, the assumptions of Lemma 4.9 from Chow et al. (1971, p. 79))
are satisfied and γ̃n(u) ≤ γn(u). Moreover, from Theorem 4.6 of Chow et al.
(1971, p. 76), we conclude that {γ′

n(u), Fn} ∞
n=1 is the minimal supermartingale

dominating {Xn(u), Fn} ∞
n=1 and from Theorem 4.4 of Chow et al. (1971, p.

69)), we have γ′
n(u) = γn(u) for n ≥ 1. Hence, γ̃n(u) = γn(u) and Ṽ (u +

τn) = V (u + τn). Moreover, V (u) = max{X0(u), E(γ1(u) | F0)} = E(γ1(u)) =
E(γ̃1(u)) = Ṽ (u) for u ≥ 0.

2.2 Solution of the optimal stopping time problem with random starting time

Note that if I(M ≤ τn) = 1, then I(M ≤ τn+1) = 1. Moreover, if I(M ≤
τn) = 0, then I(M ≤ τk) = 0 for k = n − 1, . . . , 0. Hence, {Z∗

n, F ∗
n } ∞

n=0, where
Z∗

n = (Yn, τn, I(M ≤ τn)), is a homogeneous Markov chain and X∗
n is a function

of Z∗
n only. Therefore, using the fact that the Yi are i.i.d. random variables

we deduce that E(ess supt∗ ∈T ∗
n+1

E(X∗
t∗ | F ∗

n+1) | F ∗
n) is a function of τn and

I(M ≤ τn) only, say V ∗(τn, I(M ≤ τn)). Moreover, since X∗
0 = 0, the Markov

time σ∗ = inf{n ≥ 1 : X∗
n ≥ V ∗(τn, I(M ≤ τn))} is optimal in T ∗, where

inf ∅ = +∞. Note that

V ∗(τi, I(M ≤ τi)) > 0 for τi < U. (9)

Hence, {I(M > v) = 1} ∩ {Xi ≥ V ∗(τi, I(M ≤ τi))} ∩ {τi ≤ v} = ∅ for
v ∈ [0, U). Therefore, P (M > v, τσ∗ ≤ v) = 0 for v ∈ [0, U). Hence,
P (M > v) = P (M > v, τσ∗ > v) for v ∈ [0, U) and as a consequence

P (τσ∗ > v) = P (M > v) + P (τσ∗ > v, M ≤ v).

Moreover, note that P (τσ∗ > v) is continuous for v ≥ 0. Define

f ∗(v) = P (τσ∗ > v, M ≤ v) for 0 ≤ v < U.

7
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Note that f ∗(v) is continuous in each of the intervals (si, si+1), i = 0, . . . , k.
Let v ∈ (si, si+1) and h > 0 be such that (v − h, v + h) ⊆ (si, si+1). Note that

f ∗(v + h) = P (τσ∗ > v + h, M ≤ v) + P (τσ∗ > v + h, M ∈ (v, v + h]).

It is easy to see that

exp(−h)(FM (v + h) − FM (v)) ≤ P (τσ∗ > v + h, M ∈ (v, v + h])

≤ FM(v + h) − FM(v).

To compute P (τσ∗ > v + h, M ≤ v), note that

I(M ≤ τk)V
∗(τk, I(M ≤ τk)) = I(M ≤ τk)V (τk), k = 1, 2, . . . . (10)

To prove Equation (10), we first use the approximation by finite horizon prob-
lem (finite number of events in stream (τn)) and Theorem 3.2 of Chow et al.
(1971, pp. 50 and 68) and the properties of I(M ≤ τk). Next, we use Theorem
4.3 of Chow et al. (1971, pp. 50 and 68) (for more details see Appendix B).
Now, note that from (9) for τn < U we have X∗

n ≥ V ∗(τn, I(M ≤ τn)) iff I(M ≤
τn) = 1 and g(Ynr(τn)) ≥ V ∗(τn, I(M ≤ τn)). Moreover, X∗

n < V ∗(τn, I(M ≤
τn)) iff I(M ≤ τn) = 0 or I(M ≤ τn) = 1 and g(Ynr(τn)) < V ∗(τn, I(M ≤ τn)).
Note that if N(v + h) − N(v) = 1, then τN(v)+1 ∈ (v, v + h]. Hence, using (10)
and (2) we get

exp(−h)f ∗(v) + h exp(−h)F ( inf
x∈(v,v+h]

y(x))f ∗(v) + o(h)

≤ P (τσ∗ > v + h, M ≤ v)

≤ exp(−h)f ∗(v) + h exp(−h)F ( sup
x∈(v,v+h]

y(x))f ∗(v) + o(h).

Using the fact that exp(−h) = 1 − h + o(h) and f ∗(v) ∈ [0, 1] we obtain

lim
h→0+

f ∗(v + h) − f ∗(v)

h
= lim

h→0+

FM(v + h) − FM (v)

h
− f ∗(v)F̄ (y(v)).

Moreover, taking f ∗(v) = f ∗(v − h + h) we obtain limh→0+
f ∗(v−h)−f ∗(v)

−h
=

limh→0+
FM (v−h)−FM (v)

−h
− f ∗(v)F̄ (y(v)). Since FM(v) is differentiable in each of

the intervals (si, si+1), i = 0, . . . , k, we have limh→0
FM (v+h)−FM (v)

h
= F ′

M(v).
Therefore,

df ∗(v)

dv
= F ′

M (v) − f ∗(v)F̄ (y(v)). (11)

8
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Moreover, for each interval (si, si+1), i = 0, . . . , k, there exists exactly one
solution of (11) with boundary condition f ∗(si) = bi, i = 0, ..., k, respectively.
Hence, writing Ev

t = exp(− ∫ v
t F̄ (y(x))dx) we have f ∗(v) =

∫ v
si

F ′
M(t)Ev

t dt +
biE

v
si
. Note that b0 = f ∗(m) = P (M ≤ m). The remaining conditions f ∗(si) =

bi, i = 1, . . . , k, are obtained recursively from the continuity of the function
P (τσ∗ > v). Let F̄M(t) = 1 − FM(t). Define w = max{n ≥ 0 : sn ≤ v}. Hence,
for v ∈ (m, U)

P (τσ∗ > v) = F̄M(v) +

v∫

m

F ′
M(t)Ev

t dt + FM(m)Ev
m +

w∑

j=1

P (M = sj)E
v
sj

.

Note that the above function is differentiable in each of the intervals (si, si+1),
i = 0, . . . , k. Since P (M ≤ τσ∗ ) = 1, we have

sup
t∗ ∈T ∗

E(X∗
t∗ ) = E(X∗

σ∗ ) = E(E(g(Yσ∗r(τσ∗ )) | τσ∗ , σ∗)).

Moreover, from (9) and (10), we find that for τσ∗ ∈ [m, U) the conditional
distribution of g(Yσ∗r(τσ∗ )) given τσ∗ , σ∗ is the same as the conditional distri-
bution of g(Y r(τσ∗ )) given {Y ≥ y(τσ∗ )}, where Y, τσ∗ are independent, Y has
the distribution function F and y(u) is defined by (2). Hence

sup
t∗ ∈T ∗

E(X∗
t∗ ) =

U∫

m

∞∫

y(v)

g(xr(v))dF (x)

·
[ v∫

m

F ′
M(t)Ev

t dt + FM(m)Ev
m +

w∑

j=1

P (M = sj)E
v
sj

]
dv. (12)

Remark 2.3 In case r(m) = 0, the function y(s) is defined by (2) on (m, U)
instead of [m, U), but this does not affect the solutions of the problems under
consideration. Moreover, we can consider the case m > 0 and U infinite or
the problems in which the set S ∩ (m, U) is countable and does not have accu-
mulation points in (m, U) but in this case an effective solution also does not
exist.

Proposition 2.1 Suppose that the assumptions of Section 2 are satisfied.
Then supt∈T E(Xt(0)FM(τt)) ≤ supt∗ ∈T ∗ E(X∗

t∗ ) ≤ supt∈T E(Xt(0)).

Proof. Since T ⊂ T ∗ and X∗
n ≤ Xn(0), it follows that supt∈T E(X∗

t ) ≤
supt∗ ∈T ∗ E(X∗

t∗ ) ≤ supt∗ ∈T ∗ E(Xt∗ (0)). Moreover, X∗
n is not measurable with

respect to Fn, hence for t ∈ T we have E(X∗
t ) = E(Xt(0)FM(τt)). Since Xn(0)

is a function of Zn,0 only, supt∗ ∈T ∗ E(Xt∗ (0)) = supt∈T E(Xt(0)).

9
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Let us note that if P (M ≤ m) = 1, then in Proposition 2.1 we have equal-
ities instead of inequalities. In Example 1, we will show that in general the
inequalities may be strict.

2.3 Stopping time problem with random starting time and random horizon

Suppose that a random variable T , which can be interpreted as a random
horizon, has known distribution function FT and is independent of M , Y ’s
and τ ’s. Denote F̄T (s) = 1 − FT (s). Let T̂ be the set of Markov times adapted
to { F̂n} ∞

n=0, where F̂n = σ(F ∗
n, I(T > τ0), . . . , I(T > τn)), T̂n = {t̂ ∈ T̂ : t̂ ≥

n}, n = 0, 1, . . . . Note that E(sup X∗
nI(T > τn)) < ∞. The theorem below

is a generalization of the theorems presented by Samuel-Cahn (1996) and
Ferenstein and Krasnosielska (2009b). The idea of the transformation of an
optimal stopping time problem with random horizon to an optimal stopping
time problem with a modified structure of rewards is based on the paper of
Samuel-Cahn (1996).

Theorem 2.2 Let Y1, Y2, ... be i.i.d. nonnegative random variables indepen-
dent of the jump times τ1, τ2, ... of a Poisson process, Y0 = 0, τ0 = 0. Let M
and T be independent positive random variables independent of the sequences
of Y ’s and τ ’s, with distribution functions FM and FT , respectively. Let g :
R+

0 → R+
0 and r : R+

0 → R+
0 be Borel functions, X∗

n = g(Ynr(τn))I(M ≤ τn),
E(supn X∗

n) < ∞ and X∗
∞ = lim supn→ ∞ X∗

n. Then, for any k ∈ N ∪ {0},
supt̂∈T̂k

E(X∗
t̂
I(T > τt̂)) = supt∗ ∈T ∗

k
E(X∗

t∗ F̄T (τt∗ )).

Proof. Set ξn = I(M ≤ τn), ζn = I(T > τn), Ẑn = (Yn, τn, ξn, ζn), n =
0, 1, . . . . Note that if ζn = 1, then ζk = 1 for k = n − 1, . . . , 0. Moreover, if
ζn = 0, then ζn+1 = 0. Hence, we see that {Ẑn, F̂n} ∞

n=0 is a homogeneous
Markov chain with the state space E = supp Y1 × R+

0 × {0, 1} × {0, 1}.
Therefore, E(ess supt̂∈T̂n+1

E(X∗
t̂
ζt̂ | F̂n+1) | F̂n) is a function of τn, ξn and

ζn, say V̂ ∗(τn, ξn, ζn). Hence, the Markov time σ̂∗
k = inf{n ≥ k : X∗

nζn ≥
V̂ ∗(τn, ξn, ζn)} is optimal in T̂k. Define ϕ(y, s, w, v) = g(yr(s))wv and B =
{(y, s, w, v) ∈ E : ϕ(y, s, w, v) ≥ V̂ ∗(s, w, v)}. Hence σ̂∗

k = inf{n ≥ k :
(Yn, τn, ξn, ζn) ∈ B}. Define: B̄ = E \ B, C = {(y, s, w) : (y, s, w, 1) ∈ B},
C̄ = {(y, s, w) : (y, s, w, 1) ∈ B̄} and R = {(y, s, w, 1) ∈ E}. Note that
B ∩ R = C × {1} and B̄ ∩ R = C̄ × {1}. Using the fact that I(ζn = 1) = I(ζn =
1) · . . . · I(ζ0 = 1), we obtain X∗

σ̂∗
k

= X∗
σ̃∗

k
, where σ̃∗

k = inf{n ≥ k : (Yn, τn, ξn) ∈
C} and σ̃∗

k ∈ T ∗
k . Since I(T > τn) is not measurable with respect to F ∗

n, we
have E(X∗

t∗ I(T > τt∗ )) = E(X∗
t∗ F̄T (τt∗ )) for t∗ ∈ T ∗.

From the above theorem, we see that to find supt̂∈T̂ E(X∗
t̂
I(T > τt̂)) it is

enough to find supt∗ ∈T ∗ E(X∗
t∗ F̄T (τt∗ )). Without loss of generality we can as-

sume that inf{s : FT (s) = 1} ≥ U and all points of discontinuity of FT (·)

10
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belong to S. Moreover, we assume that there exist functions ĝ1 and ĝ2 such
that |g(yr(x1))F̄T (x1) − g(yr(x2))F̄T (x2)| ≤ |ĝ1(y)ĝ2(x1, x2)| for x1, x2 ≥ 0 and
y ∈ supp Y1, E|ĝ1(Y1)| < ∞, ĝ1(0) = 0 and

∫ ∞
0 |ĝ2(x1 + t, x2 + t)|dt < ĉ|x1 − x2|

for some constant ĉ ≥ 0. Note that the above conditions are satisfied if
E(Y1) < ∞ and g(x) = x and r(x) is non-increasing and continuous for x ≥ 0.
Denote Êv

t = exp(− ∫ v
t F̄ (ŷ(x))dx), where ŷ(s) = g−1(V̂ (s)/F̄T (s))/r(s) for

s ∈ (m, U) and ŷ(s) = 0 elsewhere, and V̂ (u) is continuous on [0, ∞) and for
u ∈ (sj − m, sj+1 − m), j = 0, ..., k, satisfies

d

du
V̂ (u) = F̄ (ŷ(u))V̂ (u) − F̄T (m + u)

∞∫

ŷ(u+m)

g(xr(m + u))dF (x)

with limu→U V̂ (u) = 0. Note that V̂ (u) = supt∈T E(Xt(u)F̄T (u)). Moreover,

sup
t∗ ∈T ∗

E(X∗
t∗ F̄T (τt∗ )) =

U∫

m

F̄T (v)

∞∫

ŷ(v)

g(xr(v))dF (x)

·
[ v∫

m

F ′
M(t)Êv

t dt + FM(m)Êv
m +

w∑

j=1

P (M = sj)Ê
v
sj

]
dv.

3 Game with known starting time and known horizon

In this section we generalize the problem considered in Subsection 2.1 to a
multi-person game considered in Ferenstein and Krasnosielska (2009a). In this
case m can be interpreted as the time up to which the players have to wait
for a permit to run their businesses. In this section we need additionally the
following assumptions U < ∞, r(x + y) ≤ r(x)r(y) for x, y ≥ m, g(xy) ≤
g(x)g(y). These assumptions are needed to show that relevant stopping times
are finite (see Stadje (1987)). Note that these assumptions are satisfied if
g(s) = sp, p > 0, and r(s) = exp(−s). Moreover, assume that there are j > 1
ordered players who sequentially observe offers Yn at times τn, n = 1, 2, . . . .
Players’ indices correspond to their ordering, called priorities, so that 1 refers
to the player with the highest priority and j to the player with the lowest one.
Each player who has just decided to make a selection at τn gets the reward
Xn(0) if and only if he has not obtained any reward before and there is no
player with higher priority who has also decided to take the current reward. As
soon as the player gets the reward, he quits the game. The remaining players
select rewards in the same manner, their priorities remain as previously.

Let Vj,l(u) be the optimal mean reward for the game with reward sequence
{g(Ynr(u + τn))}, u ≥ 0, for player l in the j-person game, where l is the

11
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player’s priority, l = 1, . . . , j, j = 1, 2, . . . . Note that V1,1(u) = V (u) for
u ≥ 0. As in Ferenstein and Krasnosielska (2009a) we find Vj,l(u). Denote
yl(s) = g−1(Vl,l(s))/r(s) for s ∈ [m, U) and 0 elsewhere, l = 1, . . . , j.

Theorem 3.1 (i) Vj,l(·) is continuous on [0, ∞) for l = 1, . . . , j.
(ii) Vj,l(u) = Vl,l(u), for l = 1, . . . , j − 1, u ≥ 0.
(iii) For u ∈ (si − m, si+1 − m), i = 0, . . . , k, j > 1, we have

d

du
Vj,j(u) = F̄ (yj(u + m))Vj,j(u) − Vj−1,j−1(u + m)F̄ (yj−1(u + m))

−
yj−1(u+m)∫

yj(u+m)

g(xr(u + m))dF (x).

The above differential equation can be solved numerically with the condition
V̂j,j(u) → 0 as u → U −m in accordance with the rule presented in Remark 2.2.
Taking u = 0 we obtain the optimal mean rewards for all players in the game
with rewards of the form Xn(0).

4 Examples

Let g(s) = s for s ≥ 0 and {Yi} be a sequence of i.i.d. random variables with
exponential distribution with mean 1. Then F̄ (y) = exp(−y).

Example 4.1 Let r(u) = 1 for u ∈ [0, 1/2), r(u) = 2/3 for u ∈ [1/2, 2) and
r(u) = 0 elsewhere, P (M = 0) = 1/2, P (M = 1) = 1/2. Then m = 0 and
U = 2 and limu→2 y(u) = limu→2 (V (u)/r(u)) = 0 and Equation (12) is equiv-
alent to dy(u)/du = − exp(−y(u)) in each of the intervals (0, 1/2), (1/2, 2).
Hence, for u ∈ (1/2, 2) and u ∈ (0, 1/2) we obtain y(u) = ln(1+ci −u), ci ∈ R,
i = 1, 2, respectively. Using condition y(2) = 0 we get c1 = 2 and y(u) =
ln(3 − u) for u ∈ (1/2, 2). Since V (u) is continuous, V (1/2) = ln((5/2)2/3).
Therefore, c2 = (5/2)2/3 − 1/2 and y(u) = ln((5/2)2/3 + 1/2 − u) for u ∈
(0, 1/2). Hence, V (0) = ln((5/2)2/3+1/2). From (12) we get supt∗ ∈T ∗ E(X∗

t∗ ) =
∫ 2
0 =

∫ (1/2)−
0 +

∫ 1−
(1/2)+ +

∫ 2
1+ ≈ 0.1853 + 0.0948 + 0.3764 = 0.6565. Now, tak-

ing r̃(u) = r(u)FM(u) and using (4), we find that supt∈T E(Xt(0)FM(τt)) ≈
0.5856. Hence, in Proposition 2.1 the inequalities cannot be replaced by equal-
ities.

Example 4.2 Let P (M = 0) = 1, P (T = 3) = 1 and r(s) = 1 for s ∈ [1, 3)
and r(s) = 0 elsewhere. Hence, m = 1, U = 3 and (4) becomes

dV (u)

du
= exp(−r(u + 1)V (u + 1))V (u)

12
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−r2(u + 1)V (u + 1) exp(−r(u + 1)V (u + 1)) − r(u + 1) exp(−V (u + 1)).

Since V (·) is continuous and V (u) = 0 for u ∈ [3, ∞) and r(u + 1) = 0 for
u ∈ (2, ∞), we have V (u) = 0 for u ∈ [2, ∞). Hence dV (u)/du = V (u) − 1 for
u ∈ (1, 2). Using the condition V (2) = 0, we obtain |V (u) − 1| = exp(u − 2).
Since V (u) is continuous, we have V (u) = 1 − exp(u − 2) for u ∈ [1, 2).
Therefore, dV (u)/du = exp(−(1 − exp(u − 1)))(V (u) + (exp(u − 1) − 2))
for u ∈ (0, 1). Solving this equation numerically with the boundary condition
V (1) = 1 − exp(−1) we obtain V (0) ≈ 1, 0057.
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Appendix A. Continuity of function V (·)

Note that |V (u)| < ∞ for all u ≥ 0. Now, we will show that for all u1 ≥ 0 and
u2 ≥ 0 we have:

sup
t∈T

|E(Xt(u1)) − E(Xt(u2))| ≥ | sup
t∈T

E(Xt(u1)) − sup
t∈T

E(Xt(u2))|. (A1)

Note that σ(u1) and σ(u2) are the optimal stopping times for sequences Xn(u1)
and Xn(u2), respectively, that is supt∈T E(Xt(ui)) = E(Xσ(ui)(ui)) for i ∈
{1, 2}. Moreover, without loss of generality, we can assume that

sup
t∈T

E(Xt(u1)) ≥ sup
t∈T

E(Xt(u2)). (A2)

Therefore,

sup
t∈T

|E(Xt(u1)) − E(Xt(u2))| ≥ |E(Xσ(u1)(u1)) − E(Xσ(u1)(u2))|

= |E(Xσ(u1)(u1)) − sup
t∈T

E(Xt(u2)) + sup
t∈T

E(Xt(u2)) − E(Xσ(u1)(u2))|

≥ |E(Xσ(u1)(u1)) − sup
t∈T

E(Xt(u2))| = | sup
t∈T

E(Xt(u1)) − sup
t∈T

E(Xt(u2))|,

13
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where the last inequality we obtain from Equation (A2) and definition of supre-
mum. Hence, we conclude that Equation (A1) is satisfied for all nonnegative
u1 and u2. Now, we will prove that V (u) is continuous for u ≥ 0. Let u1 ≥ 0
and u2 ≥ 0, then

|V (u1) − V (u2)| = | sup
t∈T

E(Xt(u1)) − sup
t∈T

E(Xt(u2))|

≤ sup
t∈T

|E(Xt(u1)) − E(Xt(u2))| ≤ sup
t∈T

E|g(Ytr(u1 + τt)) − g(Ytr(u2 + τt))|

≤ sup
t∈T

E|g1(Yt)g2(u1 + τt, u2 + τt)| ≤
∞∑

n=0

E|g1(Yn)g2(u1 + τn, u2 + τn)|

= E(g1(Y1))
∞∑

n=1

E|g2(u1 + τn, u2 + τn)|

= E(g1(Y1))

∞∫

0

|g2(u1 + x, u2 + x)|dx ≤ E(g1(Y1))c|u1 − u2|.

Hence, V (·) satisfies the Lipschitz condition, and consequently it is continuous.

Appendix B. Derivation of Equation (10)

Let Xn = Xn(0), γn = γn(0) = ess supt∈Tn
E(Xt| Fn), γ

∗
n = ess supt∗ ∈T ∗

n
E(X∗

t | F ∗
n)

for n = 1, 2, ..., T N
n = {min{t, N } : t ∈ Tn}, T ∗,N

n = {min{t∗, N } : t∗ ∈ T ∗
n },

γN
n = γN

n (0) = ess supt∈T N
n

E(Xt| Fn), γ∗,N
n = ess supt∗ ∈T ∗,N

n
E(Xt∗ | F ∗

n) for
n = 1, 2, ..., N , N ∈ N. Let k < N . Using the property of I(M ≤ τk) and
Theorem 3.2 from Chow, Robbins and Siegmund, 1971, p. 50, we have

γN
N I(M ≤ τk) = XNI(M ≤ τk) = X∗

NI(M ≤ τk) = γ∗,N
N I(M ≤ τk).

Hence, if I(M ≤ τk) = 1, then γN
N = γ∗,N

N . Moreover, if I(M ≤ τk) = 0, then
I(M ≤ τk)E(γN

N | F ∗
N −1) = I(M ≤ τk)E(γ∗,N

N | F ∗
N −1). Therefore, for n = N − 1

γN
N −1I(M ≤ τk) = max{XN −1, E(γN

N | FN −1)}I(M ≤ τk)

= max{XN −1I(M ≤ τk), I(M ≤ τk)E(γN
N | F ∗

N −1)}

= max{X∗
N −1I(M ≤ τk), I(M ≤ τk)E(γ∗,N

N | F ∗
N −1)}

= I(M ≤ τk) max{X∗
N −1, E(γ∗,N

N | F ∗
N −1)} = I(M ≤ τk)γ

∗,N
N −1.

14
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Hence, by recursion we obtain

γN
n I(M ≤ τk) = I(M ≤ τk)γ

∗,N
n for n = N, ..., k.

Note that Xn ≥ 0 and X∗
n ≥ 0 for n = 1, 2, . . ., hence γN

k ≥ 0 and γ∗,N
k ≥ 0 for

k = 1, 2, . . . , N and N ∈ N. Consequently, limN → ∞ γN
k ≥ 0 and limN → ∞ γ∗,N

k ≥
0. Hence, (limN → ∞ γN

k )− = 0 and (limN → ∞ γ∗,N
k )− = 0, where by defini-

tion x− = − min{x, 0}. Therefore, lim infk→ ∞
∫
t>k(limN → ∞ γN

k )−dP = 0 and

lim infk→ ∞
∫
t∗>k(limN → ∞ γ∗,N

k )−dP = 0 for each t ∈ Tn and t∗ ∈ T ∗
n , n =

1, 2, . . .. Therefore, the assumption of Theorem 4.3 from Chow, Robbins and
Siegmund, 1971, p. 68 is satisfied and consequently γn = limN → ∞ γN

n and
γ∗

n = limN → ∞ γ∗,N
n for n = 1, 2, . . .. Hence, for n ≥ k we have

I(M ≤ τk)γn = I(M ≤ τk) lim
N → ∞

γN
n = I(M ≤ τk) lim

N → ∞
γ∗,N

n = I(M ≤ τk)γ
∗
n.

And hence, using the fact that γn is Fn-measurable and independent of M ,
we have for n ≥ k

I(M ≤ τk)V (τn) = I(M ≤ τk)E(γn+1| Fn) = I(M ≤ τk)E(γn+1| F ∗
n)

= E(γn+1I(M ≤ τk)| F ∗
n) = E(γ∗

n+1I(M ≤ τk)| F ∗
n) = I(M ≤ τk)E(γ∗

n+1| F ∗
n)

= I(M ≤ τk)V
∗(τn, I(M ≤ τn)).

To complete the proof it is enough to take n = k.
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